dap305/Helsinki-finetuned-EuroParl-en-to-es
This model is a fine-tuned version of Helsinki-NLP/opus-mt-en-es on a subset of the EuroParl dataset. It achieves the following results on the validation set:
- Train Loss: 0.9863
- Validation Loss: 1.1352
- BLUE: 37.083
Intended uses & limitations
This model has been created for learning purposes at the MIARFID Automatic Translation course.
Training and evaluation data
This model was fine-tuned with a subset of the Europarl-v7-es-en, consisting of 50.000 sentences in English and Spanish.
Philipp Koehn. 2005. Europarl: A Parallel Corpus for Statistical Machine Translation. In Proceedings of Machine Translation Summit X: Papers, pages 79–86, Phuket, Thailand.
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 4344, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: mixed_float16
Training results
Train Loss | Validation Loss | Epoch |
---|---|---|
1.2441 | 1.1487 | 0 |
1.0785 | 1.1351 | 1 |
0.9863 | 1.1352 | 2 |
Framework versions
- Transformers 4.37.0
- TensorFlow 2.13.0
- Datasets 2.16.1
- Tokenizers 0.15.1
- Downloads last month
- 13
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for dap305/Helsinki-finetuned-EuroParl-en-to-es
Base model
Helsinki-NLP/opus-mt-en-es