Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: Qwen/Qwen2.5-7B
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - d78ccad961acde9f_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/d78ccad961acde9f_train_data.json
  type:
    field_instruction: inputs
    field_output: targets
    format: '{instruction}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: false
hub_model_id: daniel40/ad9dcbdc-3e85-41cd-9f95-990c92587b7a
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 10
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: constant
max_steps: 200
micro_batch_size: 2
mlflow_experiment_name: /tmp/d78ccad961acde9f_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 512
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 3b76012e-044d-4fbf-b37f-8fc34e60cc1e
wandb_project: Birthday-SN56-31-Gradients-On-Demand
wandb_run: your_name
wandb_runid: 3b76012e-044d-4fbf-b37f-8fc34e60cc1e
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null

ad9dcbdc-3e85-41cd-9f95-990c92587b7a

This model is a fine-tuned version of Qwen/Qwen2.5-7B on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3073

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: constant
  • lr_scheduler_warmup_steps: 10
  • training_steps: 200

Training results

Training Loss Epoch Step Validation Loss
No log 0.0018 1 1.8610
1.3784 0.0894 50 1.4014
1.4254 0.1788 100 1.3532
1.5615 0.2682 150 1.3206
1.3074 0.3576 200 1.3073

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
0
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and HF Inference API was unable to determine this model’s pipeline type.

Model tree for daniel40/ad9dcbdc-3e85-41cd-9f95-990c92587b7a

Base model

Qwen/Qwen2.5-7B
Adapter
(281)
this model