See axolotl config
axolotl version: 0.6.0
adapter: lora
base_model: bigcode/starcoder2-3b
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 012ab4813cc99fb8_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/012ab4813cc99fb8_train_data.json
type:
field_input: evidence
field_instruction: question
field_output: SQL
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
device_map: auto
do_eval: true
early_stopping_patience: 5
eval_batch_size: 4
eval_max_new_tokens: 128
eval_steps: 50
eval_table_size: null
evals_per_epoch: null
flash_attention: false
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: true
group_by_length: true
hub_model_id: dabrown/3ca3719e-ac62-4291-8edc-c53670bea96a
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 128
lora_dropout: 0.2
lora_fan_in_fan_out: false
lora_inference_mode: true
lora_model_dir: null
lora_modules_to_save:
- lm_head
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_memory:
0: 75GB
micro_batch_size: 4
mlflow_experiment_name: /tmp/012ab4813cc99fb8_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 10
optim_args:
adam_beta1: 0.9
adam_beta2: 0.95
adam_epsilon: 1e-5
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
peft_use_rslora: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 50
saves_per_epoch: null
sequence_len: 1024
shuffle_merged_datasets: true
special_tokens:
pad_token: <|endoftext|>
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: b1e23278-252e-44d7-9491-1b28d344421c
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: b1e23278-252e-44d7-9491-1b28d344421c
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
3ca3719e-ac62-4291-8edc-c53670bea96a
This model is a fine-tuned version of bigcode/starcoder2-3b on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.3206
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.5298 | 0.2525 | 50 | 0.4032 |
0.5869 | 0.5051 | 100 | 0.3490 |
0.445 | 0.7576 | 150 | 0.3094 |
0.3591 | 1.0101 | 200 | 0.3043 |
0.3098 | 1.2626 | 250 | 0.3415 |
0.3208 | 1.5152 | 300 | 0.3217 |
0.2425 | 1.7677 | 350 | 0.3043 |
0.1494 | 2.0202 | 400 | 0.3094 |
0.1766 | 2.2727 | 450 | 0.3060 |
0.215 | 2.5253 | 500 | 0.3022 |
0.1314 | 2.7778 | 550 | 0.3130 |
0.1838 | 3.0303 | 600 | 0.3147 |
0.1067 | 3.2828 | 650 | 0.3202 |
0.1491 | 3.5354 | 700 | 0.3042 |
0.1563 | 3.7879 | 750 | 0.3206 |
Framework versions
- PEFT 0.14.0
- Transformers 4.46.3
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3
- Downloads last month
- 3
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no pipeline_tag.
Model tree for dabrown/3ca3719e-ac62-4291-8edc-c53670bea96a
Base model
bigcode/starcoder2-3b