vit-base-patch16-224_rice-leaf-disease-augmented-v2_fft

This model is a fine-tuned version of google/vit-base-patch16-224 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3621
  • Accuracy: 0.9226

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine_with_restarts
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 19
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.9482 1.0 125 1.5012 0.5685
0.9894 2.0 250 0.6444 0.7976
0.3321 3.0 375 0.3859 0.8958
0.1115 4.0 500 0.3081 0.9107
0.0387 5.0 625 0.2980 0.9137
0.0204 6.0 750 0.2936 0.9137
0.0169 7.0 875 0.2953 0.9196
0.0078 8.0 1000 0.3067 0.9226
0.0034 9.0 1125 0.3087 0.9286
0.0025 10.0 1250 0.3139 0.9196
0.0023 11.0 1375 0.3142 0.9196
0.0019 12.0 1500 0.3288 0.9196
0.0013 13.0 1625 0.3359 0.9196
0.001 14.0 1750 0.3413 0.9226
0.0009 15.0 1875 0.3425 0.9226

Framework versions

  • Transformers 4.48.3
  • Pytorch 2.5.1+cu124
  • Datasets 3.3.2
  • Tokenizers 0.21.0
Downloads last month
33
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for cvmil/vit-base-patch16-224_augmented-v2_fft

Finetuned
(626)
this model