llama3-discolm-orca

is a merge of the following models

This was mostly a proof of concept test. GGUF 4k quants here: cstr/llama3-discolm-orca-GGUF

🧩 Configuration

LazyMergekit config:

models:
  - model: Locutusque/Llama-3-Orca-1.0-8B
    # no parameters necessary for base model
  - model: Locutusque/llama-3-neural-chat-v1-8b
    parameters:
      density: 0.60
      weight: 0.15
  - model: DiscoResearch/Llama3_DiscoLM_German_8b_v0.1_experimental
    parameters:
      density: 0.65
      weight: 0.7
merge_method: dare_ties
base_model: Locutusque/Llama-3-Orca-1.0-8B
parameters:
  int8_mask: true
dtype: bfloat16
random_seed: 0
tokenizer_source: base

πŸ’» Usage

!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "cstr/llama3-discolm-orpo-t2"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Downloads last month
25
Safetensors
Model size
8.03B params
Tensor type
BF16
Β·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for cstr/llama3-discolm-orca