csikasote's picture
End of training
2d343bb verified
metadata
library_name: transformers
license: cc-by-nc-4.0
base_model: facebook/mms-1b-all
tags:
  - automatic-speech-recognition
  - swagen
  - mms
  - generated_from_trainer
metrics:
  - wer
model-index:
  - name: mms-1b-swagen-female-model
    results: []

mms-1b-swagen-female-model

This model is a fine-tuned version of facebook/mms-1b-all on the SWAGEN - SWA dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2065
  • Wer: 0.1900

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • training_steps: 2500
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
8.5907 0.1176 100 4.5590 1.0
4.3006 0.2353 200 4.2573 1.0
4.1906 0.3529 300 3.8436 1.0
1.1198 0.4706 400 0.2569 0.1996
0.3012 0.5882 500 0.2466 0.1942
0.2919 0.7059 600 0.2501 0.1990
0.267 0.8235 700 0.2353 0.1894
0.2666 0.9412 800 0.2280 0.1904
0.2396 1.0588 900 0.2238 0.1892
0.258 1.1765 1000 0.2202 0.1898
0.2192 1.2941 1100 0.2196 0.1938
0.2353 1.4118 1200 0.2169 0.1875
0.2398 1.5294 1300 0.2164 0.1896
0.2419 1.6471 1400 0.2146 0.1913
0.2582 1.7647 1500 0.2122 0.1905
0.2417 1.8824 1600 0.2105 0.1861
0.2375 2.0 1700 0.2091 0.1892
0.2353 2.1176 1800 0.2087 0.1882
0.23 2.2353 1900 0.2091 0.1904
0.2378 2.3529 2000 0.2067 0.1898
0.2343 2.4706 2100 0.2061 0.1890
0.2083 2.5882 2200 0.2084 0.1884
0.2058 2.7059 2300 0.2085 0.1882
0.2197 2.8235 2400 0.2062 0.1904
0.2317 2.9412 2500 0.2065 0.1896

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0