metadata
library_name: transformers
license: cc-by-nc-4.0
base_model: facebook/mms-1b-all
tags:
- automatic-speech-recognition
- swagen
- mms
- generated_from_trainer
metrics:
- wer
model-index:
- name: mms-1b-swagen-female-model
results: []
mms-1b-swagen-female-model
This model is a fine-tuned version of facebook/mms-1b-all on the SWAGEN - SWA dataset. It achieves the following results on the evaluation set:
- Loss: 0.2065
- Wer: 0.1900
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- training_steps: 2500
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
8.5907 | 0.1176 | 100 | 4.5590 | 1.0 |
4.3006 | 0.2353 | 200 | 4.2573 | 1.0 |
4.1906 | 0.3529 | 300 | 3.8436 | 1.0 |
1.1198 | 0.4706 | 400 | 0.2569 | 0.1996 |
0.3012 | 0.5882 | 500 | 0.2466 | 0.1942 |
0.2919 | 0.7059 | 600 | 0.2501 | 0.1990 |
0.267 | 0.8235 | 700 | 0.2353 | 0.1894 |
0.2666 | 0.9412 | 800 | 0.2280 | 0.1904 |
0.2396 | 1.0588 | 900 | 0.2238 | 0.1892 |
0.258 | 1.1765 | 1000 | 0.2202 | 0.1898 |
0.2192 | 1.2941 | 1100 | 0.2196 | 0.1938 |
0.2353 | 1.4118 | 1200 | 0.2169 | 0.1875 |
0.2398 | 1.5294 | 1300 | 0.2164 | 0.1896 |
0.2419 | 1.6471 | 1400 | 0.2146 | 0.1913 |
0.2582 | 1.7647 | 1500 | 0.2122 | 0.1905 |
0.2417 | 1.8824 | 1600 | 0.2105 | 0.1861 |
0.2375 | 2.0 | 1700 | 0.2091 | 0.1892 |
0.2353 | 2.1176 | 1800 | 0.2087 | 0.1882 |
0.23 | 2.2353 | 1900 | 0.2091 | 0.1904 |
0.2378 | 2.3529 | 2000 | 0.2067 | 0.1898 |
0.2343 | 2.4706 | 2100 | 0.2061 | 0.1890 |
0.2083 | 2.5882 | 2200 | 0.2084 | 0.1884 |
0.2058 | 2.7059 | 2300 | 0.2085 | 0.1882 |
0.2197 | 2.8235 | 2400 | 0.2062 | 0.1904 |
0.2317 | 2.9412 | 2500 | 0.2065 | 0.1896 |
Framework versions
- Transformers 4.47.1
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0