csikasote's picture
End of training
c990fe5 verified
metadata
library_name: transformers
license: cc-by-nc-4.0
base_model: facebook/mms-1b-all
tags:
  - automatic-speech-recognition
  - swagen
  - mms
  - generated_from_trainer
metrics:
  - wer
model-index:
  - name: mms-1b-swagen-combined-15hrs-model
    results: []

mms-1b-swagen-combined-15hrs-model

This model is a fine-tuned version of facebook/mms-1b-all on the SWAGEN - SWA dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2307
  • Wer: 0.1929

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 30.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
14.8801 0.0797 100 0.7377 0.4426
0.6766 0.1594 200 0.2688 0.2006
0.5153 0.2391 300 0.2484 0.1975
0.526 0.3189 400 0.2398 0.1949
0.4874 0.3986 500 0.2398 0.1958
0.4666 0.4783 600 0.2358 0.1909
0.4406 0.5580 700 0.2391 0.1944
0.4689 0.6377 800 0.2334 0.1926
0.462 0.7174 900 0.2293 0.1927
0.4407 0.7971 1000 0.2293 0.1931
0.4567 0.8768 1100 0.2298 0.1928
0.4711 0.9566 1200 0.2305 0.1972
0.4444 1.0359 1300 0.2307 0.1929

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0