|
--- |
|
license: mit |
|
base_model: indobenchmark/indobert-base-p1 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- indonlu |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: IndoBERT-Sentiment-Analysis |
|
results: |
|
- task: |
|
name: Text Classification |
|
type: text-classification |
|
dataset: |
|
name: indonlu |
|
type: indonlu |
|
config: smsa |
|
split: validation |
|
args: smsa |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9452380952380952 |
|
language: |
|
- id |
|
- en |
|
widget: |
|
- text: "Doi asik bgt orangnya" |
|
- example_title: "Example 1" |
|
- text: "Ada pengumuman nih gaiss, besok liburr" |
|
- example_title: "Example 2" |
|
- text: "Kok gitu sih kelakuannya" |
|
- example_title: "Example 3" |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# IndoBERT-Sentiment-Analysis |
|
|
|
This model is a fine-tuned version of [indobenchmark/indobert-base-p1](https://huggingface.co/indobenchmark/indobert-base-p1) on the indonlu dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.4221 |
|
- Accuracy: 0.9452 |
|
- F1 Score: 0.9451 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 6 |
|
- eval_batch_size: 6 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Score | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:| |
|
| 0.3499 | 0.27 | 500 | 0.2392 | 0.9310 | 0.9311 | |
|
| 0.3181 | 0.55 | 1000 | 0.3354 | 0.9175 | 0.9158 | |
|
| 0.3001 | 0.82 | 1500 | 0.2965 | 0.9238 | 0.9243 | |
|
| 0.2534 | 1.09 | 2000 | 0.3513 | 0.9222 | 0.9218 | |
|
| 0.1692 | 1.36 | 2500 | 0.2657 | 0.9405 | 0.9399 | |
|
| 0.1543 | 1.64 | 3000 | 0.4046 | 0.9198 | 0.9191 | |
|
| 0.1827 | 1.91 | 3500 | 0.2800 | 0.9317 | 0.9319 | |
|
| 0.1061 | 2.18 | 4000 | 0.3352 | 0.9389 | 0.9389 | |
|
| 0.0639 | 2.45 | 4500 | 0.4033 | 0.9373 | 0.9365 | |
|
| 0.0709 | 2.73 | 5000 | 0.3508 | 0.9365 | 0.9360 | |
|
| 0.0922 | 3.0 | 5500 | 0.3313 | 0.9397 | 0.9394 | |
|
| 0.0274 | 3.27 | 6000 | 0.3635 | 0.9444 | 0.9440 | |
|
| 0.0273 | 3.54 | 6500 | 0.4074 | 0.9389 | 0.9387 | |
|
| 0.0414 | 3.82 | 7000 | 0.3863 | 0.9405 | 0.9405 | |
|
| 0.0156 | 4.09 | 7500 | 0.4128 | 0.9413 | 0.9412 | |
|
| 0.0067 | 4.36 | 8000 | 0.4469 | 0.9397 | 0.9399 | |
|
| 0.0056 | 4.63 | 8500 | 0.4297 | 0.9444 | 0.9445 | |
|
| 0.0124 | 4.91 | 9000 | 0.4227 | 0.9452 | 0.9451 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.39.0.dev0 |
|
- Pytorch 2.1.0.dev20230729 |
|
- Datasets 2.14.0 |
|
- Tokenizers 0.15.2 |