NPRC24 / IIR-Lab /models /archs /component.py
Artyom
IIRLab
6721043 verified
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import init as init
from torch.nn.modules.batchnorm import _BatchNorm
import matplotlib.pyplot as plt
class CvBlock(nn.Module):
'''(Conv2d => BN => ReLU) x 2'''
def __init__(self, in_ch, out_ch):
super(CvBlock, self).__init__()
self.convblock = nn.Sequential(
nn.Conv2d(in_ch, out_ch, kernel_size=3, padding=1, bias=False),
nn.BatchNorm2d(out_ch),
nn.ReLU(inplace=True),
nn.Conv2d(out_ch, out_ch, kernel_size=3, padding=1, bias=False),
nn.BatchNorm2d(out_ch),
nn.ReLU(inplace=True)
)
def forward(self, x):
return self.convblock(x)
class InputCvBlock(nn.Module):
'''(Conv with num_in_frames groups => BN => ReLU) + (Conv => BN => ReLU)'''
def __init__(self, num_in_frames, out_ch):
super(InputCvBlock, self).__init__()
self.interm_ch = 30
self.convblock = nn.Sequential(
nn.Conv2d(num_in_frames*(3+1), num_in_frames*self.interm_ch, \
kernel_size=3, padding=1, groups=num_in_frames, bias=False),
nn.BatchNorm2d(num_in_frames*self.interm_ch),
nn.ReLU(inplace=True),
nn.Conv2d(num_in_frames*self.interm_ch, out_ch, kernel_size=3, padding=1, bias=False),
nn.BatchNorm2d(out_ch),
nn.ReLU(inplace=True)
)
def forward(self, x):
return self.convblock(x)
class InputCvBlock_1(nn.Module):
'''(Conv with num_in_frames groups => BN => ReLU) + (Conv => BN => ReLU)'''
def __init__(self, num_in_frames, out_ch):
super(InputCvBlock_1, self).__init__()
self.interm_ch = 30
self.convblock = nn.Sequential(
nn.Conv2d(num_in_frames*(3+1), num_in_frames*self.interm_ch, \
kernel_size=3, padding=1, groups=num_in_frames, bias=False),
nn.BatchNorm2d(num_in_frames*self.interm_ch),
nn.ReLU(inplace=True),
nn.Conv2d(num_in_frames*self.interm_ch, out_ch, kernel_size=3, padding=1, bias=False),
nn.BatchNorm2d(out_ch),
nn.ReLU(inplace=True)
)
# self.NAF1 = NAFBlock(out_ch)
# self.NAF2 = NAFBlock(out_ch)
def forward(self, x):
x = self.convblock(x)
# x = self.NAF1(x)
# return self.NAF2(x)
return x
class DownBlock(nn.Module):
'''Downscale + (Conv2d => BN => ReLU)*2'''
def __init__(self, in_ch, out_ch):
super(DownBlock, self).__init__()
self.convblock = nn.Sequential(
nn.Conv2d(in_ch, out_ch, kernel_size=3, padding=1, stride=2, bias=False),
nn.BatchNorm2d(out_ch),
nn.ReLU(inplace=True),
CvBlock(out_ch, out_ch)
)
def forward(self, x):
return self.convblock(x)
class DownBlock_1(nn.Module):
'''Downscale + (Conv2d => BN => ReLU)*2'''
def __init__(self, in_ch, out_ch):
super(DownBlock_1, self).__init__()
self.convblock = nn.Sequential(
nn.Conv2d(in_ch, out_ch, kernel_size=3, padding=1, stride=2, bias=False),
nn.BatchNorm2d(out_ch),
nn.ReLU(inplace=True),
CvBlock(out_ch, out_ch)
)
self.NAF1 = NAFBlock(in_ch)
self.NAF2 = NAFBlock(in_ch)
def forward(self, x):
x = self.NAF1(x)
x = self.NAF2(x)
return self.convblock(x)
class UpBlock(nn.Module):
'''(Conv2d => BN => ReLU)*2 + Upscale'''
def __init__(self, in_ch, out_ch):
super(UpBlock, self).__init__()
self.convblock = nn.Sequential(
CvBlock(in_ch, in_ch),
nn.Conv2d(in_ch, out_ch*4, kernel_size=3, padding=1, bias=False),
nn.PixelShuffle(2)
)
def forward(self, x):
return self.convblock(x)
class UpBlock_1(nn.Module):
'''(Conv2d => BN => ReLU)*2 + Upscale'''
def __init__(self, in_ch, out_ch):
super(UpBlock_1, self).__init__()
self.convblock = nn.Sequential(
CvBlock(in_ch, in_ch),
nn.Conv2d(in_ch, out_ch*4, kernel_size=3, padding=1, bias=False),
nn.PixelShuffle(2)
)
self.NAF1 = NAFBlock(in_ch)
self.NAF2 = NAFBlock(in_ch)
def forward(self, x):
x = self.NAF1(x)
x = self.NAF2(x)
return self.convblock(x)
class OutputCvBlock(nn.Module):
'''Conv2d => BN => ReLU => Conv2d'''
def __init__(self, in_ch, out_ch):
super(OutputCvBlock, self).__init__()
self.convblock = nn.Sequential(
nn.Conv2d(in_ch, in_ch, kernel_size=3, padding=1, bias=False),
nn.BatchNorm2d(in_ch),
nn.ReLU(inplace=True),
nn.Conv2d(in_ch, out_ch, kernel_size=3, padding=1, bias=False)
)
def forward(self, x):
return self.convblock(x)
class OutputCvBlock_1(nn.Module):
'''Conv2d => BN => ReLU => Conv2d'''
def __init__(self, in_ch, out_ch):
super(OutputCvBlock_1, self).__init__()
self.convblock = nn.Sequential(
nn.Conv2d(in_ch, in_ch, kernel_size=3, padding=1, bias=False),
nn.BatchNorm2d(in_ch),
nn.ReLU(inplace=True),
nn.Conv2d(in_ch, out_ch, kernel_size=3, padding=1, bias=False)
)
# self.NAF1 = NAFBlock(in_ch)
# self.NAF2 = NAFBlock(in_ch)
def forward(self, x):
# x = self.NAF1(x)
# x = self.NAF2(x)
return self.convblock(x)
class SimpleGate(nn.Module):
def forward(self, x):
x1, x2 = x.chunk(2, dim=1)
return x1 * x2
class LayerNormFunction(torch.autograd.Function):
@staticmethod
def forward(ctx, x, weight, bias, eps):
ctx.eps = eps
N, C, H, W = x.size()
mu = x.mean(1, keepdim=True)
var = (x - mu).pow(2).mean(1, keepdim=True)
y = (x - mu) / (var + eps).sqrt()
ctx.save_for_backward(y, var, weight)
y = weight.view(1, C, 1, 1) * y + bias.view(1, C, 1, 1)
return y
@staticmethod
def backward(ctx, grad_output):
eps = ctx.eps
N, C, H, W = grad_output.size()
y, var, weight = ctx.saved_variables
g = grad_output * weight.view(1, C, 1, 1)
mean_g = g.mean(dim=1, keepdim=True)
mean_gy = (g * y).mean(dim=1, keepdim=True)
gx = 1. / torch.sqrt(var + eps) * (g - y * mean_gy - mean_g)
return gx, (grad_output * y).sum(dim=3).sum(dim=2).sum(dim=0), grad_output.sum(dim=3).sum(dim=2).sum(
dim=0), None
class LayerNorm2d(nn.Module):
def __init__(self, channels, eps=1e-6):
super(LayerNorm2d, self).__init__()
self.register_parameter('weight', nn.Parameter(torch.ones(channels)))
self.register_parameter('bias', nn.Parameter(torch.zeros(channels)))
self.eps = eps
def forward(self, x):
return LayerNormFunction.apply(x, self.weight, self.bias, self.eps)
class NAFBlock(nn.Module):
def __init__(self, c, DW_Expand=2, FFN_Expand=2, drop_out_rate=0.):
super().__init__()
dw_channel = c * DW_Expand
self.conv1 = nn.Conv2d(in_channels=c, out_channels=dw_channel, kernel_size=1, padding=0, stride=1, groups=1, bias=True)
self.conv2 = nn.Conv2d(in_channels=dw_channel, out_channels=dw_channel, kernel_size=3, padding=1, stride=1, groups=dw_channel,
bias=True)
self.conv3 = nn.Conv2d(in_channels=dw_channel // 2, out_channels=c, kernel_size=1, padding=0, stride=1, groups=1, bias=True)
# Simplified Channel Attention
self.sca = nn.Sequential(
nn.AdaptiveAvgPool2d(1),
nn.Conv2d(in_channels=dw_channel // 2, out_channels=dw_channel // 2, kernel_size=1, padding=0, stride=1,
groups=1, bias=True),
)
# SimpleGate
self.sg = SimpleGate()
ffn_channel = FFN_Expand * c
self.conv4 = nn.Conv2d(in_channels=c, out_channels=ffn_channel, kernel_size=1, padding=0, stride=1, groups=1, bias=True)
self.conv5 = nn.Conv2d(in_channels=ffn_channel // 2, out_channels=c, kernel_size=1, padding=0, stride=1, groups=1, bias=True)
self.norm1 = LayerNorm2d(c)
self.norm2 = LayerNorm2d(c)
self.dropout1 = nn.Dropout(drop_out_rate) if drop_out_rate > 0. else nn.Identity()
self.dropout2 = nn.Dropout(drop_out_rate) if drop_out_rate > 0. else nn.Identity()
self.beta = nn.Parameter(torch.zeros((1, c, 1, 1)), requires_grad=True)
self.gamma = nn.Parameter(torch.zeros((1, c, 1, 1)), requires_grad=True)
def forward(self, inp):
x = inp
x = self.norm1(x)
x = self.conv1(x)
x = self.conv2(x)
x = self.sg(x)
x = x * self.sca(x)
x = self.conv3(x)
x = self.dropout1(x)
y = inp + x * self.beta
x = self.conv4(self.norm2(y))
x = self.sg(x)
x = self.conv5(x)
x = self.dropout2(x)
return y + x * self.gamma
class DenBlock(nn.Module):
""" Definition of the denosing block of FastDVDnet.
Inputs of constructor:
num_input_frames: int. number of input frames
Inputs of forward():
xn: input frames of dim [N, C, H, W], (C=3 RGB)
noise_map: array with noise map of dim [N, 1, H, W]
"""
def __init__(self, num_input_frames=3):
super(DenBlock, self).__init__()
self.chs_lyr0 = 32
self.chs_lyr1 = 64
self.chs_lyr2 = 128
self.inc = InputCvBlock(num_in_frames=num_input_frames, out_ch=self.chs_lyr0)
self.downc0 = DownBlock(in_ch=self.chs_lyr0, out_ch=self.chs_lyr1)
self.downc1 = DownBlock(in_ch=self.chs_lyr1, out_ch=self.chs_lyr2)
self.upc2 = UpBlock(in_ch=self.chs_lyr2, out_ch=self.chs_lyr1)
self.upc1 = UpBlock(in_ch=self.chs_lyr1, out_ch=self.chs_lyr0)
self.outc = OutputCvBlock(in_ch=self.chs_lyr0, out_ch=3)
def forward(self, in0, in1, in2, noise_map):
'''Args:
inX: Tensor, [N, C, H, W] in the [0., 1.] range
noise_map: Tensor [N, 1, H, W] in the [0., 1.] range
'''
# Input convolution block
x0 = self.inc(torch.cat((in0, noise_map, in1, noise_map, in2, noise_map), dim=1))
# Downsampling
x1 = self.downc0(x0)
x2 = self.downc1(x1)
# Upsampling
x2 = self.upc2(x2)
x1 = self.upc1(x1+x2)
# Estimation
x = self.outc(x0+x1)
# Residual
x = in1 - x
return x
class DenBlock_1(nn.Module):
""" Definition of the denosing block of FastDVDnet.
Inputs of constructor:
num_input_frames: int. number of input frames
Inputs of forward():
xn: input frames of dim [N, C, H, W], (C=3 RGB)
noise_map: array with noise map of dim [N, 1, H, W]
"""
def __init__(self, num_input_frames=3):
super(DenBlock_1, self).__init__()
self.chs_lyr0 = 32
self.chs_lyr1 = 64
self.chs_lyr2 = 128
self.inc = InputCvBlock_1(num_in_frames=num_input_frames, out_ch=self.chs_lyr0)
self.downc0 = DownBlock_1(in_ch=self.chs_lyr0, out_ch=self.chs_lyr1)
self.downc1 = DownBlock_1(in_ch=self.chs_lyr1, out_ch=self.chs_lyr2)
self.upc2 = UpBlock_1(in_ch=self.chs_lyr2, out_ch=self.chs_lyr1)
self.upc1 = UpBlock_1(in_ch=self.chs_lyr1, out_ch=self.chs_lyr0)
self.outc = OutputCvBlock_1(in_ch=self.chs_lyr0, out_ch=3)
def forward(self, in0, in1, in2, noise_map):
'''Args:
inX: Tensor, [N, C, H, W] in the [0., 1.] range
noise_map: Tensor [N, 1, H, W] in the [0., 1.] range
'''
# Input convolution block
x0 = self.inc(torch.cat((in0, noise_map, in1, noise_map, in2, noise_map), dim=1))
# Downsampling
x1 = self.downc0(x0)
x2 = self.downc1(x1)
# Upsampling
x2 = self.upc2(x2)
x1 = self.upc1(x1+x2)
# Estimation
x = self.outc(x0+x1)
# Residual
x = in1 - x
return x