import torch import torch.nn as nn import torch.nn.functional as F from torch.nn import init as init from torch.nn.modules.batchnorm import _BatchNorm import matplotlib.pyplot as plt class CvBlock(nn.Module): '''(Conv2d => BN => ReLU) x 2''' def __init__(self, in_ch, out_ch): super(CvBlock, self).__init__() self.convblock = nn.Sequential( nn.Conv2d(in_ch, out_ch, kernel_size=3, padding=1, bias=False), nn.BatchNorm2d(out_ch), nn.ReLU(inplace=True), nn.Conv2d(out_ch, out_ch, kernel_size=3, padding=1, bias=False), nn.BatchNorm2d(out_ch), nn.ReLU(inplace=True) ) def forward(self, x): return self.convblock(x) class InputCvBlock(nn.Module): '''(Conv with num_in_frames groups => BN => ReLU) + (Conv => BN => ReLU)''' def __init__(self, num_in_frames, out_ch): super(InputCvBlock, self).__init__() self.interm_ch = 30 self.convblock = nn.Sequential( nn.Conv2d(num_in_frames*(3+1), num_in_frames*self.interm_ch, \ kernel_size=3, padding=1, groups=num_in_frames, bias=False), nn.BatchNorm2d(num_in_frames*self.interm_ch), nn.ReLU(inplace=True), nn.Conv2d(num_in_frames*self.interm_ch, out_ch, kernel_size=3, padding=1, bias=False), nn.BatchNorm2d(out_ch), nn.ReLU(inplace=True) ) def forward(self, x): return self.convblock(x) class InputCvBlock_1(nn.Module): '''(Conv with num_in_frames groups => BN => ReLU) + (Conv => BN => ReLU)''' def __init__(self, num_in_frames, out_ch): super(InputCvBlock_1, self).__init__() self.interm_ch = 30 self.convblock = nn.Sequential( nn.Conv2d(num_in_frames*(3+1), num_in_frames*self.interm_ch, \ kernel_size=3, padding=1, groups=num_in_frames, bias=False), nn.BatchNorm2d(num_in_frames*self.interm_ch), nn.ReLU(inplace=True), nn.Conv2d(num_in_frames*self.interm_ch, out_ch, kernel_size=3, padding=1, bias=False), nn.BatchNorm2d(out_ch), nn.ReLU(inplace=True) ) # self.NAF1 = NAFBlock(out_ch) # self.NAF2 = NAFBlock(out_ch) def forward(self, x): x = self.convblock(x) # x = self.NAF1(x) # return self.NAF2(x) return x class DownBlock(nn.Module): '''Downscale + (Conv2d => BN => ReLU)*2''' def __init__(self, in_ch, out_ch): super(DownBlock, self).__init__() self.convblock = nn.Sequential( nn.Conv2d(in_ch, out_ch, kernel_size=3, padding=1, stride=2, bias=False), nn.BatchNorm2d(out_ch), nn.ReLU(inplace=True), CvBlock(out_ch, out_ch) ) def forward(self, x): return self.convblock(x) class DownBlock_1(nn.Module): '''Downscale + (Conv2d => BN => ReLU)*2''' def __init__(self, in_ch, out_ch): super(DownBlock_1, self).__init__() self.convblock = nn.Sequential( nn.Conv2d(in_ch, out_ch, kernel_size=3, padding=1, stride=2, bias=False), nn.BatchNorm2d(out_ch), nn.ReLU(inplace=True), CvBlock(out_ch, out_ch) ) self.NAF1 = NAFBlock(in_ch) self.NAF2 = NAFBlock(in_ch) def forward(self, x): x = self.NAF1(x) x = self.NAF2(x) return self.convblock(x) class UpBlock(nn.Module): '''(Conv2d => BN => ReLU)*2 + Upscale''' def __init__(self, in_ch, out_ch): super(UpBlock, self).__init__() self.convblock = nn.Sequential( CvBlock(in_ch, in_ch), nn.Conv2d(in_ch, out_ch*4, kernel_size=3, padding=1, bias=False), nn.PixelShuffle(2) ) def forward(self, x): return self.convblock(x) class UpBlock_1(nn.Module): '''(Conv2d => BN => ReLU)*2 + Upscale''' def __init__(self, in_ch, out_ch): super(UpBlock_1, self).__init__() self.convblock = nn.Sequential( CvBlock(in_ch, in_ch), nn.Conv2d(in_ch, out_ch*4, kernel_size=3, padding=1, bias=False), nn.PixelShuffle(2) ) self.NAF1 = NAFBlock(in_ch) self.NAF2 = NAFBlock(in_ch) def forward(self, x): x = self.NAF1(x) x = self.NAF2(x) return self.convblock(x) class OutputCvBlock(nn.Module): '''Conv2d => BN => ReLU => Conv2d''' def __init__(self, in_ch, out_ch): super(OutputCvBlock, self).__init__() self.convblock = nn.Sequential( nn.Conv2d(in_ch, in_ch, kernel_size=3, padding=1, bias=False), nn.BatchNorm2d(in_ch), nn.ReLU(inplace=True), nn.Conv2d(in_ch, out_ch, kernel_size=3, padding=1, bias=False) ) def forward(self, x): return self.convblock(x) class OutputCvBlock_1(nn.Module): '''Conv2d => BN => ReLU => Conv2d''' def __init__(self, in_ch, out_ch): super(OutputCvBlock_1, self).__init__() self.convblock = nn.Sequential( nn.Conv2d(in_ch, in_ch, kernel_size=3, padding=1, bias=False), nn.BatchNorm2d(in_ch), nn.ReLU(inplace=True), nn.Conv2d(in_ch, out_ch, kernel_size=3, padding=1, bias=False) ) # self.NAF1 = NAFBlock(in_ch) # self.NAF2 = NAFBlock(in_ch) def forward(self, x): # x = self.NAF1(x) # x = self.NAF2(x) return self.convblock(x) class SimpleGate(nn.Module): def forward(self, x): x1, x2 = x.chunk(2, dim=1) return x1 * x2 class LayerNormFunction(torch.autograd.Function): @staticmethod def forward(ctx, x, weight, bias, eps): ctx.eps = eps N, C, H, W = x.size() mu = x.mean(1, keepdim=True) var = (x - mu).pow(2).mean(1, keepdim=True) y = (x - mu) / (var + eps).sqrt() ctx.save_for_backward(y, var, weight) y = weight.view(1, C, 1, 1) * y + bias.view(1, C, 1, 1) return y @staticmethod def backward(ctx, grad_output): eps = ctx.eps N, C, H, W = grad_output.size() y, var, weight = ctx.saved_variables g = grad_output * weight.view(1, C, 1, 1) mean_g = g.mean(dim=1, keepdim=True) mean_gy = (g * y).mean(dim=1, keepdim=True) gx = 1. / torch.sqrt(var + eps) * (g - y * mean_gy - mean_g) return gx, (grad_output * y).sum(dim=3).sum(dim=2).sum(dim=0), grad_output.sum(dim=3).sum(dim=2).sum( dim=0), None class LayerNorm2d(nn.Module): def __init__(self, channels, eps=1e-6): super(LayerNorm2d, self).__init__() self.register_parameter('weight', nn.Parameter(torch.ones(channels))) self.register_parameter('bias', nn.Parameter(torch.zeros(channels))) self.eps = eps def forward(self, x): return LayerNormFunction.apply(x, self.weight, self.bias, self.eps) class NAFBlock(nn.Module): def __init__(self, c, DW_Expand=2, FFN_Expand=2, drop_out_rate=0.): super().__init__() dw_channel = c * DW_Expand self.conv1 = nn.Conv2d(in_channels=c, out_channels=dw_channel, kernel_size=1, padding=0, stride=1, groups=1, bias=True) self.conv2 = nn.Conv2d(in_channels=dw_channel, out_channels=dw_channel, kernel_size=3, padding=1, stride=1, groups=dw_channel, bias=True) self.conv3 = nn.Conv2d(in_channels=dw_channel // 2, out_channels=c, kernel_size=1, padding=0, stride=1, groups=1, bias=True) # Simplified Channel Attention self.sca = nn.Sequential( nn.AdaptiveAvgPool2d(1), nn.Conv2d(in_channels=dw_channel // 2, out_channels=dw_channel // 2, kernel_size=1, padding=0, stride=1, groups=1, bias=True), ) # SimpleGate self.sg = SimpleGate() ffn_channel = FFN_Expand * c self.conv4 = nn.Conv2d(in_channels=c, out_channels=ffn_channel, kernel_size=1, padding=0, stride=1, groups=1, bias=True) self.conv5 = nn.Conv2d(in_channels=ffn_channel // 2, out_channels=c, kernel_size=1, padding=0, stride=1, groups=1, bias=True) self.norm1 = LayerNorm2d(c) self.norm2 = LayerNorm2d(c) self.dropout1 = nn.Dropout(drop_out_rate) if drop_out_rate > 0. else nn.Identity() self.dropout2 = nn.Dropout(drop_out_rate) if drop_out_rate > 0. else nn.Identity() self.beta = nn.Parameter(torch.zeros((1, c, 1, 1)), requires_grad=True) self.gamma = nn.Parameter(torch.zeros((1, c, 1, 1)), requires_grad=True) def forward(self, inp): x = inp x = self.norm1(x) x = self.conv1(x) x = self.conv2(x) x = self.sg(x) x = x * self.sca(x) x = self.conv3(x) x = self.dropout1(x) y = inp + x * self.beta x = self.conv4(self.norm2(y)) x = self.sg(x) x = self.conv5(x) x = self.dropout2(x) return y + x * self.gamma class DenBlock(nn.Module): """ Definition of the denosing block of FastDVDnet. Inputs of constructor: num_input_frames: int. number of input frames Inputs of forward(): xn: input frames of dim [N, C, H, W], (C=3 RGB) noise_map: array with noise map of dim [N, 1, H, W] """ def __init__(self, num_input_frames=3): super(DenBlock, self).__init__() self.chs_lyr0 = 32 self.chs_lyr1 = 64 self.chs_lyr2 = 128 self.inc = InputCvBlock(num_in_frames=num_input_frames, out_ch=self.chs_lyr0) self.downc0 = DownBlock(in_ch=self.chs_lyr0, out_ch=self.chs_lyr1) self.downc1 = DownBlock(in_ch=self.chs_lyr1, out_ch=self.chs_lyr2) self.upc2 = UpBlock(in_ch=self.chs_lyr2, out_ch=self.chs_lyr1) self.upc1 = UpBlock(in_ch=self.chs_lyr1, out_ch=self.chs_lyr0) self.outc = OutputCvBlock(in_ch=self.chs_lyr0, out_ch=3) def forward(self, in0, in1, in2, noise_map): '''Args: inX: Tensor, [N, C, H, W] in the [0., 1.] range noise_map: Tensor [N, 1, H, W] in the [0., 1.] range ''' # Input convolution block x0 = self.inc(torch.cat((in0, noise_map, in1, noise_map, in2, noise_map), dim=1)) # Downsampling x1 = self.downc0(x0) x2 = self.downc1(x1) # Upsampling x2 = self.upc2(x2) x1 = self.upc1(x1+x2) # Estimation x = self.outc(x0+x1) # Residual x = in1 - x return x class DenBlock_1(nn.Module): """ Definition of the denosing block of FastDVDnet. Inputs of constructor: num_input_frames: int. number of input frames Inputs of forward(): xn: input frames of dim [N, C, H, W], (C=3 RGB) noise_map: array with noise map of dim [N, 1, H, W] """ def __init__(self, num_input_frames=3): super(DenBlock_1, self).__init__() self.chs_lyr0 = 32 self.chs_lyr1 = 64 self.chs_lyr2 = 128 self.inc = InputCvBlock_1(num_in_frames=num_input_frames, out_ch=self.chs_lyr0) self.downc0 = DownBlock_1(in_ch=self.chs_lyr0, out_ch=self.chs_lyr1) self.downc1 = DownBlock_1(in_ch=self.chs_lyr1, out_ch=self.chs_lyr2) self.upc2 = UpBlock_1(in_ch=self.chs_lyr2, out_ch=self.chs_lyr1) self.upc1 = UpBlock_1(in_ch=self.chs_lyr1, out_ch=self.chs_lyr0) self.outc = OutputCvBlock_1(in_ch=self.chs_lyr0, out_ch=3) def forward(self, in0, in1, in2, noise_map): '''Args: inX: Tensor, [N, C, H, W] in the [0., 1.] range noise_map: Tensor [N, 1, H, W] in the [0., 1.] range ''' # Input convolution block x0 = self.inc(torch.cat((in0, noise_map, in1, noise_map, in2, noise_map), dim=1)) # Downsampling x1 = self.downc0(x0) x2 = self.downc1(x1) # Upsampling x2 = self.upc2(x2) x1 = self.upc1(x1+x2) # Estimation x = self.outc(x0+x1) # Residual x = in1 - x return x