vit-base-patch16-224-in21k_16batch

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2813
  • F1 Macro: 0.4280
  • F1 Micro: 0.5455
  • F1 Weighted: 0.4882
  • Precision Macro: 0.4004
  • Precision Micro: 0.5455
  • Precision Weighted: 0.4529
  • Recall Macro: 0.4762
  • Recall Micro: 0.5455
  • Recall Weighted: 0.5455
  • Accuracy: 0.5455

Model description

Using a batch size of 16

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 40

Training results

Training Loss Epoch Step Validation Loss F1 Macro F1 Micro F1 Weighted Precision Macro Precision Micro Precision Weighted Recall Macro Recall Micro Recall Weighted Accuracy
1.9371 1.0 29 1.9372 0.0504 0.1212 0.0604 0.0334 0.1212 0.0403 0.1029 0.1212 0.1212 0.1212
1.9078 2.0 58 1.9066 0.0454 0.1818 0.0602 0.0272 0.1818 0.0361 0.1371 0.1818 0.1818 0.1818
1.9276 3.0 87 1.8808 0.0696 0.1818 0.0968 0.0492 0.1818 0.0682 0.1295 0.1818 0.1818 0.1818
1.8373 4.0 116 1.8696 0.0485 0.2045 0.0695 0.0292 0.2045 0.0418 0.1429 0.2045 0.2045 0.2045
1.8152 5.0 145 1.8490 0.1339 0.2576 0.1745 0.1298 0.2576 0.1640 0.1944 0.2576 0.2576 0.2576
1.8488 6.0 174 1.8281 0.1379 0.2727 0.1817 0.1512 0.2727 0.1891 0.1997 0.2727 0.2727 0.2727
1.7626 7.0 203 1.7917 0.2271 0.3333 0.2718 0.1922 0.3333 0.2298 0.2783 0.3333 0.3333 0.3333
1.7169 8.0 232 1.7478 0.2887 0.4242 0.3465 0.2706 0.4242 0.3154 0.3426 0.4242 0.4242 0.4242
1.5364 9.0 261 1.7098 0.2835 0.4091 0.3409 0.2720 0.4091 0.3245 0.3324 0.4091 0.4091 0.4091
1.7373 10.0 290 1.6765 0.2906 0.4167 0.3463 0.2726 0.4167 0.3157 0.3386 0.4167 0.4167 0.4167
1.5345 11.0 319 1.6423 0.2805 0.3939 0.3342 0.3728 0.3939 0.4258 0.3275 0.3939 0.3939 0.3939
1.6421 12.0 348 1.6103 0.3324 0.4697 0.3978 0.4583 0.4697 0.5178 0.3760 0.4697 0.4697 0.4697
1.5266 13.0 377 1.5835 0.3171 0.4621 0.3822 0.2917 0.4621 0.3483 0.3748 0.4621 0.4621 0.4621
1.5182 14.0 406 1.5633 0.3133 0.4242 0.3680 0.3634 0.4242 0.4009 0.3568 0.4242 0.4242 0.4242
1.5341 15.0 435 1.5528 0.3015 0.4167 0.3585 0.3109 0.4167 0.3638 0.3499 0.4167 0.4167 0.4167
1.3961 16.0 464 1.5273 0.3449 0.4545 0.3991 0.4329 0.4545 0.4704 0.3839 0.4545 0.4545 0.4545
1.3601 17.0 493 1.4971 0.3670 0.5 0.4357 0.5047 0.5 0.5382 0.4078 0.5 0.5 0.5
1.2535 18.0 522 1.5006 0.3511 0.4621 0.4138 0.4778 0.4621 0.5101 0.3872 0.4621 0.4621 0.4621
1.2375 19.0 551 1.4659 0.3655 0.4924 0.4345 0.4298 0.4924 0.4797 0.4020 0.4924 0.4924 0.4924
1.2141 20.0 580 1.4407 0.3914 0.5076 0.4565 0.4650 0.5076 0.5087 0.4217 0.5076 0.5076 0.5076
1.2831 21.0 609 1.4454 0.3965 0.5152 0.4645 0.4801 0.5152 0.5265 0.4214 0.5152 0.5152 0.5152
1.1543 22.0 638 1.4167 0.4285 0.5455 0.4997 0.4781 0.5455 0.5309 0.4521 0.5455 0.5455 0.5455
1.4079 23.0 667 1.4465 0.3675 0.4621 0.4269 0.4187 0.4621 0.4676 0.3929 0.4621 0.4621 0.4621
1.0619 24.0 696 1.4249 0.4092 0.5076 0.4724 0.4659 0.5076 0.5180 0.4336 0.5076 0.5076 0.5076
1.1059 25.0 725 1.3834 0.4356 0.5530 0.5061 0.5025 0.5530 0.5491 0.4594 0.5530 0.5530 0.5530
1.192 26.0 754 1.3784 0.4286 0.5379 0.4893 0.4566 0.5379 0.4969 0.4544 0.5379 0.5379 0.5379
1.21 27.0 783 1.3874 0.4409 0.5379 0.5060 0.4709 0.5379 0.5258 0.4616 0.5379 0.5379 0.5379
1.0901 28.0 812 1.3621 0.4402 0.5379 0.5074 0.4635 0.5379 0.5204 0.4557 0.5379 0.5379 0.5379
1.1254 29.0 841 1.3714 0.4265 0.5227 0.4873 0.4492 0.5227 0.4984 0.4449 0.5227 0.5227 0.5227
0.9345 30.0 870 1.3525 0.4425 0.5379 0.5074 0.4736 0.5379 0.5264 0.4557 0.5379 0.5379 0.5379
1.2036 31.0 899 1.3592 0.4363 0.5379 0.5020 0.4869 0.5379 0.5368 0.4533 0.5379 0.5379 0.5379
1.036 32.0 928 1.3362 0.4451 0.5455 0.5109 0.4673 0.5455 0.5226 0.4637 0.5455 0.5455 0.5455
0.9979 33.0 957 1.3492 0.4454 0.5455 0.5134 0.4808 0.5455 0.5358 0.4620 0.5455 0.5455 0.5455
0.8353 34.0 986 1.3402 0.4635 0.5606 0.5301 0.4659 0.5606 0.5268 0.4854 0.5606 0.5606 0.5606
0.9384 35.0 1015 1.3414 0.4408 0.5455 0.5088 0.4664 0.5455 0.5237 0.4602 0.5455 0.5455 0.5455
0.996 36.0 1044 1.3405 0.4559 0.5530 0.5235 0.4795 0.5530 0.5377 0.4715 0.5530 0.5530 0.5530
0.9613 37.0 1073 1.3357 0.4847 0.5833 0.5535 0.5011 0.5833 0.5612 0.5020 0.5833 0.5833 0.5833
0.8507 38.0 1102 1.3347 0.4760 0.5758 0.5454 0.4897 0.5758 0.5510 0.4940 0.5758 0.5758 0.5758
1.1563 39.0 1131 1.3396 0.4553 0.5530 0.5250 0.4608 0.5530 0.5234 0.4735 0.5530 0.5530 0.5530
0.9681 40.0 1160 1.3371 0.4703 0.5682 0.5396 0.4816 0.5682 0.5445 0.4887 0.5682 0.5682 0.5682

Framework versions

  • Transformers 4.48.2
  • Pytorch 2.6.0+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
9
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for corranm/vit-base-patch16-224-in21k_16batch

Finetuned
(1868)
this model

Dataset used to train corranm/vit-base-patch16-224-in21k_16batch