vit-base-patch16-224-in21k_16batch
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.2813
- F1 Macro: 0.4280
- F1 Micro: 0.5455
- F1 Weighted: 0.4882
- Precision Macro: 0.4004
- Precision Micro: 0.5455
- Precision Weighted: 0.4529
- Recall Macro: 0.4762
- Recall Micro: 0.5455
- Recall Weighted: 0.5455
- Accuracy: 0.5455
Model description
Using a batch size of 16
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 40
Training results
Training Loss | Epoch | Step | Validation Loss | F1 Macro | F1 Micro | F1 Weighted | Precision Macro | Precision Micro | Precision Weighted | Recall Macro | Recall Micro | Recall Weighted | Accuracy |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.9371 | 1.0 | 29 | 1.9372 | 0.0504 | 0.1212 | 0.0604 | 0.0334 | 0.1212 | 0.0403 | 0.1029 | 0.1212 | 0.1212 | 0.1212 |
1.9078 | 2.0 | 58 | 1.9066 | 0.0454 | 0.1818 | 0.0602 | 0.0272 | 0.1818 | 0.0361 | 0.1371 | 0.1818 | 0.1818 | 0.1818 |
1.9276 | 3.0 | 87 | 1.8808 | 0.0696 | 0.1818 | 0.0968 | 0.0492 | 0.1818 | 0.0682 | 0.1295 | 0.1818 | 0.1818 | 0.1818 |
1.8373 | 4.0 | 116 | 1.8696 | 0.0485 | 0.2045 | 0.0695 | 0.0292 | 0.2045 | 0.0418 | 0.1429 | 0.2045 | 0.2045 | 0.2045 |
1.8152 | 5.0 | 145 | 1.8490 | 0.1339 | 0.2576 | 0.1745 | 0.1298 | 0.2576 | 0.1640 | 0.1944 | 0.2576 | 0.2576 | 0.2576 |
1.8488 | 6.0 | 174 | 1.8281 | 0.1379 | 0.2727 | 0.1817 | 0.1512 | 0.2727 | 0.1891 | 0.1997 | 0.2727 | 0.2727 | 0.2727 |
1.7626 | 7.0 | 203 | 1.7917 | 0.2271 | 0.3333 | 0.2718 | 0.1922 | 0.3333 | 0.2298 | 0.2783 | 0.3333 | 0.3333 | 0.3333 |
1.7169 | 8.0 | 232 | 1.7478 | 0.2887 | 0.4242 | 0.3465 | 0.2706 | 0.4242 | 0.3154 | 0.3426 | 0.4242 | 0.4242 | 0.4242 |
1.5364 | 9.0 | 261 | 1.7098 | 0.2835 | 0.4091 | 0.3409 | 0.2720 | 0.4091 | 0.3245 | 0.3324 | 0.4091 | 0.4091 | 0.4091 |
1.7373 | 10.0 | 290 | 1.6765 | 0.2906 | 0.4167 | 0.3463 | 0.2726 | 0.4167 | 0.3157 | 0.3386 | 0.4167 | 0.4167 | 0.4167 |
1.5345 | 11.0 | 319 | 1.6423 | 0.2805 | 0.3939 | 0.3342 | 0.3728 | 0.3939 | 0.4258 | 0.3275 | 0.3939 | 0.3939 | 0.3939 |
1.6421 | 12.0 | 348 | 1.6103 | 0.3324 | 0.4697 | 0.3978 | 0.4583 | 0.4697 | 0.5178 | 0.3760 | 0.4697 | 0.4697 | 0.4697 |
1.5266 | 13.0 | 377 | 1.5835 | 0.3171 | 0.4621 | 0.3822 | 0.2917 | 0.4621 | 0.3483 | 0.3748 | 0.4621 | 0.4621 | 0.4621 |
1.5182 | 14.0 | 406 | 1.5633 | 0.3133 | 0.4242 | 0.3680 | 0.3634 | 0.4242 | 0.4009 | 0.3568 | 0.4242 | 0.4242 | 0.4242 |
1.5341 | 15.0 | 435 | 1.5528 | 0.3015 | 0.4167 | 0.3585 | 0.3109 | 0.4167 | 0.3638 | 0.3499 | 0.4167 | 0.4167 | 0.4167 |
1.3961 | 16.0 | 464 | 1.5273 | 0.3449 | 0.4545 | 0.3991 | 0.4329 | 0.4545 | 0.4704 | 0.3839 | 0.4545 | 0.4545 | 0.4545 |
1.3601 | 17.0 | 493 | 1.4971 | 0.3670 | 0.5 | 0.4357 | 0.5047 | 0.5 | 0.5382 | 0.4078 | 0.5 | 0.5 | 0.5 |
1.2535 | 18.0 | 522 | 1.5006 | 0.3511 | 0.4621 | 0.4138 | 0.4778 | 0.4621 | 0.5101 | 0.3872 | 0.4621 | 0.4621 | 0.4621 |
1.2375 | 19.0 | 551 | 1.4659 | 0.3655 | 0.4924 | 0.4345 | 0.4298 | 0.4924 | 0.4797 | 0.4020 | 0.4924 | 0.4924 | 0.4924 |
1.2141 | 20.0 | 580 | 1.4407 | 0.3914 | 0.5076 | 0.4565 | 0.4650 | 0.5076 | 0.5087 | 0.4217 | 0.5076 | 0.5076 | 0.5076 |
1.2831 | 21.0 | 609 | 1.4454 | 0.3965 | 0.5152 | 0.4645 | 0.4801 | 0.5152 | 0.5265 | 0.4214 | 0.5152 | 0.5152 | 0.5152 |
1.1543 | 22.0 | 638 | 1.4167 | 0.4285 | 0.5455 | 0.4997 | 0.4781 | 0.5455 | 0.5309 | 0.4521 | 0.5455 | 0.5455 | 0.5455 |
1.4079 | 23.0 | 667 | 1.4465 | 0.3675 | 0.4621 | 0.4269 | 0.4187 | 0.4621 | 0.4676 | 0.3929 | 0.4621 | 0.4621 | 0.4621 |
1.0619 | 24.0 | 696 | 1.4249 | 0.4092 | 0.5076 | 0.4724 | 0.4659 | 0.5076 | 0.5180 | 0.4336 | 0.5076 | 0.5076 | 0.5076 |
1.1059 | 25.0 | 725 | 1.3834 | 0.4356 | 0.5530 | 0.5061 | 0.5025 | 0.5530 | 0.5491 | 0.4594 | 0.5530 | 0.5530 | 0.5530 |
1.192 | 26.0 | 754 | 1.3784 | 0.4286 | 0.5379 | 0.4893 | 0.4566 | 0.5379 | 0.4969 | 0.4544 | 0.5379 | 0.5379 | 0.5379 |
1.21 | 27.0 | 783 | 1.3874 | 0.4409 | 0.5379 | 0.5060 | 0.4709 | 0.5379 | 0.5258 | 0.4616 | 0.5379 | 0.5379 | 0.5379 |
1.0901 | 28.0 | 812 | 1.3621 | 0.4402 | 0.5379 | 0.5074 | 0.4635 | 0.5379 | 0.5204 | 0.4557 | 0.5379 | 0.5379 | 0.5379 |
1.1254 | 29.0 | 841 | 1.3714 | 0.4265 | 0.5227 | 0.4873 | 0.4492 | 0.5227 | 0.4984 | 0.4449 | 0.5227 | 0.5227 | 0.5227 |
0.9345 | 30.0 | 870 | 1.3525 | 0.4425 | 0.5379 | 0.5074 | 0.4736 | 0.5379 | 0.5264 | 0.4557 | 0.5379 | 0.5379 | 0.5379 |
1.2036 | 31.0 | 899 | 1.3592 | 0.4363 | 0.5379 | 0.5020 | 0.4869 | 0.5379 | 0.5368 | 0.4533 | 0.5379 | 0.5379 | 0.5379 |
1.036 | 32.0 | 928 | 1.3362 | 0.4451 | 0.5455 | 0.5109 | 0.4673 | 0.5455 | 0.5226 | 0.4637 | 0.5455 | 0.5455 | 0.5455 |
0.9979 | 33.0 | 957 | 1.3492 | 0.4454 | 0.5455 | 0.5134 | 0.4808 | 0.5455 | 0.5358 | 0.4620 | 0.5455 | 0.5455 | 0.5455 |
0.8353 | 34.0 | 986 | 1.3402 | 0.4635 | 0.5606 | 0.5301 | 0.4659 | 0.5606 | 0.5268 | 0.4854 | 0.5606 | 0.5606 | 0.5606 |
0.9384 | 35.0 | 1015 | 1.3414 | 0.4408 | 0.5455 | 0.5088 | 0.4664 | 0.5455 | 0.5237 | 0.4602 | 0.5455 | 0.5455 | 0.5455 |
0.996 | 36.0 | 1044 | 1.3405 | 0.4559 | 0.5530 | 0.5235 | 0.4795 | 0.5530 | 0.5377 | 0.4715 | 0.5530 | 0.5530 | 0.5530 |
0.9613 | 37.0 | 1073 | 1.3357 | 0.4847 | 0.5833 | 0.5535 | 0.5011 | 0.5833 | 0.5612 | 0.5020 | 0.5833 | 0.5833 | 0.5833 |
0.8507 | 38.0 | 1102 | 1.3347 | 0.4760 | 0.5758 | 0.5454 | 0.4897 | 0.5758 | 0.5510 | 0.4940 | 0.5758 | 0.5758 | 0.5758 |
1.1563 | 39.0 | 1131 | 1.3396 | 0.4553 | 0.5530 | 0.5250 | 0.4608 | 0.5530 | 0.5234 | 0.4735 | 0.5530 | 0.5530 | 0.5530 |
0.9681 | 40.0 | 1160 | 1.3371 | 0.4703 | 0.5682 | 0.5396 | 0.4816 | 0.5682 | 0.5445 | 0.4887 | 0.5682 | 0.5682 | 0.5682 |
Framework versions
- Transformers 4.48.2
- Pytorch 2.6.0+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 9
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for corranm/vit-base-patch16-224-in21k_16batch
Base model
google/vit-base-patch16-224-in21k