test_model_8
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.8797
- F1 Macro: 0.0598
- F1 Micro: 0.2121
- F1 Weighted: 0.0845
- Precision Macro: 0.1723
- Precision Micro: 0.2121
- Precision Weighted: 0.2316
- Recall Macro: 0.1486
- Recall Micro: 0.2121
- Recall Weighted: 0.2121
- Accuracy: 0.2121
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | F1 Macro | F1 Micro | F1 Weighted | Precision Macro | Precision Micro | Precision Weighted | Recall Macro | Recall Micro | Recall Weighted | Accuracy |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.9439 | 0.8 | 3 | 1.9065 | 0.0541 | 0.1894 | 0.0764 | 0.0625 | 0.1894 | 0.0857 | 0.1327 | 0.1894 | 0.1894 | 0.1894 |
1.9049 | 1.8 | 6 | 1.8820 | 0.0578 | 0.2045 | 0.0818 | 0.0501 | 0.2045 | 0.0696 | 0.1433 | 0.2045 | 0.2045 | 0.2045 |
2.3436 | 2.8 | 9 | 1.8773 | 0.0738 | 0.1894 | 0.1022 | 0.0567 | 0.1894 | 0.0780 | 0.1348 | 0.1894 | 0.1894 | 0.1894 |
Framework versions
- Transformers 4.48.1
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 17
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for corranm/test_model_8
Base model
google/vit-base-patch16-224-in21k