test_model_8

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.8797
  • F1 Macro: 0.0598
  • F1 Micro: 0.2121
  • F1 Weighted: 0.0845
  • Precision Macro: 0.1723
  • Precision Micro: 0.2121
  • Precision Weighted: 0.2316
  • Recall Macro: 0.1486
  • Recall Micro: 0.2121
  • Recall Weighted: 0.2121
  • Accuracy: 0.2121

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss F1 Macro F1 Micro F1 Weighted Precision Macro Precision Micro Precision Weighted Recall Macro Recall Micro Recall Weighted Accuracy
1.9439 0.8 3 1.9065 0.0541 0.1894 0.0764 0.0625 0.1894 0.0857 0.1327 0.1894 0.1894 0.1894
1.9049 1.8 6 1.8820 0.0578 0.2045 0.0818 0.0501 0.2045 0.0696 0.1433 0.2045 0.2045 0.2045
2.3436 2.8 9 1.8773 0.0738 0.1894 0.1022 0.0567 0.1894 0.0780 0.1348 0.1894 0.1894 0.1894

Framework versions

  • Transformers 4.48.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
17
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for corranm/test_model_8

Finetuned
(1968)
this model