square_run_square_run_first_vote_full_pic_25_age
This model is a fine-tuned version of google/vit-base-patch16-224 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.8420
- F1 Macro: 0.2101
- F1 Micro: 0.3182
- F1 Weighted: 0.2588
- Precision Macro: 0.1853
- Precision Micro: 0.3182
- Precision Weighted: 0.2261
- Recall Macro: 0.2563
- Recall Micro: 0.3182
- Recall Weighted: 0.3182
- Accuracy: 0.3182
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 30
Training results
Training Loss | Epoch | Step | Validation Loss | F1 Macro | F1 Micro | F1 Weighted | Precision Macro | Precision Micro | Precision Weighted | Recall Macro | Recall Micro | Recall Weighted | Accuracy |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.8947 | 1.0 | 58 | 1.9103 | 0.0802 | 0.1591 | 0.0926 | 0.0654 | 0.1591 | 0.0737 | 0.1311 | 0.1591 | 0.1591 | 0.1591 |
1.9864 | 2.0 | 116 | 2.0017 | 0.0614 | 0.1439 | 0.0665 | 0.0434 | 0.1439 | 0.0473 | 0.1340 | 0.1439 | 0.1439 | 0.1439 |
1.9069 | 3.0 | 174 | 1.8861 | 0.1323 | 0.2348 | 0.1697 | 0.1197 | 0.2348 | 0.1496 | 0.1773 | 0.2348 | 0.2348 | 0.2348 |
1.7102 | 4.0 | 232 | 1.8780 | 0.0963 | 0.2273 | 0.1303 | 0.0927 | 0.2273 | 0.1189 | 0.1631 | 0.2273 | 0.2273 | 0.2273 |
1.9048 | 5.0 | 290 | 1.8504 | 0.1544 | 0.2424 | 0.1936 | 0.1677 | 0.2424 | 0.2005 | 0.1873 | 0.2424 | 0.2424 | 0.2424 |
1.8432 | 6.0 | 348 | 1.9349 | 0.1092 | 0.1591 | 0.1296 | 0.0978 | 0.1591 | 0.1203 | 0.1407 | 0.1591 | 0.1591 | 0.1591 |
2.051 | 7.0 | 406 | 1.9871 | 0.1542 | 0.2273 | 0.1718 | 0.2630 | 0.2273 | 0.2834 | 0.1932 | 0.2273 | 0.2273 | 0.2273 |
1.6873 | 8.0 | 464 | 2.1073 | 0.1197 | 0.1742 | 0.1432 | 0.1470 | 0.1742 | 0.1808 | 0.1434 | 0.1742 | 0.1742 | 0.1742 |
1.6756 | 9.0 | 522 | 2.0864 | 0.1541 | 0.2121 | 0.1829 | 0.1584 | 0.2121 | 0.1847 | 0.1760 | 0.2121 | 0.2121 | 0.2121 |
1.3861 | 10.0 | 580 | 2.1820 | 0.2356 | 0.2879 | 0.2457 | 0.3112 | 0.2879 | 0.2483 | 0.2629 | 0.2879 | 0.2879 | 0.2879 |
1.4967 | 11.0 | 638 | 2.3178 | 0.1792 | 0.2121 | 0.2035 | 0.1951 | 0.2121 | 0.2294 | 0.1895 | 0.2121 | 0.2121 | 0.2121 |
0.647 | 12.0 | 696 | 2.5355 | 0.2424 | 0.2348 | 0.2357 | 0.3563 | 0.2348 | 0.2855 | 0.2339 | 0.2348 | 0.2348 | 0.2348 |
1.0499 | 13.0 | 754 | 2.6150 | 0.2180 | 0.2197 | 0.2148 | 0.3053 | 0.2197 | 0.2945 | 0.2269 | 0.2197 | 0.2197 | 0.2197 |
0.8517 | 14.0 | 812 | 2.5920 | 0.2557 | 0.2576 | 0.2599 | 0.3949 | 0.2576 | 0.3338 | 0.2385 | 0.2576 | 0.2576 | 0.2576 |
0.9049 | 15.0 | 870 | 2.7174 | 0.2563 | 0.2652 | 0.2625 | 0.2770 | 0.2652 | 0.2709 | 0.2515 | 0.2652 | 0.2652 | 0.2652 |
0.4174 | 16.0 | 928 | 2.8881 | 0.2089 | 0.2121 | 0.2107 | 0.3001 | 0.2121 | 0.2618 | 0.1958 | 0.2121 | 0.2121 | 0.2121 |
0.3634 | 17.0 | 986 | 3.1611 | 0.2103 | 0.2348 | 0.2209 | 0.2170 | 0.2348 | 0.2139 | 0.2145 | 0.2348 | 0.2348 | 0.2348 |
0.4008 | 18.0 | 1044 | 3.4658 | 0.2233 | 0.2576 | 0.2354 | 0.2480 | 0.2576 | 0.2431 | 0.2321 | 0.2576 | 0.2576 | 0.2576 |
0.1012 | 19.0 | 1102 | 3.5065 | 0.2435 | 0.2652 | 0.2569 | 0.3072 | 0.2652 | 0.2987 | 0.2398 | 0.2652 | 0.2652 | 0.2652 |
0.1552 | 20.0 | 1160 | 3.5254 | 0.2306 | 0.25 | 0.2416 | 0.2414 | 0.25 | 0.2520 | 0.2357 | 0.25 | 0.25 | 0.25 |
0.0613 | 21.0 | 1218 | 3.6319 | 0.2040 | 0.2197 | 0.2084 | 0.2162 | 0.2197 | 0.2073 | 0.2057 | 0.2197 | 0.2197 | 0.2197 |
0.1634 | 22.0 | 1276 | 3.6378 | 0.2652 | 0.2803 | 0.2734 | 0.2815 | 0.2803 | 0.2789 | 0.2623 | 0.2803 | 0.2803 | 0.2803 |
0.2401 | 23.0 | 1334 | 3.6470 | 0.2371 | 0.25 | 0.2479 | 0.2416 | 0.25 | 0.2497 | 0.2360 | 0.25 | 0.25 | 0.25 |
0.0739 | 24.0 | 1392 | 3.9052 | 0.2123 | 0.2197 | 0.2194 | 0.2290 | 0.2197 | 0.2298 | 0.2076 | 0.2197 | 0.2197 | 0.2197 |
0.2851 | 25.0 | 1450 | 3.8456 | 0.2345 | 0.2424 | 0.2424 | 0.2478 | 0.2424 | 0.2458 | 0.2300 | 0.2424 | 0.2424 | 0.2424 |
0.0082 | 26.0 | 1508 | 4.0511 | 0.2375 | 0.25 | 0.2412 | 0.2737 | 0.25 | 0.2497 | 0.2332 | 0.25 | 0.25 | 0.25 |
0.012 | 27.0 | 1566 | 4.1588 | 0.2219 | 0.2348 | 0.2280 | 0.2510 | 0.2348 | 0.2411 | 0.2176 | 0.2348 | 0.2348 | 0.2348 |
0.0052 | 28.0 | 1624 | 4.2070 | 0.2218 | 0.2348 | 0.2256 | 0.2390 | 0.2348 | 0.2339 | 0.2245 | 0.2348 | 0.2348 | 0.2348 |
0.0197 | 29.0 | 1682 | 4.1533 | 0.2259 | 0.2424 | 0.2355 | 0.2402 | 0.2424 | 0.2388 | 0.2256 | 0.2424 | 0.2424 | 0.2424 |
0.0225 | 30.0 | 1740 | 4.1562 | 0.2426 | 0.2576 | 0.2530 | 0.2587 | 0.2576 | 0.2561 | 0.2388 | 0.2576 | 0.2576 | 0.2576 |
Framework versions
- Transformers 4.49.0
- Pytorch 2.6.0+cu124
- Datasets 3.3.1
- Tokenizers 0.21.0
- Downloads last month
- 7
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for corranm/square_run_square_run_first_vote_full_pic_25_age
Base model
google/vit-base-patch16-224