square_run_first_vote_full_pic_75_age_gender
This model is a fine-tuned version of google/vit-base-patch16-224 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.7554
- F1 Macro: 0.3377
- F1 Micro: 0.4091
- F1 Weighted: 0.3702
- Precision Macro: 0.3432
- Precision Micro: 0.4091
- Precision Weighted: 0.3813
- Recall Macro: 0.3764
- Recall Micro: 0.4091
- Recall Weighted: 0.4091
- Accuracy: 0.4091
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 30
Training results
Training Loss | Epoch | Step | Validation Loss | F1 Macro | F1 Micro | F1 Weighted | Precision Macro | Precision Micro | Precision Weighted | Recall Macro | Recall Micro | Recall Weighted | Accuracy |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.9621 | 1.0 | 58 | 1.9294 | 0.1188 | 0.2121 | 0.1307 | 0.0924 | 0.2121 | 0.1040 | 0.2009 | 0.2121 | 0.2121 | 0.2121 |
1.6897 | 2.0 | 116 | 1.8039 | 0.2212 | 0.3258 | 0.2698 | 0.2607 | 0.3258 | 0.3321 | 0.2817 | 0.3258 | 0.3258 | 0.3258 |
1.9018 | 3.0 | 174 | 1.8333 | 0.1488 | 0.2727 | 0.1810 | 0.1261 | 0.2727 | 0.1499 | 0.2142 | 0.2727 | 0.2727 | 0.2727 |
1.3206 | 4.0 | 232 | 1.8180 | 0.1941 | 0.2955 | 0.2237 | 0.2405 | 0.2955 | 0.2639 | 0.2493 | 0.2955 | 0.2955 | 0.2955 |
1.7794 | 5.0 | 290 | 1.4852 | 0.3258 | 0.4167 | 0.3866 | 0.3195 | 0.4167 | 0.3831 | 0.3576 | 0.4167 | 0.4167 | 0.4167 |
1.7676 | 6.0 | 348 | 1.4509 | 0.4341 | 0.4924 | 0.4845 | 0.4298 | 0.4924 | 0.4816 | 0.4437 | 0.4924 | 0.4924 | 0.4924 |
1.6212 | 7.0 | 406 | 1.5437 | 0.4281 | 0.4773 | 0.4424 | 0.4381 | 0.4773 | 0.4653 | 0.4668 | 0.4773 | 0.4773 | 0.4773 |
1.5547 | 8.0 | 464 | 1.4854 | 0.3596 | 0.4242 | 0.4034 | 0.3810 | 0.4242 | 0.4362 | 0.3863 | 0.4242 | 0.4242 | 0.4242 |
1.5353 | 9.0 | 522 | 1.3877 | 0.4190 | 0.5076 | 0.4726 | 0.4442 | 0.5076 | 0.5046 | 0.4533 | 0.5076 | 0.5076 | 0.5076 |
0.7126 | 10.0 | 580 | 1.4099 | 0.4492 | 0.5227 | 0.5096 | 0.4685 | 0.5227 | 0.5359 | 0.4685 | 0.5227 | 0.5227 | 0.5227 |
1.0466 | 11.0 | 638 | 1.5217 | 0.4805 | 0.5682 | 0.5464 | 0.4933 | 0.5682 | 0.5566 | 0.4972 | 0.5682 | 0.5682 | 0.5682 |
0.648 | 12.0 | 696 | 1.5465 | 0.4666 | 0.5303 | 0.5284 | 0.4870 | 0.5303 | 0.5655 | 0.4872 | 0.5303 | 0.5303 | 0.5303 |
0.6292 | 13.0 | 754 | 1.5671 | 0.4553 | 0.5152 | 0.5116 | 0.5059 | 0.5152 | 0.5740 | 0.4652 | 0.5152 | 0.5152 | 0.5152 |
0.3081 | 14.0 | 812 | 1.5835 | 0.5087 | 0.5909 | 0.5700 | 0.5276 | 0.5909 | 0.5752 | 0.5130 | 0.5909 | 0.5909 | 0.5909 |
0.349 | 15.0 | 870 | 1.7548 | 0.4364 | 0.5076 | 0.4959 | 0.4563 | 0.5076 | 0.5064 | 0.4397 | 0.5076 | 0.5076 | 0.5076 |
0.2594 | 16.0 | 928 | 1.9070 | 0.4717 | 0.5455 | 0.5287 | 0.4803 | 0.5455 | 0.5289 | 0.4780 | 0.5455 | 0.5455 | 0.5455 |
0.2384 | 17.0 | 986 | 1.8439 | 0.5212 | 0.5909 | 0.5797 | 0.5462 | 0.5909 | 0.5900 | 0.5211 | 0.5909 | 0.5909 | 0.5909 |
0.1308 | 18.0 | 1044 | 2.0280 | 0.5064 | 0.5758 | 0.5659 | 0.5375 | 0.5758 | 0.5885 | 0.5074 | 0.5758 | 0.5758 | 0.5758 |
0.042 | 19.0 | 1102 | 1.9038 | 0.5345 | 0.6136 | 0.6004 | 0.5672 | 0.6136 | 0.6168 | 0.5360 | 0.6136 | 0.6136 | 0.6136 |
0.0605 | 20.0 | 1160 | 2.1862 | 0.5215 | 0.5909 | 0.5855 | 0.5231 | 0.5909 | 0.5867 | 0.5264 | 0.5909 | 0.5909 | 0.5909 |
0.0153 | 21.0 | 1218 | 2.1651 | 0.5037 | 0.5682 | 0.5637 | 0.5110 | 0.5682 | 0.5718 | 0.5059 | 0.5682 | 0.5682 | 0.5682 |
0.0069 | 22.0 | 1276 | 2.1574 | 0.4779 | 0.5455 | 0.5377 | 0.4819 | 0.5455 | 0.5367 | 0.4793 | 0.5455 | 0.5455 | 0.5455 |
0.0138 | 23.0 | 1334 | 2.3532 | 0.4938 | 0.5606 | 0.5544 | 0.4944 | 0.5606 | 0.5692 | 0.5119 | 0.5606 | 0.5606 | 0.5606 |
0.0016 | 24.0 | 1392 | 2.3575 | 0.4795 | 0.5606 | 0.5442 | 0.4724 | 0.5606 | 0.5342 | 0.4922 | 0.5606 | 0.5606 | 0.5606 |
0.2167 | 25.0 | 1450 | 2.4082 | 0.5045 | 0.5758 | 0.5691 | 0.5056 | 0.5758 | 0.5715 | 0.5127 | 0.5758 | 0.5758 | 0.5758 |
0.0024 | 26.0 | 1508 | 2.4224 | 0.5014 | 0.5682 | 0.5612 | 0.5003 | 0.5682 | 0.5623 | 0.5102 | 0.5682 | 0.5682 | 0.5682 |
0.0042 | 27.0 | 1566 | 2.3936 | 0.5133 | 0.5833 | 0.5745 | 0.5123 | 0.5833 | 0.5716 | 0.5189 | 0.5833 | 0.5833 | 0.5833 |
0.0008 | 28.0 | 1624 | 2.3829 | 0.5239 | 0.5985 | 0.5885 | 0.5309 | 0.5985 | 0.5892 | 0.5290 | 0.5985 | 0.5985 | 0.5985 |
0.0009 | 29.0 | 1682 | 2.4101 | 0.4891 | 0.5606 | 0.5532 | 0.4833 | 0.5606 | 0.5484 | 0.4976 | 0.5606 | 0.5606 | 0.5606 |
0.0009 | 30.0 | 1740 | 2.4118 | 0.5015 | 0.5758 | 0.5656 | 0.4970 | 0.5758 | 0.5602 | 0.5108 | 0.5758 | 0.5758 | 0.5758 |
Framework versions
- Transformers 4.49.0
- Pytorch 2.6.0+cu124
- Datasets 3.3.1
- Tokenizers 0.21.0
- Downloads last month
- 21
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for corranm/square_run_first_vote_full_pic_75_age_gender
Base model
google/vit-base-patch16-224