square_run_first_vote_full_pic_75_age_gender

This model is a fine-tuned version of google/vit-base-patch16-224 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.7554
  • F1 Macro: 0.3377
  • F1 Micro: 0.4091
  • F1 Weighted: 0.3702
  • Precision Macro: 0.3432
  • Precision Micro: 0.4091
  • Precision Weighted: 0.3813
  • Recall Macro: 0.3764
  • Recall Micro: 0.4091
  • Recall Weighted: 0.4091
  • Accuracy: 0.4091

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss F1 Macro F1 Micro F1 Weighted Precision Macro Precision Micro Precision Weighted Recall Macro Recall Micro Recall Weighted Accuracy
1.9621 1.0 58 1.9294 0.1188 0.2121 0.1307 0.0924 0.2121 0.1040 0.2009 0.2121 0.2121 0.2121
1.6897 2.0 116 1.8039 0.2212 0.3258 0.2698 0.2607 0.3258 0.3321 0.2817 0.3258 0.3258 0.3258
1.9018 3.0 174 1.8333 0.1488 0.2727 0.1810 0.1261 0.2727 0.1499 0.2142 0.2727 0.2727 0.2727
1.3206 4.0 232 1.8180 0.1941 0.2955 0.2237 0.2405 0.2955 0.2639 0.2493 0.2955 0.2955 0.2955
1.7794 5.0 290 1.4852 0.3258 0.4167 0.3866 0.3195 0.4167 0.3831 0.3576 0.4167 0.4167 0.4167
1.7676 6.0 348 1.4509 0.4341 0.4924 0.4845 0.4298 0.4924 0.4816 0.4437 0.4924 0.4924 0.4924
1.6212 7.0 406 1.5437 0.4281 0.4773 0.4424 0.4381 0.4773 0.4653 0.4668 0.4773 0.4773 0.4773
1.5547 8.0 464 1.4854 0.3596 0.4242 0.4034 0.3810 0.4242 0.4362 0.3863 0.4242 0.4242 0.4242
1.5353 9.0 522 1.3877 0.4190 0.5076 0.4726 0.4442 0.5076 0.5046 0.4533 0.5076 0.5076 0.5076
0.7126 10.0 580 1.4099 0.4492 0.5227 0.5096 0.4685 0.5227 0.5359 0.4685 0.5227 0.5227 0.5227
1.0466 11.0 638 1.5217 0.4805 0.5682 0.5464 0.4933 0.5682 0.5566 0.4972 0.5682 0.5682 0.5682
0.648 12.0 696 1.5465 0.4666 0.5303 0.5284 0.4870 0.5303 0.5655 0.4872 0.5303 0.5303 0.5303
0.6292 13.0 754 1.5671 0.4553 0.5152 0.5116 0.5059 0.5152 0.5740 0.4652 0.5152 0.5152 0.5152
0.3081 14.0 812 1.5835 0.5087 0.5909 0.5700 0.5276 0.5909 0.5752 0.5130 0.5909 0.5909 0.5909
0.349 15.0 870 1.7548 0.4364 0.5076 0.4959 0.4563 0.5076 0.5064 0.4397 0.5076 0.5076 0.5076
0.2594 16.0 928 1.9070 0.4717 0.5455 0.5287 0.4803 0.5455 0.5289 0.4780 0.5455 0.5455 0.5455
0.2384 17.0 986 1.8439 0.5212 0.5909 0.5797 0.5462 0.5909 0.5900 0.5211 0.5909 0.5909 0.5909
0.1308 18.0 1044 2.0280 0.5064 0.5758 0.5659 0.5375 0.5758 0.5885 0.5074 0.5758 0.5758 0.5758
0.042 19.0 1102 1.9038 0.5345 0.6136 0.6004 0.5672 0.6136 0.6168 0.5360 0.6136 0.6136 0.6136
0.0605 20.0 1160 2.1862 0.5215 0.5909 0.5855 0.5231 0.5909 0.5867 0.5264 0.5909 0.5909 0.5909
0.0153 21.0 1218 2.1651 0.5037 0.5682 0.5637 0.5110 0.5682 0.5718 0.5059 0.5682 0.5682 0.5682
0.0069 22.0 1276 2.1574 0.4779 0.5455 0.5377 0.4819 0.5455 0.5367 0.4793 0.5455 0.5455 0.5455
0.0138 23.0 1334 2.3532 0.4938 0.5606 0.5544 0.4944 0.5606 0.5692 0.5119 0.5606 0.5606 0.5606
0.0016 24.0 1392 2.3575 0.4795 0.5606 0.5442 0.4724 0.5606 0.5342 0.4922 0.5606 0.5606 0.5606
0.2167 25.0 1450 2.4082 0.5045 0.5758 0.5691 0.5056 0.5758 0.5715 0.5127 0.5758 0.5758 0.5758
0.0024 26.0 1508 2.4224 0.5014 0.5682 0.5612 0.5003 0.5682 0.5623 0.5102 0.5682 0.5682 0.5682
0.0042 27.0 1566 2.3936 0.5133 0.5833 0.5745 0.5123 0.5833 0.5716 0.5189 0.5833 0.5833 0.5833
0.0008 28.0 1624 2.3829 0.5239 0.5985 0.5885 0.5309 0.5985 0.5892 0.5290 0.5985 0.5985 0.5985
0.0009 29.0 1682 2.4101 0.4891 0.5606 0.5532 0.4833 0.5606 0.5484 0.4976 0.5606 0.5606 0.5606
0.0009 30.0 1740 2.4118 0.5015 0.5758 0.5656 0.4970 0.5758 0.5602 0.5108 0.5758 0.5758 0.5758

Framework versions

  • Transformers 4.49.0
  • Pytorch 2.6.0+cu124
  • Datasets 3.3.1
  • Tokenizers 0.21.0
Downloads last month
21
Safetensors
Model size
85.8M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for corranm/square_run_first_vote_full_pic_75_age_gender

Finetuned
(626)
this model