whisper-small-id3 / README.md
conevonce's picture
Upload tokenizer
4695ab4 verified
metadata
library_name: transformers
language:
  - id
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_17_0
metrics:
  - wer
model-index:
  - name: Whisper Small id - convonce
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: Common Voice 17.0
          type: mozilla-foundation/common_voice_17_0
          config: id
          split: None
          args: 'config: id, split: test'
        metrics:
          - type: wer
            value: 17.36971553204325
            name: Wer

Whisper Small id - convonce

This model is a fine-tuned version of openai/whisper-small on the Common Voice 17.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3414
  • Wer: 17.3697

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.2139 1.9231 1000 0.2519 17.5089
0.0278 3.8462 2000 0.2925 17.9359
0.0052 5.7692 3000 0.3140 17.5043
0.0017 7.6923 4000 0.3356 17.4857
0.0013 9.6154 5000 0.3414 17.3697

Framework versions

  • Transformers 4.48.3
  • Pytorch 2.5.1+cu121
  • Datasets 3.3.0
  • Tokenizers 0.21.0