metadata
library_name: transformers
language:
- id
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_17_0
metrics:
- wer
model-index:
- name: Whisper Small id - convonce
results:
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: Common Voice 17.0
type: mozilla-foundation/common_voice_17_0
config: id
split: None
args: 'config: id, split: test'
metrics:
- type: wer
value: 17.36971553204325
name: Wer
Whisper Small id - convonce
This model is a fine-tuned version of openai/whisper-small on the Common Voice 17.0 dataset. It achieves the following results on the evaluation set:
- Loss: 0.3414
- Wer: 17.3697
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.2139 | 1.9231 | 1000 | 0.2519 | 17.5089 |
0.0278 | 3.8462 | 2000 | 0.2925 | 17.9359 |
0.0052 | 5.7692 | 3000 | 0.3140 | 17.5043 |
0.0017 | 7.6923 | 4000 | 0.3356 | 17.4857 |
0.0013 | 9.6154 | 5000 | 0.3414 | 17.3697 |
Framework versions
- Transformers 4.48.3
- Pytorch 2.5.1+cu121
- Datasets 3.3.0
- Tokenizers 0.21.0