whisper-hf-rslora / README.md
compulsi0n's picture
Update README.md
0989c5f verified
---
library_name: peft
license: mit
base_model: openai/whisper-large-v3-turbo
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: whisper-hf-rslora
results: []
datasets:
- compulsi0n/heart-failure-audio
pipeline_tag: automatic-speech-recognition
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# whisper-hf-rslora
This model is a fine-tuned version of [openai/whisper-large-v3-turbo](https://huggingface.co/openai/whisper-large-v3-turbo) on compulsion/heart-failure-audio.
It achieves the following results on the evaluation set:
- Loss: 0.6919
- Wer: 0.2424
## Model description
A PEFT rank-stablized LoRA adapter of whisper-large-v3-turbo finetuned on heart failure audio data that is conversational, longitudinal, and focused on chronic illness management and care coordination in a community-based healthcare setting.
## Intended uses & limitations
To be used in ASR tasks specifically in the heart failure domain.
## Benchmark (base whisper-large-v3-turbo vs. finetuned rank-stablized LoRA adapter)
Normalized for PHI redactions and throught Transformer's BasicTextNormalizer.
| Model | Raw WER (%) | Normalised WER (%) |
| :------: | :---------: | :----------------: |
| Baseline | 35.00 | 26.71 |
| rsLoRA | 26.18 | 20.71 |
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: constant_with_warmup
- lr_scheduler_warmup_steps: 500
- num_epochs: 8
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 2.3062 | 1.0 | 92 | 1.1343 | 0.2388 |
| 1.0317 | 2.0 | 184 | 0.7145 | 0.2620 |
| 0.6833 | 3.0 | 276 | 0.6606 | 0.2105 |
| 0.5934 | 4.0 | 368 | 0.6292 | 0.2122 |
| 0.5104 | 5.0 | 460 | 0.6347 | 0.2521 |
| 0.4392 | 6.0 | 552 | 0.6444 | 0.2729 |
| 0.3653 | 7.0 | 644 | 0.6701 | 0.2198 |
| 0.3178 | 8.0 | 736 | 0.6919 | 0.2424 |
### Framework versions
- PEFT 0.15.2
- Transformers 4.52.4
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.21.1