codys12 commited on
Commit
202bc81
·
verified ·
1 Parent(s): b5f2541

Upload tokenizer

Browse files
chat_template.jinja ADDED
@@ -0,0 +1,112 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {% set loop_messages = messages %}
2
+ {% if tools %}
3
+ {% set weekday_map = {'Monday': '星期一', 'Tuesday': '星期二', 'Wednesday': '星期三', 'Thursday': '星期四', 'Friday': '星期五', 'Saturday': '星期六', 'Sunday': '星期日'} %}
4
+ {% set weekday_cn = weekday_map[strftime_now('%A')] %}
5
+ {% set datetime_str = strftime_now('%Y-%m-%d %H:%M:%S') %}
6
+ {% set datetime_str = datetime_str + ' ' + weekday_cn %}
7
+ {% for message in loop_messages %}
8
+ {% if 'content' in message %}
9
+ {% set content = message['content'] %}
10
+ {% else %}
11
+ {% set content = '' %}
12
+ {% endif %}
13
+ {% if loop.index0 == 0 %}
14
+ {% set content_tmp = '你是一位函数组合专家。你会得到一个问题和一组可能的函数。根据问题,你需要进行一个或多个函数/工具调用以实现目的。
15
+ 如果没有一个函数可以使用,请直接使用自然语言回复用户,以助手:开头。
16
+ 如果给定的问题缺少函数所需的参数,请使用自然语言进行提问,向用户询问必要信息,以助手:开头。
17
+ 如果调用结果已经足够回答用户问题,请对历史结果进行总结,使用自然语言回复用户,以助手:开头。
18
+ 你应该只在工具调用部分返回函数调用。如果你决定调用任何函数,你必须将其格式化为<tool_calls>[{"name": "func_name1", "arguments": {"argument1": "value1", "argument2": "value2"}},...]</tool_calls>。你不应该在回复中包含任何其他文本。以下是你可以调用的函数列表,格式为JSON。
19
+ ' %}
20
+ {% set content_tmp = content_tmp + '
21
+ ' + tools | tojson + '
22
+ ' %}
23
+ {% if message['role'] == 'system' %}
24
+ {% set content_tmp = content_tmp + '
25
+ 额外要求:
26
+ ' + content + '
27
+
28
+ 如果你决定返回函数调用,请将其格式化为<tool_calls>[{"name": "func_name1", "arguments": {"argument1": "value1", "argument2": "value2"}},...]</tool_calls>,不得包含其他文本。如果额外要求里有格式要求,请忽略,以此处为准。
29
+ 否则,请参考开头说的三种情况,以助手:开头进行回复。
30
+
31
+ 如果额外要求里有时间信息,就以额外要求里的时间为准,否则,参考当前时间:' + datetime_str %}
32
+ {% set content = '<|startoftext|>' + content_tmp + '<|extra_4|>' %}
33
+ {% elif message['role'] == 'user' %}
34
+ {% set content_tmp = content_tmp + '
35
+ 如果你决定返回函数调用,请将其格式化为<tool_calls>[{"name": "func_name1", "arguments": {"argument1": "value1", "argument2": "value2"}},...]</tool_calls>,不得包含其他文本。
36
+ 否则,请参考开头说的三种情况,以助手:开头进行回复。
37
+
38
+ 当前时间:' + datetime_str %}
39
+ {% set content_tmp = '<|startoftext|>' + content_tmp + '<|extra_4|>'%}
40
+ {% set content = content_tmp + '用户:' + content + '<|extra_0|>' %}
41
+ {% endif %}
42
+ {% else %}
43
+ {% if message['role'] == 'user' %}
44
+ {% set content = '用户:' + content + '<|extra_0|>' %}
45
+ {% elif message['role'] == 'assistant' %}
46
+ {% if 'tool_calls' in message %}
47
+ {% set tool_calls = message['tool_calls'] %}
48
+ {% set ns = namespace(tool_calls="[") %}
49
+ {% for tool_call in tool_calls %}
50
+ {% set function = tool_call['function'] %}
51
+ {% set name = function['name'] %}
52
+ {% set ns.tool_calls = ns.tool_calls + '{"name": "' + name + '", '%}
53
+ {% set arguments = function['arguments'] %}
54
+ {% if arguments is not string %}
55
+ {% set arguments = arguments | tojson %}
56
+ {% endif %}
57
+ {% set ns.tool_calls = ns.tool_calls + '"arguments": ' + arguments + '}' %}
58
+ {% if not loop.last %}
59
+ {% set ns.tool_calls = ns.tool_calls + ', '%}
60
+ {% endif %}
61
+ {% endfor %}
62
+ {% set ns.tool_calls = ns.tool_calls + ']' %}
63
+ {% set content = content + '<tool_calls>' + ns.tool_calls + '</tool_calls>' %}
64
+ {% else %}
65
+ {% set content = '助手:' + content %}
66
+ {% endif %}
67
+ {% set content = content + '<|eos|>' %}
68
+ {% elif message['role'] == 'tool' %}
69
+ {% if content is not string %}
70
+ {set content = content | tojson }
71
+ {% endif %}
72
+ {% set content = '<tool_response>' + content + '</tool_response>' %}
73
+ {% set content = content + '<|extra_0|>' %}
74
+ {% endif %}
75
+ {% endif %}
76
+ {{- content -}}
77
+ {% endfor %}
78
+ {% else %}
79
+ {% set context = {'has_head': true} %}
80
+ {% for message in loop_messages %}
81
+ {% if 'content' in message %}
82
+ {% set content = message['content'] %}
83
+ {% else %}
84
+ {% set content = '' %}
85
+ {% endif %}
86
+ {% if loop.index0 == 0 %}
87
+ {% if content == '' %}
88
+ {% set _ = context.update({'has_head': false}) %}
89
+ {% elif message['role'] == 'system' %}
90
+ {% set content = '<|startoftext|>' + content + '<|extra_4|>' %}
91
+ {% endif %}
92
+ {% endif %}
93
+ {% if message['role'] == 'user' %}
94
+ {% if loop.index0 == 1 and not context.has_head %}
95
+ {% set content = '<|startoftext|>' + content %}
96
+ {% endif %}
97
+ {% if loop.index0 == 1 and context.has_head %}
98
+ {% set content = content + '<|extra_0|>' %}
99
+ {% else %}
100
+ {% set content = '<|startoftext|>' + content + '<|extra_0|>' %}
101
+ {% endif %}
102
+ {% elif message['role'] == 'assistant' %}
103
+ {% set content = content + '<|eos|>' %}
104
+ {% elif message['role'] == 'tool' %}
105
+ {% set content = content + '<|extra_0|>' %}
106
+ {% endif %}
107
+ {{- content -}}
108
+ {% endfor %}
109
+ {% endif %}
110
+ {%- if enable_thinking is defined and enable_thinking is false %}
111
+ {{- '<think>\n\n</think>\n' }}
112
+ {%- endif %}
hunyuan.tiktoken ADDED
The diff for this file is too large to render. See raw diff
 
special_tokens_map.json ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|startoftext|>",
4
+ "<|extra_0|>",
5
+ "<|extra_4|>",
6
+ "<|extra_5|>",
7
+ "<|eos|>"
8
+ ],
9
+ "eos_token": "<|eos|>",
10
+ "pad_token": "<|pad|>"
11
+ }
tokenization_hy.py ADDED
@@ -0,0 +1,298 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import base64
2
+ import logging
3
+ import os
4
+ import unicodedata
5
+ from typing import Collection, Dict, List, Set, Tuple, Union
6
+
7
+ import tiktoken
8
+ from transformers import PreTrainedTokenizer, AddedToken
9
+
10
+ logger = logging.getLogger(__name__)
11
+
12
+
13
+ VOCAB_FILES_NAMES = {"vocab_file": "hy.tiktoken"}
14
+
15
+ PAT_STR = r"""(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+"""
16
+ # PAT_STR = r"""(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+"""
17
+ ENDOFTEXT = "<|endoftext|>"
18
+ STARTOFTEXT = "<|startoftext|>"
19
+ BOSTOKEN = "<|bos|>"
20
+ EOSTOKEN = "<|eos|>"
21
+ PADTOKEN = "<|pad|>"
22
+
23
+ # as the default behavior is changed to allow special tokens in
24
+ # regular texts, the surface forms of special tokens need to be
25
+ # as different as possible to minimize the impact
26
+ EXTRAS = tuple((f"<|extra_{i}|>" for i in range(205)))
27
+ # changed to use actual index to avoid misconfiguration with vocabulary expansion
28
+
29
+
30
+ SPECIAL_START_ID = 127957
31
+
32
+ def _load_tiktoken_bpe(tiktoken_bpe_file: str) -> Dict[bytes, int]:
33
+ # with open(tiktoken_bpe_file, "rb", encoding="utf-8") as f:
34
+ # contents = f.read()
35
+ dic = {}
36
+ rank = 0
37
+ for line in open(tiktoken_bpe_file, "rb"):
38
+ if line:
39
+ token, _ = line.split()
40
+ if base64.b64decode(token) in dic:
41
+ continue
42
+ dic[base64.b64decode(token)] = int(rank)
43
+ rank += 1
44
+ global SPECIAL_START_ID
45
+ SPECIAL_START_ID=rank
46
+ return dic
47
+
48
+ # NOTE: Please use the code line to check `SPECIAL_START_ID` right, this will affect the SPECIAL_START_ID
49
+ # _load_tiktoken_bpe('/apdcephfs/share_1502809/shaneshu/tokenizer_exp/other_tokenizer_vocab/hy/' + VOCAB_FILES_NAMES['vocab_file'])
50
+ # print(SPECIAL_START_ID)
51
+
52
+ SPECIAL_TOKENS = tuple(
53
+ enumerate(
54
+ (
55
+ (
56
+ ENDOFTEXT,
57
+ STARTOFTEXT,
58
+ BOSTOKEN,
59
+ EOSTOKEN,
60
+ PADTOKEN,
61
+ )
62
+ + EXTRAS
63
+ ),
64
+ start=SPECIAL_START_ID,
65
+ )
66
+ )
67
+ # NOTE: Unused Token ID starts from 127962
68
+ SPECIAL_TOKENS_SET = set(t for i, t in SPECIAL_TOKENS)
69
+
70
+ class HYTokenizer(PreTrainedTokenizer):
71
+ """hunyuan tokenizer."""
72
+
73
+ vocab_files_names = VOCAB_FILES_NAMES
74
+
75
+ def __init__(
76
+ self,
77
+ vocab_file,
78
+ errors="replace",
79
+ extra_vocab_file=None,
80
+ **kwargs,
81
+ ):
82
+ super().__init__(**kwargs)
83
+
84
+ # how to handle errors in decoding UTF-8 byte sequences
85
+ # use ignore if you are in streaming inference
86
+ self.errors = errors
87
+
88
+ self.mergeable_ranks = _load_tiktoken_bpe(vocab_file) # type: Dict[bytes, int]
89
+ self.special_tokens = {
90
+ token: index
91
+ for index, token in SPECIAL_TOKENS
92
+ }
93
+
94
+ # try load extra vocab from file
95
+ if extra_vocab_file is not None:
96
+ used_ids = set(self.mergeable_ranks.values()) | set(self.special_tokens.values())
97
+ extra_mergeable_ranks = _load_tiktoken_bpe(extra_vocab_file)
98
+ for token, index in extra_mergeable_ranks.items():
99
+ if token in self.mergeable_ranks:
100
+ logger.info(f"extra token {token} exists, skipping")
101
+ continue
102
+ if index in used_ids:
103
+ logger.info(f'the index {index} for extra token {token} exists, skipping')
104
+ continue
105
+ self.mergeable_ranks[token] = index
106
+ # the index may be sparse after this, but don't worry tiktoken.Encoding will handle this
107
+
108
+ enc = tiktoken.Encoding(
109
+ "HunYuan",
110
+ pat_str=PAT_STR,
111
+ mergeable_ranks=self.mergeable_ranks,
112
+ special_tokens=self.special_tokens,
113
+ )
114
+ assert (
115
+ len(self.mergeable_ranks) + len(self.special_tokens) == enc.n_vocab
116
+ ), f"{len(self.mergeable_ranks)} + {len(self.special_tokens)} != {enc.n_vocab} in encoding"
117
+
118
+ self.decoder = {
119
+ v: k for k, v in self.mergeable_ranks.items()
120
+ } # type: dict[int, bytes|str]
121
+ self.decoder.update({v: k for k, v in self.special_tokens.items()})
122
+
123
+ self.tokenizer = enc # type: tiktoken.Encoding
124
+
125
+ self.eod_id = self.tokenizer.eot_token
126
+ self.bod_id = self.special_tokens[STARTOFTEXT]
127
+ self.bos_id = self.special_tokens[BOSTOKEN]
128
+ self.eos_id = self.special_tokens[EOSTOKEN]
129
+ self.pad_id = self.special_tokens[PADTOKEN]
130
+
131
+ def __getstate__(self):
132
+ # for pickle lovers
133
+ state = self.__dict__.copy()
134
+ del state["tokenizer"]
135
+ return state
136
+
137
+ def __setstate__(self, state):
138
+ # tokenizer is not python native; don't pass it; rebuild it
139
+ self.__dict__.update(state)
140
+ enc = tiktoken.Encoding(
141
+ "HunYuan",
142
+ pat_str=PAT_STR,
143
+ mergeable_ranks=self.mergeable_ranks,
144
+ special_tokens=self.special_tokens,
145
+ )
146
+ self.tokenizer = enc
147
+
148
+ def __len__(self) -> int:
149
+ return self.tokenizer.n_vocab
150
+
151
+ def get_vocab(self) -> Dict[bytes, int]:
152
+ return self.mergeable_ranks
153
+
154
+ def convert_tokens_to_ids(
155
+ self, tokens: Union[bytes, str, List[Union[bytes, str]]]
156
+ ) -> List[int]:
157
+ ids = []
158
+ if isinstance(tokens, (str, bytes)):
159
+ if tokens in self.special_tokens:
160
+ return self.special_tokens[tokens]
161
+ else:
162
+ return self.mergeable_ranks.get(tokens)
163
+ for token in tokens:
164
+ if token in self.special_tokens:
165
+ ids.append(self.special_tokens[token])
166
+ else:
167
+ ids.append(self.mergeable_ranks.get(token))
168
+ return ids
169
+
170
+ def _add_tokens(
171
+ self,
172
+ new_tokens: Union[List[str], List[AddedToken]],
173
+ special_tokens: bool = False,
174
+ ) -> int:
175
+ if not special_tokens and new_tokens:
176
+ raise ValueError("Adding regular tokens is not supported")
177
+ for token in new_tokens:
178
+ surface_form = token.content if isinstance(token, AddedToken) else token
179
+ if surface_form not in SPECIAL_TOKENS_SET:
180
+ raise ValueError("Adding unknown special tokens is not supported")
181
+ return 0
182
+
183
+ def save_vocabulary(self, save_directory: str, **kwargs) -> Tuple[str]:
184
+ """
185
+ Save only the vocabulary of the tokenizer (vocabulary).
186
+ Returns:
187
+ `Tuple(str)`: Paths to the files saved.
188
+ """
189
+ file_path = os.path.join(save_directory, "hunyuan.tiktoken")
190
+ with open(file_path, "w", encoding="utf-8") as w:
191
+ for k, v in self.mergeable_ranks.items():
192
+ line = base64.b64encode(k).decode("utf-8") + " " + str(v) + "\n"
193
+ w.write(line)
194
+ return (file_path,)
195
+
196
+ def tokenize(
197
+ self,
198
+ text: str,
199
+ allowed_special: Union[Set, str] = "all",
200
+ disallowed_special: Union[Collection, str] = (),
201
+ **kwargs,
202
+ ) -> List[Union[bytes, str]]:
203
+ """
204
+ Converts a string in a sequence of tokens.
205
+ Args:
206
+ text (`str`):
207
+ The sequence to be encoded.
208
+ allowed_special (`Literal["all"]` or `set`):
209
+ The surface forms of the tokens to be encoded as special tokens in regular texts.
210
+ Default to "all".
211
+ disallowed_special (`Literal["all"]` or `Collection`):
212
+ The surface forms of the tokens that should not be in regular texts and trigger errors.
213
+ Default to an empty tuple.
214
+ kwargs (additional keyword arguments, *optional*):
215
+ Will be passed to the underlying model specific encode method.
216
+ Returns:
217
+ `List[bytes|str]`: The list of tokens.
218
+ """
219
+ tokens = []
220
+ text = unicodedata.normalize("NFC", text)
221
+
222
+ # this implementation takes a detour: text -> token id -> token surface forms
223
+ for t in self.tokenizer.encode(
224
+ text, allowed_special=allowed_special, disallowed_special=disallowed_special
225
+ ):
226
+ tokens.append(self.decoder[t])
227
+ return tokens
228
+
229
+ def convert_tokens_to_string(self, tokens: List[Union[bytes, str]]) -> str:
230
+ """
231
+ Converts a sequence of tokens in a single string.
232
+ """
233
+ text = ""
234
+ temp = b""
235
+ for t in tokens:
236
+ if isinstance(t, str):
237
+ if temp:
238
+ text += temp.decode("utf-8", errors=self.errors)
239
+ temp = b""
240
+ text += t
241
+ elif isinstance(t, bytes):
242
+ temp += t
243
+ else:
244
+ raise TypeError("token should only be of type types or str")
245
+ if temp:
246
+ text += temp.decode("utf-8", errors=self.errors)
247
+ return text
248
+
249
+ @property
250
+ def vocab_size(self):
251
+ return self.tokenizer.n_vocab
252
+
253
+ def _convert_id_to_token(self, index: int) -> Union[bytes, str]:
254
+ """Converts an id to a token, special tokens included"""
255
+ if index in self.decoder:
256
+ return self.decoder[index]
257
+ raise ValueError("unknown ids")
258
+
259
+ def _convert_token_to_id(self, token: Union[bytes, str]) -> int:
260
+ """Converts a token to an id using the vocab, special tokens included"""
261
+ if token in self.special_tokens:
262
+ return self.special_tokens[token]
263
+ if token in self.mergeable_ranks:
264
+ return self.mergeable_ranks[token]
265
+ raise ValueError("unknown token")
266
+
267
+ def _tokenize(self, text: str, **kwargs):
268
+ """
269
+ Converts a string in a sequence of tokens (string), using the tokenizer. Split in words for word-based
270
+ vocabulary or sub-words for sub-word-based vocabularies (BPE/SentencePieces/WordPieces).
271
+ Do NOT take care of added tokens.
272
+ """
273
+ raise NotImplementedError
274
+
275
+ def _decode(
276
+ self,
277
+ token_ids: Union[int, List[int]],
278
+ skip_special_tokens: bool = False,
279
+ errors: str = None,
280
+ **kwargs,
281
+ ) -> str:
282
+ if isinstance(token_ids, int):
283
+ token_ids = [token_ids]
284
+ if skip_special_tokens:
285
+ token_ids = [i for i in token_ids if i < self.eod_id]
286
+ return self.tokenizer.decode(token_ids, errors=errors or self.errors)
287
+
288
+ # tests
289
+ if __name__ == "__main__":
290
+ tokenizer = HYTokenizer.from_pretrained('./hy')
291
+ text = '你好,世界'
292
+ tokens = tokenizer.tokenize(text)
293
+ print(tokens)
294
+ ids = tokenizer.convert_tokens_to_ids(tokens)
295
+ print(ids)
296
+ text2 = tokenizer.convert_tokens_to_string(tokens)
297
+ print(text2)
298
+ ids2 = tokenizer.convert_tokens_to_ids(tokens)
tokenizer_config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {},
3
+ "additional_special_tokens": [
4
+ "<|startoftext|>",
5
+ "<|extra_0|>",
6
+ "<|extra_4|>",
7
+ "<|extra_5|>",
8
+ "<|eos|>"
9
+ ],
10
+ "architectures": [
11
+ "GPT2LMHeadModel"
12
+ ],
13
+ "auto_map": {
14
+ "AutoTokenizer": [
15
+ "tokenization_hy.HYTokenizer",
16
+ null
17
+ ]
18
+ },
19
+ "clean_up_tokenization_spaces": false,
20
+ "eos_token": "<|eos|>",
21
+ "extra_special_tokens": {},
22
+ "model_max_length": 1048576,
23
+ "model_type": "gpt2",
24
+ "pad_token": "<|pad|>",
25
+ "tokenizer_class": "HYTokenizer"
26
+ }