Upload HunYuanMoEV1ForCausalLM
Browse files- README.md +199 -0
- config.json +209 -0
- configuration_hunyuan.py +319 -0
- generation_config.json +7 -0
- pytorch_model-00001-of-00005.bin +3 -0
- pytorch_model-00002-of-00005.bin +3 -0
- pytorch_model-00003-of-00005.bin +3 -0
- pytorch_model-00004-of-00005.bin +3 -0
- pytorch_model-00005-of-00005.bin +3 -0
- pytorch_model.bin.index.json +0 -0
README.md
ADDED
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
tags: []
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
config.json
ADDED
@@ -0,0 +1,209 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_classification_head": false,
|
3 |
+
"anyres_pooling_size": 2,
|
4 |
+
"anyres_vit_max_image_size": null,
|
5 |
+
"anyres_vit_two_views": false,
|
6 |
+
"architectures": [
|
7 |
+
"HunYuanMoEV1ForCausalLM"
|
8 |
+
],
|
9 |
+
"attention_bias": false,
|
10 |
+
"attention_dropout": 0.1,
|
11 |
+
"attention_head_dim": 128,
|
12 |
+
"auto_map": {
|
13 |
+
"AutoConfig": "configuration_hunyuan.HunYuanConfig",
|
14 |
+
"AutoModel": "hunyuan.HunYuanModel",
|
15 |
+
"AutoModelForCausalLM": "hunyuan.HunYuanMoEV1ForCausalLM"
|
16 |
+
},
|
17 |
+
"bos_token_id": 1,
|
18 |
+
"cla_share_factor": 2,
|
19 |
+
"class_num": 0,
|
20 |
+
"dense_list": [
|
21 |
+
4096,
|
22 |
+
0
|
23 |
+
],
|
24 |
+
"eod_token_id": 127967,
|
25 |
+
"eos_token_id": 127960,
|
26 |
+
"group_limited_greedy": false,
|
27 |
+
"hidden_act": "silu",
|
28 |
+
"hidden_size": 4096,
|
29 |
+
"im_end_id": 6,
|
30 |
+
"im_newline_id": 12,
|
31 |
+
"im_start_id": 5,
|
32 |
+
"image_token_id": 9,
|
33 |
+
"initializer_range": 0.02,
|
34 |
+
"intermediate_size": 3072,
|
35 |
+
"kv_lora_rank": null,
|
36 |
+
"mask_init_id": 13,
|
37 |
+
"max_position_embeddings": 32768,
|
38 |
+
"mlp_bias": false,
|
39 |
+
"model_type": "hunyuan",
|
40 |
+
"moe_drop_tokens": false,
|
41 |
+
"moe_intermediate_size": [
|
42 |
+
3072,
|
43 |
+
3072,
|
44 |
+
3072,
|
45 |
+
3072,
|
46 |
+
3072,
|
47 |
+
3072,
|
48 |
+
3072,
|
49 |
+
3072,
|
50 |
+
3072,
|
51 |
+
3072,
|
52 |
+
3072,
|
53 |
+
3072,
|
54 |
+
3072,
|
55 |
+
3072,
|
56 |
+
3072,
|
57 |
+
3072,
|
58 |
+
3072,
|
59 |
+
3072,
|
60 |
+
3072,
|
61 |
+
3072,
|
62 |
+
3072,
|
63 |
+
3072,
|
64 |
+
3072,
|
65 |
+
3072,
|
66 |
+
3072,
|
67 |
+
3072,
|
68 |
+
3072,
|
69 |
+
3072,
|
70 |
+
3072,
|
71 |
+
3072,
|
72 |
+
3072,
|
73 |
+
3072
|
74 |
+
],
|
75 |
+
"moe_layer_num_skipped": 0,
|
76 |
+
"moe_random_routing_dropped_token": false,
|
77 |
+
"moe_topk": [
|
78 |
+
8,
|
79 |
+
8,
|
80 |
+
8,
|
81 |
+
8,
|
82 |
+
8,
|
83 |
+
8,
|
84 |
+
8,
|
85 |
+
8,
|
86 |
+
8,
|
87 |
+
8,
|
88 |
+
8,
|
89 |
+
8,
|
90 |
+
8,
|
91 |
+
8,
|
92 |
+
8,
|
93 |
+
8,
|
94 |
+
8,
|
95 |
+
8,
|
96 |
+
8,
|
97 |
+
8,
|
98 |
+
8,
|
99 |
+
8,
|
100 |
+
8,
|
101 |
+
8,
|
102 |
+
8,
|
103 |
+
8,
|
104 |
+
8,
|
105 |
+
8,
|
106 |
+
8,
|
107 |
+
8,
|
108 |
+
8,
|
109 |
+
8
|
110 |
+
],
|
111 |
+
"n_group": null,
|
112 |
+
"norm_topk_prob": true,
|
113 |
+
"norm_type": "rms",
|
114 |
+
"num_attention_heads": 32,
|
115 |
+
"num_experts": 64,
|
116 |
+
"num_hidden_layers": 32,
|
117 |
+
"num_key_value_heads": 8,
|
118 |
+
"num_media_embeds": 257,
|
119 |
+
"num_shared_expert": [
|
120 |
+
1,
|
121 |
+
1,
|
122 |
+
1,
|
123 |
+
1,
|
124 |
+
1,
|
125 |
+
1,
|
126 |
+
1,
|
127 |
+
1,
|
128 |
+
1,
|
129 |
+
1,
|
130 |
+
1,
|
131 |
+
1,
|
132 |
+
1,
|
133 |
+
1,
|
134 |
+
1,
|
135 |
+
1,
|
136 |
+
1,
|
137 |
+
1,
|
138 |
+
1,
|
139 |
+
1,
|
140 |
+
1,
|
141 |
+
1,
|
142 |
+
1,
|
143 |
+
1,
|
144 |
+
1,
|
145 |
+
1,
|
146 |
+
1,
|
147 |
+
1,
|
148 |
+
1,
|
149 |
+
1,
|
150 |
+
1,
|
151 |
+
1
|
152 |
+
],
|
153 |
+
"org_vocab_size": 128167,
|
154 |
+
"pad_id": 127961,
|
155 |
+
"pad_token_id": 127961,
|
156 |
+
"pool_type": "last",
|
157 |
+
"position_embedding_xdrope": false,
|
158 |
+
"pretraining_tp": 1,
|
159 |
+
"q_lora_rank": null,
|
160 |
+
"qk_nope_head_dim": null,
|
161 |
+
"qk_rope_head_dim": null,
|
162 |
+
"quantization_config": {
|
163 |
+
"linear_class": "bitlinear",
|
164 |
+
"quant_method": "bitnet",
|
165 |
+
"quantization_mode": "offline",
|
166 |
+
"use_rms_norm": true
|
167 |
+
},
|
168 |
+
"rms_norm_eps": 1e-05,
|
169 |
+
"rope_scaling": {
|
170 |
+
"alpha": 1000.0,
|
171 |
+
"beta_fast": 32,
|
172 |
+
"beta_slow": 1,
|
173 |
+
"factor": 1.0,
|
174 |
+
"mscale": 1.0,
|
175 |
+
"mscale_all_dim": 1.0,
|
176 |
+
"type": "dynamic"
|
177 |
+
},
|
178 |
+
"rope_theta": 10000.0,
|
179 |
+
"routed_scaling_factor": 1.0,
|
180 |
+
"sep_token_id": 127962,
|
181 |
+
"skip_cls_token": false,
|
182 |
+
"text_end_id": 8,
|
183 |
+
"text_start_id": 7,
|
184 |
+
"tie_word_embeddings": true,
|
185 |
+
"topk_group": null,
|
186 |
+
"torch_dtype": "bfloat16",
|
187 |
+
"transformers_version": "4.52.4",
|
188 |
+
"use_cache": true,
|
189 |
+
"use_cla": false,
|
190 |
+
"use_mixed_mlp_moe": true,
|
191 |
+
"use_mla": false,
|
192 |
+
"use_qk_norm": true,
|
193 |
+
"use_rotary_pos_emb": true,
|
194 |
+
"v_head_dim": null,
|
195 |
+
"video_end_id": 11,
|
196 |
+
"video_start_id": 10,
|
197 |
+
"vit_add_patchemb_bias": false,
|
198 |
+
"vit_input_resolution": 224,
|
199 |
+
"vit_mapping_type": "resampler",
|
200 |
+
"vit_norm_type": "fused",
|
201 |
+
"vit_patch": 1,
|
202 |
+
"vit_path": null,
|
203 |
+
"vit_remove_prenorm": false,
|
204 |
+
"vit_token": 64,
|
205 |
+
"vit_type": null,
|
206 |
+
"vit_used_rms_norm": false,
|
207 |
+
"vocab_size": 128167,
|
208 |
+
"xdrope_section": null
|
209 |
+
}
|
configuration_hunyuan.py
ADDED
@@ -0,0 +1,319 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright (C) 2024 THL A29 Limited, a Tencent company. All rights reserved.
|
3 |
+
""" HunYuan model configuration"""
|
4 |
+
from torch import nn
|
5 |
+
from transformers.configuration_utils import PretrainedConfig
|
6 |
+
from transformers.utils import logging
|
7 |
+
from typing import List, Union, Optional
|
8 |
+
|
9 |
+
|
10 |
+
logger = logging.get_logger(__name__)
|
11 |
+
|
12 |
+
|
13 |
+
class HunYuanConfig(PretrainedConfig):
|
14 |
+
r"""
|
15 |
+
This is the configuration class to store the configuration of a [`HunYuanModel`]. It is used to instantiate an
|
16 |
+
HunYuan model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
17 |
+
with the defaults will yield a similar configuration to that of the HunYuan-7B.
|
18 |
+
|
19 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
20 |
+
documentation from [`PretrainedConfig`] for more information.
|
21 |
+
|
22 |
+
|
23 |
+
Args:
|
24 |
+
vocab_size (`int`, *optional*, defaults to 32000):
|
25 |
+
Vocabulary size of the HunYuan model. Defines the number of different tokens that can be represented by the
|
26 |
+
`inputs_ids` passed when calling [`HunYuanModel`]
|
27 |
+
hidden_size (`int`, *optional*, defaults to 4096):
|
28 |
+
Dimension of the hidden representations.
|
29 |
+
intermediate_size (`int`, *optional*, defaults to 11008):
|
30 |
+
Dimension of the MLP representations or shared MLP representations.
|
31 |
+
moe_intermediate_size (`int` or `List`, *optional*, defaults to 11008):
|
32 |
+
Dimension of the MLP representations in MoE. Use a list if you want a different size per layer.
|
33 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
34 |
+
Number of hidden layers in the Transformer decoder.
|
35 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
36 |
+
Number of attention heads for each attention layer in the Transformer decoder.
|
37 |
+
num_key_value_heads (`int`, *optional*):
|
38 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
39 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
40 |
+
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
41 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
42 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
43 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
44 |
+
`num_attention_heads`.
|
45 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
46 |
+
The non-linear activation function (function or string) in the decoder.
|
47 |
+
max_position_embeddings (`int`, *optional*, defaults to 2048):
|
48 |
+
The maximum sequence length that this model might ever be used with.
|
49 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
50 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
51 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
|
52 |
+
The epsilon used by the rms normalization layers.
|
53 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
54 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
55 |
+
relevant if `config.is_decoder=True`.
|
56 |
+
pad_token_id (`int`, *optional*):
|
57 |
+
Padding token id.
|
58 |
+
bos_token_id (`int`, *optional*, defaults to 1):
|
59 |
+
Beginning of stream token id.
|
60 |
+
eos_token_id (`int`, *optional*, defaults to 2):
|
61 |
+
End of stream token id.
|
62 |
+
pretraining_tp (`int`, *optional*, defaults to 1):
|
63 |
+
Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
|
64 |
+
document](https://huggingface.co/docs/transformers/parallelism) to understand more about it. This value is
|
65 |
+
necessary to ensure exact reproducibility of the pretraining results. Please refer to [this
|
66 |
+
issue](https://github.com/pytorch/pytorch/issues/76232).
|
67 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
68 |
+
Whether to tie weight embeddings
|
69 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
70 |
+
The base period of the RoPE embeddings.
|
71 |
+
rope_scaling (`Dict`, *optional*):
|
72 |
+
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
|
73 |
+
strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
|
74 |
+
`{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
|
75 |
+
`max_position_embeddings` to the expected new maximum. See the following thread for more information on how
|
76 |
+
these scaling strategies behave:
|
77 |
+
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
|
78 |
+
experimental feature, subject to breaking API changes in future versions.
|
79 |
+
attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
|
80 |
+
Whether to use a bias in the query, key, value and output projection layers during self-attention.
|
81 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
82 |
+
The dropout ratio for the attention probabilities.
|
83 |
+
use_qk_norm (`bool`, *optional*, defaults to `False`):
|
84 |
+
Whether query and key in attention use norm
|
85 |
+
use_cla (`bool`, *optional*, defaults to `False`):
|
86 |
+
Whether to use CLA in attention
|
87 |
+
cla_share_factor (`int`, *optional*, defaults to 1):
|
88 |
+
The share factor of CLA
|
89 |
+
num_experts (`int` or `List`, *optional*, defaults to 1):
|
90 |
+
The number of experts for moe. If it is a list, it will be used as the number of experts for each layer.
|
91 |
+
num_shared_expert (`int` or `List`, *optional*, defaults to 1):
|
92 |
+
The number of shared experts for moe. If it is a list, it will be used as the number of shared experts for each layer.
|
93 |
+
moe_topk (`int` or `List`, *optional*, defaults to 1):
|
94 |
+
The topk value for moe. If it is a list, it will be used as the topk value for each layer.
|
95 |
+
capacity_factor (Not used) (`float` or `List`, *optional*, defaults to 1.0):
|
96 |
+
The capacity factor for moe. If it is a list, it will be used as the capacity factor for each layer.
|
97 |
+
moe_layer_num_skipped (`int`, *optional*, defaults to 0):
|
98 |
+
First moe_layer_num_skipped layers do not use MoE.
|
99 |
+
"""
|
100 |
+
|
101 |
+
model_type = "hunyuan"
|
102 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
103 |
+
|
104 |
+
def __init__(
|
105 |
+
self,
|
106 |
+
vocab_size=290943,
|
107 |
+
org_vocab_size=290943,
|
108 |
+
hidden_size=4096,
|
109 |
+
intermediate_size: int=11008,
|
110 |
+
moe_intermediate_size: Union[int, List]=None,
|
111 |
+
num_hidden_layers=32,
|
112 |
+
num_attention_heads=32,
|
113 |
+
num_key_value_heads=None,
|
114 |
+
attention_head_dim=None,
|
115 |
+
hidden_act="silu",
|
116 |
+
max_position_embeddings=2048,
|
117 |
+
initializer_range=0.02,
|
118 |
+
rms_norm_eps=1e-5,
|
119 |
+
use_cache=True,
|
120 |
+
pad_token_id=0,
|
121 |
+
bos_token_id=1,
|
122 |
+
eos_token_id=2,
|
123 |
+
eod_token_id=3,
|
124 |
+
sep_token_id=4,
|
125 |
+
im_start_id=5,
|
126 |
+
im_end_id=6,
|
127 |
+
text_start_id=7,
|
128 |
+
text_end_id=8,
|
129 |
+
image_token_id=9,
|
130 |
+
video_start_id=10,
|
131 |
+
video_end_id=11,
|
132 |
+
im_newline_id=12,
|
133 |
+
mask_init_id=13,
|
134 |
+
pretraining_tp=1,
|
135 |
+
tie_word_embeddings=False,
|
136 |
+
rope_theta=10000.0,
|
137 |
+
rope_scaling=None,
|
138 |
+
attention_bias=False,
|
139 |
+
mlp_bias=False,
|
140 |
+
attention_dropout=0.0,
|
141 |
+
use_qk_norm=False,
|
142 |
+
use_rotary_pos_emb=True,
|
143 |
+
use_cla=False,
|
144 |
+
cla_share_factor=1,
|
145 |
+
norm_type="hf_rms",
|
146 |
+
num_experts: Union[int, List]=1,
|
147 |
+
use_mixed_mlp_moe=False,
|
148 |
+
num_shared_expert: Union[int, List]=1,
|
149 |
+
moe_topk: Union[int, List]=1,
|
150 |
+
# capacity_factor: Union[int, List]=1.0,
|
151 |
+
moe_drop_tokens=False,
|
152 |
+
moe_random_routing_dropped_token=False,
|
153 |
+
use_mla=False,
|
154 |
+
kv_lora_rank=512,
|
155 |
+
q_lora_rank=1536,
|
156 |
+
qk_rope_head_dim=64,
|
157 |
+
v_head_dim=128,
|
158 |
+
qk_nope_head_dim=128,
|
159 |
+
moe_layer_num_skipped=0,
|
160 |
+
norm_topk_prob=True,
|
161 |
+
routed_scaling_factor=1.0,
|
162 |
+
group_limited_greedy=False,
|
163 |
+
n_group=None,
|
164 |
+
topk_group=None,
|
165 |
+
vit_path=None,
|
166 |
+
num_media_embeds=257,
|
167 |
+
vit_type="AnyResVit",
|
168 |
+
vit_input_resolution=224,
|
169 |
+
vit_token=64,
|
170 |
+
vit_patch=1,
|
171 |
+
vit_mapping_type="simple_conv_mlp",
|
172 |
+
vit_norm_type="fused",
|
173 |
+
vit_used_rms_norm=True,
|
174 |
+
vit_remove_prenorm=True,
|
175 |
+
vit_add_patchemb_bias=True,
|
176 |
+
anyres_vit_max_image_size=2048,
|
177 |
+
anyres_pooling_size=2,
|
178 |
+
anyres_vit_two_views=False,
|
179 |
+
skip_cls_token=False,
|
180 |
+
position_embedding_xdrope=False,
|
181 |
+
xdrope_section=None,
|
182 |
+
add_classification_head=False,
|
183 |
+
class_num=0,
|
184 |
+
pool_type="last",
|
185 |
+
pad_id=-1,
|
186 |
+
**kwargs,
|
187 |
+
):
|
188 |
+
self.vocab_size = vocab_size
|
189 |
+
self.org_vocab_size = org_vocab_size
|
190 |
+
self.max_position_embeddings = max_position_embeddings
|
191 |
+
self.hidden_size = hidden_size
|
192 |
+
self.intermediate_size = intermediate_size
|
193 |
+
self.moe_intermediate_size = moe_intermediate_size
|
194 |
+
self.num_hidden_layers = num_hidden_layers
|
195 |
+
self.num_attention_heads = num_attention_heads
|
196 |
+
self.num_experts = num_experts
|
197 |
+
self.use_mixed_mlp_moe = use_mixed_mlp_moe
|
198 |
+
self.num_shared_expert = num_shared_expert
|
199 |
+
self.moe_topk = moe_topk
|
200 |
+
# self.capacity_factor = capacity_factor
|
201 |
+
self.moe_drop_tokens = moe_drop_tokens
|
202 |
+
self.moe_random_routing_dropped_token = moe_random_routing_dropped_token
|
203 |
+
|
204 |
+
if attention_head_dim is not None:
|
205 |
+
self.attention_head_dim = attention_head_dim
|
206 |
+
else:
|
207 |
+
self.attention_head_dim = self.hidden_size // num_attention_heads
|
208 |
+
|
209 |
+
# for backward compatibility
|
210 |
+
if num_key_value_heads is None:
|
211 |
+
num_key_value_heads = num_attention_heads
|
212 |
+
|
213 |
+
self.num_key_value_heads = num_key_value_heads
|
214 |
+
self.hidden_act = hidden_act
|
215 |
+
self.initializer_range = initializer_range
|
216 |
+
self.rms_norm_eps = rms_norm_eps
|
217 |
+
self.pretraining_tp = pretraining_tp
|
218 |
+
self.use_cache = use_cache
|
219 |
+
self.rope_theta = rope_theta
|
220 |
+
self.rope_scaling = rope_scaling
|
221 |
+
# self._rope_scaling_validation() # TODO: Need validation?
|
222 |
+
self.attention_bias = attention_bias
|
223 |
+
self.mlp_bias = mlp_bias
|
224 |
+
self.attention_dropout = attention_dropout
|
225 |
+
self.use_qk_norm = use_qk_norm
|
226 |
+
self.use_rotary_pos_emb = use_rotary_pos_emb
|
227 |
+
self.use_cla = use_cla
|
228 |
+
self.cla_share_factor = cla_share_factor
|
229 |
+
self.norm_type = norm_type
|
230 |
+
# MLA args
|
231 |
+
self.use_mla = use_mla
|
232 |
+
self.kv_lora_rank = kv_lora_rank
|
233 |
+
self.q_lora_rank = q_lora_rank
|
234 |
+
self.qk_rope_head_dim = qk_rope_head_dim
|
235 |
+
self.qk_nope_head_dim = qk_nope_head_dim
|
236 |
+
self.v_head_dim = v_head_dim
|
237 |
+
|
238 |
+
# DeepSeek related args
|
239 |
+
self.moe_layer_num_skipped = moe_layer_num_skipped
|
240 |
+
self.norm_topk_prob = norm_topk_prob
|
241 |
+
self.routed_scaling_factor = routed_scaling_factor
|
242 |
+
self.group_limited_greedy = group_limited_greedy
|
243 |
+
self.n_group = n_group
|
244 |
+
self.topk_group = topk_group
|
245 |
+
self.add_classification_head = add_classification_head
|
246 |
+
self.class_num = class_num
|
247 |
+
self.pool_type = pool_type
|
248 |
+
self.pad_id = pad_id
|
249 |
+
|
250 |
+
if self.class_num is not None:
|
251 |
+
self.dense_list = [self.hidden_size, self.class_num]
|
252 |
+
|
253 |
+
# Vit args
|
254 |
+
self.vit_path = vit_path
|
255 |
+
self.num_media_embeds = num_media_embeds
|
256 |
+
self.vit_type = vit_type
|
257 |
+
self.vit_input_resolution = vit_input_resolution
|
258 |
+
self.vit_token = vit_token
|
259 |
+
self.vit_patch = vit_patch
|
260 |
+
self.vit_mapping_type = vit_mapping_type
|
261 |
+
self.vit_norm_type = vit_norm_type
|
262 |
+
self.vit_used_rms_norm = vit_used_rms_norm
|
263 |
+
self.vit_remove_prenorm = vit_remove_prenorm
|
264 |
+
self.vit_add_patchemb_bias = vit_add_patchemb_bias
|
265 |
+
self.anyres_vit_max_image_size = anyres_vit_max_image_size
|
266 |
+
self.anyres_pooling_size = anyres_pooling_size
|
267 |
+
self.anyres_vit_two_views = anyres_vit_two_views
|
268 |
+
self.skip_cls_token = skip_cls_token
|
269 |
+
self.position_embedding_xdrope = position_embedding_xdrope
|
270 |
+
self.xdrope_section = xdrope_section
|
271 |
+
|
272 |
+
# token id
|
273 |
+
self.eod_token_id = eod_token_id
|
274 |
+
self.im_start_id = im_start_id
|
275 |
+
self.im_end_id = im_end_id
|
276 |
+
self.text_start_id = text_start_id
|
277 |
+
self.text_end_id = text_end_id
|
278 |
+
self.image_token_id = image_token_id
|
279 |
+
self.video_start_id = video_start_id
|
280 |
+
self.video_end_id = video_end_id
|
281 |
+
self.im_newline_id = im_newline_id
|
282 |
+
self.mask_init_id = mask_init_id
|
283 |
+
|
284 |
+
super().__init__(
|
285 |
+
pad_token_id=pad_token_id,
|
286 |
+
bos_token_id=bos_token_id,
|
287 |
+
eos_token_id=eos_token_id,
|
288 |
+
sep_token_id=sep_token_id,
|
289 |
+
tie_word_embeddings=tie_word_embeddings,
|
290 |
+
**kwargs,
|
291 |
+
)
|
292 |
+
|
293 |
+
def _rope_scaling_validation(self):
|
294 |
+
"""
|
295 |
+
Validate the `rope_scaling` configuration.
|
296 |
+
"""
|
297 |
+
if self.rope_scaling is None:
|
298 |
+
return
|
299 |
+
|
300 |
+
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
|
301 |
+
raise ValueError(
|
302 |
+
"`rope_scaling` must be a dictionary with with two fields, `type` and `factor` or `type` and `alpha`, "
|
303 |
+
f"got {self.rope_scaling}"
|
304 |
+
)
|
305 |
+
rope_scaling_type = self.rope_scaling.get("type", None)
|
306 |
+
rope_scaling_factor = self.rope_scaling.get("factor", None)
|
307 |
+
rope_scaling_alpha = self.rope_scaling.get("alpha", None)
|
308 |
+
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
|
309 |
+
raise ValueError(
|
310 |
+
f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
|
311 |
+
)
|
312 |
+
if rope_scaling_factor is None and rope_scaling_alpha is None:
|
313 |
+
raise ValueError("`rope_scaling`'s factor or alpha field must be have one, got both of none")
|
314 |
+
if rope_scaling_factor is not None:
|
315 |
+
if not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
|
316 |
+
raise ValueError(f"`rope_scaling`'s factor field must be a float > 1.0, got {rope_scaling_factor}")
|
317 |
+
if rope_scaling_alpha is not None:
|
318 |
+
if not isinstance(rope_scaling_alpha, float) or rope_scaling_alpha <= 1.0:
|
319 |
+
raise ValueError(f"`rope_scaling`'s alpha field must be a float > 1.0, got {rope_scaling_alpha}")
|
generation_config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"eos_token_id": 127960,
|
5 |
+
"pad_token_id": 127961,
|
6 |
+
"transformers_version": "4.52.4"
|
7 |
+
}
|
pytorch_model-00001-of-00005.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:36f084422f625bb4dc0de0f2199d544a6ac0aab21642cb7b0b92b71de2f97c96
|
3 |
+
size 4981583005
|
pytorch_model-00002-of-00005.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d3afc3f325aeafd5510a88309538ba230d1e241b8e8b0668d2efd1ff201507f4
|
3 |
+
size 4974291481
|
pytorch_model-00003-of-00005.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:224387bc595b8890130a248517aaca7a533787c141947a2c433c3953abec6443
|
3 |
+
size 4974293721
|
pytorch_model-00004-of-00005.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:19d50271c7d3d1294b397c2d733ddac345fd26e4baf2b8bd29a22a2e959a1034
|
3 |
+
size 4974293721
|
pytorch_model-00005-of-00005.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1abda22990568ca38f7977165fad9626cec23c065dbca1018bb8fa8decffb828
|
3 |
+
size 1118175936
|
pytorch_model.bin.index.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|