codys12 commited on
Commit
b5f2541
·
verified ·
1 Parent(s): 2fb8086

Upload HunYuanMoEV1ForCausalLM

Browse files
README.md ADDED
@@ -0,0 +1,199 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ tags: []
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+ This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
config.json ADDED
@@ -0,0 +1,209 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_classification_head": false,
3
+ "anyres_pooling_size": 2,
4
+ "anyres_vit_max_image_size": null,
5
+ "anyres_vit_two_views": false,
6
+ "architectures": [
7
+ "HunYuanMoEV1ForCausalLM"
8
+ ],
9
+ "attention_bias": false,
10
+ "attention_dropout": 0.1,
11
+ "attention_head_dim": 128,
12
+ "auto_map": {
13
+ "AutoConfig": "configuration_hunyuan.HunYuanConfig",
14
+ "AutoModel": "hunyuan.HunYuanModel",
15
+ "AutoModelForCausalLM": "hunyuan.HunYuanMoEV1ForCausalLM"
16
+ },
17
+ "bos_token_id": 1,
18
+ "cla_share_factor": 2,
19
+ "class_num": 0,
20
+ "dense_list": [
21
+ 4096,
22
+ 0
23
+ ],
24
+ "eod_token_id": 127967,
25
+ "eos_token_id": 127960,
26
+ "group_limited_greedy": false,
27
+ "hidden_act": "silu",
28
+ "hidden_size": 4096,
29
+ "im_end_id": 6,
30
+ "im_newline_id": 12,
31
+ "im_start_id": 5,
32
+ "image_token_id": 9,
33
+ "initializer_range": 0.02,
34
+ "intermediate_size": 3072,
35
+ "kv_lora_rank": null,
36
+ "mask_init_id": 13,
37
+ "max_position_embeddings": 32768,
38
+ "mlp_bias": false,
39
+ "model_type": "hunyuan",
40
+ "moe_drop_tokens": false,
41
+ "moe_intermediate_size": [
42
+ 3072,
43
+ 3072,
44
+ 3072,
45
+ 3072,
46
+ 3072,
47
+ 3072,
48
+ 3072,
49
+ 3072,
50
+ 3072,
51
+ 3072,
52
+ 3072,
53
+ 3072,
54
+ 3072,
55
+ 3072,
56
+ 3072,
57
+ 3072,
58
+ 3072,
59
+ 3072,
60
+ 3072,
61
+ 3072,
62
+ 3072,
63
+ 3072,
64
+ 3072,
65
+ 3072,
66
+ 3072,
67
+ 3072,
68
+ 3072,
69
+ 3072,
70
+ 3072,
71
+ 3072,
72
+ 3072,
73
+ 3072
74
+ ],
75
+ "moe_layer_num_skipped": 0,
76
+ "moe_random_routing_dropped_token": false,
77
+ "moe_topk": [
78
+ 8,
79
+ 8,
80
+ 8,
81
+ 8,
82
+ 8,
83
+ 8,
84
+ 8,
85
+ 8,
86
+ 8,
87
+ 8,
88
+ 8,
89
+ 8,
90
+ 8,
91
+ 8,
92
+ 8,
93
+ 8,
94
+ 8,
95
+ 8,
96
+ 8,
97
+ 8,
98
+ 8,
99
+ 8,
100
+ 8,
101
+ 8,
102
+ 8,
103
+ 8,
104
+ 8,
105
+ 8,
106
+ 8,
107
+ 8,
108
+ 8,
109
+ 8
110
+ ],
111
+ "n_group": null,
112
+ "norm_topk_prob": true,
113
+ "norm_type": "rms",
114
+ "num_attention_heads": 32,
115
+ "num_experts": 64,
116
+ "num_hidden_layers": 32,
117
+ "num_key_value_heads": 8,
118
+ "num_media_embeds": 257,
119
+ "num_shared_expert": [
120
+ 1,
121
+ 1,
122
+ 1,
123
+ 1,
124
+ 1,
125
+ 1,
126
+ 1,
127
+ 1,
128
+ 1,
129
+ 1,
130
+ 1,
131
+ 1,
132
+ 1,
133
+ 1,
134
+ 1,
135
+ 1,
136
+ 1,
137
+ 1,
138
+ 1,
139
+ 1,
140
+ 1,
141
+ 1,
142
+ 1,
143
+ 1,
144
+ 1,
145
+ 1,
146
+ 1,
147
+ 1,
148
+ 1,
149
+ 1,
150
+ 1,
151
+ 1
152
+ ],
153
+ "org_vocab_size": 128167,
154
+ "pad_id": 127961,
155
+ "pad_token_id": 127961,
156
+ "pool_type": "last",
157
+ "position_embedding_xdrope": false,
158
+ "pretraining_tp": 1,
159
+ "q_lora_rank": null,
160
+ "qk_nope_head_dim": null,
161
+ "qk_rope_head_dim": null,
162
+ "quantization_config": {
163
+ "linear_class": "bitlinear",
164
+ "quant_method": "bitnet",
165
+ "quantization_mode": "offline",
166
+ "use_rms_norm": true
167
+ },
168
+ "rms_norm_eps": 1e-05,
169
+ "rope_scaling": {
170
+ "alpha": 1000.0,
171
+ "beta_fast": 32,
172
+ "beta_slow": 1,
173
+ "factor": 1.0,
174
+ "mscale": 1.0,
175
+ "mscale_all_dim": 1.0,
176
+ "type": "dynamic"
177
+ },
178
+ "rope_theta": 10000.0,
179
+ "routed_scaling_factor": 1.0,
180
+ "sep_token_id": 127962,
181
+ "skip_cls_token": false,
182
+ "text_end_id": 8,
183
+ "text_start_id": 7,
184
+ "tie_word_embeddings": true,
185
+ "topk_group": null,
186
+ "torch_dtype": "bfloat16",
187
+ "transformers_version": "4.52.4",
188
+ "use_cache": true,
189
+ "use_cla": false,
190
+ "use_mixed_mlp_moe": true,
191
+ "use_mla": false,
192
+ "use_qk_norm": true,
193
+ "use_rotary_pos_emb": true,
194
+ "v_head_dim": null,
195
+ "video_end_id": 11,
196
+ "video_start_id": 10,
197
+ "vit_add_patchemb_bias": false,
198
+ "vit_input_resolution": 224,
199
+ "vit_mapping_type": "resampler",
200
+ "vit_norm_type": "fused",
201
+ "vit_patch": 1,
202
+ "vit_path": null,
203
+ "vit_remove_prenorm": false,
204
+ "vit_token": 64,
205
+ "vit_type": null,
206
+ "vit_used_rms_norm": false,
207
+ "vocab_size": 128167,
208
+ "xdrope_section": null
209
+ }
configuration_hunyuan.py ADDED
@@ -0,0 +1,319 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright (C) 2024 THL A29 Limited, a Tencent company. All rights reserved.
3
+ """ HunYuan model configuration"""
4
+ from torch import nn
5
+ from transformers.configuration_utils import PretrainedConfig
6
+ from transformers.utils import logging
7
+ from typing import List, Union, Optional
8
+
9
+
10
+ logger = logging.get_logger(__name__)
11
+
12
+
13
+ class HunYuanConfig(PretrainedConfig):
14
+ r"""
15
+ This is the configuration class to store the configuration of a [`HunYuanModel`]. It is used to instantiate an
16
+ HunYuan model according to the specified arguments, defining the model architecture. Instantiating a configuration
17
+ with the defaults will yield a similar configuration to that of the HunYuan-7B.
18
+
19
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
20
+ documentation from [`PretrainedConfig`] for more information.
21
+
22
+
23
+ Args:
24
+ vocab_size (`int`, *optional*, defaults to 32000):
25
+ Vocabulary size of the HunYuan model. Defines the number of different tokens that can be represented by the
26
+ `inputs_ids` passed when calling [`HunYuanModel`]
27
+ hidden_size (`int`, *optional*, defaults to 4096):
28
+ Dimension of the hidden representations.
29
+ intermediate_size (`int`, *optional*, defaults to 11008):
30
+ Dimension of the MLP representations or shared MLP representations.
31
+ moe_intermediate_size (`int` or `List`, *optional*, defaults to 11008):
32
+ Dimension of the MLP representations in MoE. Use a list if you want a different size per layer.
33
+ num_hidden_layers (`int`, *optional*, defaults to 32):
34
+ Number of hidden layers in the Transformer decoder.
35
+ num_attention_heads (`int`, *optional*, defaults to 32):
36
+ Number of attention heads for each attention layer in the Transformer decoder.
37
+ num_key_value_heads (`int`, *optional*):
38
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
39
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
40
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
41
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
42
+ by meanpooling all the original heads within that group. For more details checkout [this
43
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
44
+ `num_attention_heads`.
45
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
46
+ The non-linear activation function (function or string) in the decoder.
47
+ max_position_embeddings (`int`, *optional*, defaults to 2048):
48
+ The maximum sequence length that this model might ever be used with.
49
+ initializer_range (`float`, *optional*, defaults to 0.02):
50
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
51
+ rms_norm_eps (`float`, *optional*, defaults to 1e-06):
52
+ The epsilon used by the rms normalization layers.
53
+ use_cache (`bool`, *optional*, defaults to `True`):
54
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
55
+ relevant if `config.is_decoder=True`.
56
+ pad_token_id (`int`, *optional*):
57
+ Padding token id.
58
+ bos_token_id (`int`, *optional*, defaults to 1):
59
+ Beginning of stream token id.
60
+ eos_token_id (`int`, *optional*, defaults to 2):
61
+ End of stream token id.
62
+ pretraining_tp (`int`, *optional*, defaults to 1):
63
+ Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
64
+ document](https://huggingface.co/docs/transformers/parallelism) to understand more about it. This value is
65
+ necessary to ensure exact reproducibility of the pretraining results. Please refer to [this
66
+ issue](https://github.com/pytorch/pytorch/issues/76232).
67
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
68
+ Whether to tie weight embeddings
69
+ rope_theta (`float`, *optional*, defaults to 10000.0):
70
+ The base period of the RoPE embeddings.
71
+ rope_scaling (`Dict`, *optional*):
72
+ Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
73
+ strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
74
+ `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
75
+ `max_position_embeddings` to the expected new maximum. See the following thread for more information on how
76
+ these scaling strategies behave:
77
+ https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
78
+ experimental feature, subject to breaking API changes in future versions.
79
+ attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
80
+ Whether to use a bias in the query, key, value and output projection layers during self-attention.
81
+ attention_dropout (`float`, *optional*, defaults to 0.0):
82
+ The dropout ratio for the attention probabilities.
83
+ use_qk_norm (`bool`, *optional*, defaults to `False`):
84
+ Whether query and key in attention use norm
85
+ use_cla (`bool`, *optional*, defaults to `False`):
86
+ Whether to use CLA in attention
87
+ cla_share_factor (`int`, *optional*, defaults to 1):
88
+ The share factor of CLA
89
+ num_experts (`int` or `List`, *optional*, defaults to 1):
90
+ The number of experts for moe. If it is a list, it will be used as the number of experts for each layer.
91
+ num_shared_expert (`int` or `List`, *optional*, defaults to 1):
92
+ The number of shared experts for moe. If it is a list, it will be used as the number of shared experts for each layer.
93
+ moe_topk (`int` or `List`, *optional*, defaults to 1):
94
+ The topk value for moe. If it is a list, it will be used as the topk value for each layer.
95
+ capacity_factor (Not used) (`float` or `List`, *optional*, defaults to 1.0):
96
+ The capacity factor for moe. If it is a list, it will be used as the capacity factor for each layer.
97
+ moe_layer_num_skipped (`int`, *optional*, defaults to 0):
98
+ First moe_layer_num_skipped layers do not use MoE.
99
+ """
100
+
101
+ model_type = "hunyuan"
102
+ keys_to_ignore_at_inference = ["past_key_values"]
103
+
104
+ def __init__(
105
+ self,
106
+ vocab_size=290943,
107
+ org_vocab_size=290943,
108
+ hidden_size=4096,
109
+ intermediate_size: int=11008,
110
+ moe_intermediate_size: Union[int, List]=None,
111
+ num_hidden_layers=32,
112
+ num_attention_heads=32,
113
+ num_key_value_heads=None,
114
+ attention_head_dim=None,
115
+ hidden_act="silu",
116
+ max_position_embeddings=2048,
117
+ initializer_range=0.02,
118
+ rms_norm_eps=1e-5,
119
+ use_cache=True,
120
+ pad_token_id=0,
121
+ bos_token_id=1,
122
+ eos_token_id=2,
123
+ eod_token_id=3,
124
+ sep_token_id=4,
125
+ im_start_id=5,
126
+ im_end_id=6,
127
+ text_start_id=7,
128
+ text_end_id=8,
129
+ image_token_id=9,
130
+ video_start_id=10,
131
+ video_end_id=11,
132
+ im_newline_id=12,
133
+ mask_init_id=13,
134
+ pretraining_tp=1,
135
+ tie_word_embeddings=False,
136
+ rope_theta=10000.0,
137
+ rope_scaling=None,
138
+ attention_bias=False,
139
+ mlp_bias=False,
140
+ attention_dropout=0.0,
141
+ use_qk_norm=False,
142
+ use_rotary_pos_emb=True,
143
+ use_cla=False,
144
+ cla_share_factor=1,
145
+ norm_type="hf_rms",
146
+ num_experts: Union[int, List]=1,
147
+ use_mixed_mlp_moe=False,
148
+ num_shared_expert: Union[int, List]=1,
149
+ moe_topk: Union[int, List]=1,
150
+ # capacity_factor: Union[int, List]=1.0,
151
+ moe_drop_tokens=False,
152
+ moe_random_routing_dropped_token=False,
153
+ use_mla=False,
154
+ kv_lora_rank=512,
155
+ q_lora_rank=1536,
156
+ qk_rope_head_dim=64,
157
+ v_head_dim=128,
158
+ qk_nope_head_dim=128,
159
+ moe_layer_num_skipped=0,
160
+ norm_topk_prob=True,
161
+ routed_scaling_factor=1.0,
162
+ group_limited_greedy=False,
163
+ n_group=None,
164
+ topk_group=None,
165
+ vit_path=None,
166
+ num_media_embeds=257,
167
+ vit_type="AnyResVit",
168
+ vit_input_resolution=224,
169
+ vit_token=64,
170
+ vit_patch=1,
171
+ vit_mapping_type="simple_conv_mlp",
172
+ vit_norm_type="fused",
173
+ vit_used_rms_norm=True,
174
+ vit_remove_prenorm=True,
175
+ vit_add_patchemb_bias=True,
176
+ anyres_vit_max_image_size=2048,
177
+ anyres_pooling_size=2,
178
+ anyres_vit_two_views=False,
179
+ skip_cls_token=False,
180
+ position_embedding_xdrope=False,
181
+ xdrope_section=None,
182
+ add_classification_head=False,
183
+ class_num=0,
184
+ pool_type="last",
185
+ pad_id=-1,
186
+ **kwargs,
187
+ ):
188
+ self.vocab_size = vocab_size
189
+ self.org_vocab_size = org_vocab_size
190
+ self.max_position_embeddings = max_position_embeddings
191
+ self.hidden_size = hidden_size
192
+ self.intermediate_size = intermediate_size
193
+ self.moe_intermediate_size = moe_intermediate_size
194
+ self.num_hidden_layers = num_hidden_layers
195
+ self.num_attention_heads = num_attention_heads
196
+ self.num_experts = num_experts
197
+ self.use_mixed_mlp_moe = use_mixed_mlp_moe
198
+ self.num_shared_expert = num_shared_expert
199
+ self.moe_topk = moe_topk
200
+ # self.capacity_factor = capacity_factor
201
+ self.moe_drop_tokens = moe_drop_tokens
202
+ self.moe_random_routing_dropped_token = moe_random_routing_dropped_token
203
+
204
+ if attention_head_dim is not None:
205
+ self.attention_head_dim = attention_head_dim
206
+ else:
207
+ self.attention_head_dim = self.hidden_size // num_attention_heads
208
+
209
+ # for backward compatibility
210
+ if num_key_value_heads is None:
211
+ num_key_value_heads = num_attention_heads
212
+
213
+ self.num_key_value_heads = num_key_value_heads
214
+ self.hidden_act = hidden_act
215
+ self.initializer_range = initializer_range
216
+ self.rms_norm_eps = rms_norm_eps
217
+ self.pretraining_tp = pretraining_tp
218
+ self.use_cache = use_cache
219
+ self.rope_theta = rope_theta
220
+ self.rope_scaling = rope_scaling
221
+ # self._rope_scaling_validation() # TODO: Need validation?
222
+ self.attention_bias = attention_bias
223
+ self.mlp_bias = mlp_bias
224
+ self.attention_dropout = attention_dropout
225
+ self.use_qk_norm = use_qk_norm
226
+ self.use_rotary_pos_emb = use_rotary_pos_emb
227
+ self.use_cla = use_cla
228
+ self.cla_share_factor = cla_share_factor
229
+ self.norm_type = norm_type
230
+ # MLA args
231
+ self.use_mla = use_mla
232
+ self.kv_lora_rank = kv_lora_rank
233
+ self.q_lora_rank = q_lora_rank
234
+ self.qk_rope_head_dim = qk_rope_head_dim
235
+ self.qk_nope_head_dim = qk_nope_head_dim
236
+ self.v_head_dim = v_head_dim
237
+
238
+ # DeepSeek related args
239
+ self.moe_layer_num_skipped = moe_layer_num_skipped
240
+ self.norm_topk_prob = norm_topk_prob
241
+ self.routed_scaling_factor = routed_scaling_factor
242
+ self.group_limited_greedy = group_limited_greedy
243
+ self.n_group = n_group
244
+ self.topk_group = topk_group
245
+ self.add_classification_head = add_classification_head
246
+ self.class_num = class_num
247
+ self.pool_type = pool_type
248
+ self.pad_id = pad_id
249
+
250
+ if self.class_num is not None:
251
+ self.dense_list = [self.hidden_size, self.class_num]
252
+
253
+ # Vit args
254
+ self.vit_path = vit_path
255
+ self.num_media_embeds = num_media_embeds
256
+ self.vit_type = vit_type
257
+ self.vit_input_resolution = vit_input_resolution
258
+ self.vit_token = vit_token
259
+ self.vit_patch = vit_patch
260
+ self.vit_mapping_type = vit_mapping_type
261
+ self.vit_norm_type = vit_norm_type
262
+ self.vit_used_rms_norm = vit_used_rms_norm
263
+ self.vit_remove_prenorm = vit_remove_prenorm
264
+ self.vit_add_patchemb_bias = vit_add_patchemb_bias
265
+ self.anyres_vit_max_image_size = anyres_vit_max_image_size
266
+ self.anyres_pooling_size = anyres_pooling_size
267
+ self.anyres_vit_two_views = anyres_vit_two_views
268
+ self.skip_cls_token = skip_cls_token
269
+ self.position_embedding_xdrope = position_embedding_xdrope
270
+ self.xdrope_section = xdrope_section
271
+
272
+ # token id
273
+ self.eod_token_id = eod_token_id
274
+ self.im_start_id = im_start_id
275
+ self.im_end_id = im_end_id
276
+ self.text_start_id = text_start_id
277
+ self.text_end_id = text_end_id
278
+ self.image_token_id = image_token_id
279
+ self.video_start_id = video_start_id
280
+ self.video_end_id = video_end_id
281
+ self.im_newline_id = im_newline_id
282
+ self.mask_init_id = mask_init_id
283
+
284
+ super().__init__(
285
+ pad_token_id=pad_token_id,
286
+ bos_token_id=bos_token_id,
287
+ eos_token_id=eos_token_id,
288
+ sep_token_id=sep_token_id,
289
+ tie_word_embeddings=tie_word_embeddings,
290
+ **kwargs,
291
+ )
292
+
293
+ def _rope_scaling_validation(self):
294
+ """
295
+ Validate the `rope_scaling` configuration.
296
+ """
297
+ if self.rope_scaling is None:
298
+ return
299
+
300
+ if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
301
+ raise ValueError(
302
+ "`rope_scaling` must be a dictionary with with two fields, `type` and `factor` or `type` and `alpha`, "
303
+ f"got {self.rope_scaling}"
304
+ )
305
+ rope_scaling_type = self.rope_scaling.get("type", None)
306
+ rope_scaling_factor = self.rope_scaling.get("factor", None)
307
+ rope_scaling_alpha = self.rope_scaling.get("alpha", None)
308
+ if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
309
+ raise ValueError(
310
+ f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
311
+ )
312
+ if rope_scaling_factor is None and rope_scaling_alpha is None:
313
+ raise ValueError("`rope_scaling`'s factor or alpha field must be have one, got both of none")
314
+ if rope_scaling_factor is not None:
315
+ if not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
316
+ raise ValueError(f"`rope_scaling`'s factor field must be a float > 1.0, got {rope_scaling_factor}")
317
+ if rope_scaling_alpha is not None:
318
+ if not isinstance(rope_scaling_alpha, float) or rope_scaling_alpha <= 1.0:
319
+ raise ValueError(f"`rope_scaling`'s alpha field must be a float > 1.0, got {rope_scaling_alpha}")
generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": 127960,
5
+ "pad_token_id": 127961,
6
+ "transformers_version": "4.52.4"
7
+ }
pytorch_model-00001-of-00005.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:36f084422f625bb4dc0de0f2199d544a6ac0aab21642cb7b0b92b71de2f97c96
3
+ size 4981583005
pytorch_model-00002-of-00005.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d3afc3f325aeafd5510a88309538ba230d1e241b8e8b0668d2efd1ff201507f4
3
+ size 4974291481
pytorch_model-00003-of-00005.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:224387bc595b8890130a248517aaca7a533787c141947a2c433c3953abec6443
3
+ size 4974293721
pytorch_model-00004-of-00005.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:19d50271c7d3d1294b397c2d733ddac345fd26e4baf2b8bd29a22a2e959a1034
3
+ size 4974293721
pytorch_model-00005-of-00005.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1abda22990568ca38f7977165fad9626cec23c065dbca1018bb8fa8decffb828
3
+ size 1118175936
pytorch_model.bin.index.json ADDED
The diff for this file is too large to render. See raw diff