codewithdark commited on
Commit
ca155e5
·
verified ·
1 Parent(s): ea83c14

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +29 -3
README.md CHANGED
@@ -39,6 +39,14 @@ model_name = "codewithdark/bert-Gomotions"
39
  tokenizer = AutoTokenizer.from_pretrained(model_name)
40
  model = AutoModelForSequenceClassification.from_pretrained(model_name)
41
 
 
 
 
 
 
 
 
 
42
  # Example text
43
  text = "I'm so happy today!"
44
  inputs = tokenizer(text, return_tensors="pt")
@@ -46,9 +54,27 @@ inputs = tokenizer(text, return_tensors="pt")
46
  # Predict
47
  with torch.no_grad():
48
  outputs = model(**inputs)
49
- probs = torch.sigmoid(outputs.logits)
 
 
 
 
 
 
 
 
 
 
50
 
51
- print(probs) # Multi-label predictions
 
 
 
 
 
 
 
 
52
  ```
53
 
54
  ## 🏋️‍♂️ Training Details
@@ -64,7 +90,7 @@ print(probs) # Multi-label predictions
64
  ```python
65
  from transformers import pipeline
66
 
67
- classifier = pipeline("text-classification", model="your-username/bert-go-emotions", top_k=None)
68
  classifier("I'm so excited about the trip!")
69
  ```
70
 
 
39
  tokenizer = AutoTokenizer.from_pretrained(model_name)
40
  model = AutoModelForSequenceClassification.from_pretrained(model_name)
41
 
42
+ # Emotion labels (adjust based on your dataset)
43
+ emotion_labels = [
44
+ "Admiration", "Amusement", "Anger", "Annoyance", "Approval", "Caring", "Confusion",
45
+ "Curiosity", "Desire", "Disappointment", "Disapproval", "Disgust", "Embarrassment",
46
+ "Excitement", "Fear", "Gratitude", "Grief", "Joy", "Love", "Nervousness", "Optimism",
47
+ "Pride", "Realization", "Relief", "Remorse", "Sadness", "Surprise", "Neutral"
48
+ ]
49
+
50
  # Example text
51
  text = "I'm so happy today!"
52
  inputs = tokenizer(text, return_tensors="pt")
 
54
  # Predict
55
  with torch.no_grad():
56
  outputs = model(**inputs)
57
+ probs = torch.sigmoid(outputs.logits).squeeze(0) # Convert logits to probabilities
58
+
59
+ # Get top 5 predictions
60
+ top5_indices = torch.argsort(probs, descending=True)[:5] # Get indices of top 5 labels
61
+ top5_labels = [emotion_labels[i] for i in top5_indices]
62
+ top5_probs = [probs[i].item() for i in top5_indices]
63
+
64
+ # Print results
65
+ print("Top 5 Predicted Emotions:")
66
+ for label, prob in zip(top5_labels, top5_probs):
67
+ print(f"{label}: {prob:.4f}")
68
 
69
+ '''
70
+ output:
71
+ Top 5 Predicted Emotions:
72
+ Joy: 0.9478
73
+ Love: 0.7854
74
+ Optimism: 0.6342
75
+ Admiration: 0.5678
76
+ Excitement: 0.5231
77
+ '''
78
  ```
79
 
80
  ## 🏋️‍♂️ Training Details
 
90
  ```python
91
  from transformers import pipeline
92
 
93
+ classifier = pipeline("text-classification", model="codewithdark/bert-Gomotions", top_k=None)
94
  classifier("I'm so excited about the trip!")
95
  ```
96