codewithdark commited on
Commit
ea83c14
Β·
verified Β·
1 Parent(s): 7658d19

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +80 -3
README.md CHANGED
@@ -1,3 +1,80 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - text-classification
4
+ - multi-label
5
+ - go-emotions
6
+ - transformers
7
+ - huggingface
8
+ license: apache-2.0
9
+ library_name: transformers
10
+ language:
11
+ - en
12
+ metrics:
13
+ - accuracy
14
+ - f1
15
+ base_model:
16
+ - google-bert/bert-base-uncased
17
+ pipeline_tag: text-classification
18
+ ---
19
+
20
+ # πŸ”₯ Fine-Tuned BERT on GoEmotions Dataset
21
+
22
+ ## πŸ“– Model Overview
23
+ This model is a **fine-tuned version of BERT** (`bert-base-uncased`) on the **GoEmotions** dataset for **multi-label emotion classification**. It can predict multiple emotions per input text.
24
+
25
+ ## πŸ“Š Performance
26
+ | Metric | Score |
27
+ |----------------|-------|
28
+ | **Accuracy** | 46.57% |
29
+ | **F1 Score** | 56.41% |
30
+ | **Hamming Loss** | 3.39% |
31
+
32
+ ## πŸ“‚ Model Usage
33
+ ```python
34
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
35
+ import torch
36
+
37
+ # Load model and tokenizer
38
+ model_name = "codewithdark/bert-Gomotions"
39
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
40
+ model = AutoModelForSequenceClassification.from_pretrained(model_name)
41
+
42
+ # Example text
43
+ text = "I'm so happy today!"
44
+ inputs = tokenizer(text, return_tensors="pt")
45
+
46
+ # Predict
47
+ with torch.no_grad():
48
+ outputs = model(**inputs)
49
+ probs = torch.sigmoid(outputs.logits)
50
+
51
+ print(probs) # Multi-label predictions
52
+ ```
53
+
54
+ ## πŸ‹οΈβ€β™‚οΈ Training Details
55
+ - **Model:** `bert-base-uncased`
56
+ - **Dataset:** [GoEmotions](https://huggingface.co/datasets/go_emotions)
57
+ - **Optimizer:** AdamW
58
+ - **Loss Function:** BCEWithLogitsLoss (Binary Cross-Entropy for multi-label classification)
59
+ - **Batch Size:** 16
60
+ - **Epochs:** 3
61
+ - **Evaluation Metrics:** Accuracy, F1 Score, Hamming Loss
62
+
63
+ ## πŸ“Œ How to Use in Hugging Face
64
+ ```python
65
+ from transformers import pipeline
66
+
67
+ classifier = pipeline("text-classification", model="your-username/bert-go-emotions", top_k=None)
68
+ classifier("I'm so excited about the trip!")
69
+ ```
70
+
71
+ ## πŸ› οΈ Citation
72
+ If you use this model, please cite:
73
+ ```bibtex
74
+ @misc{your_model,
75
+ author = {codewithdark},
76
+ title = {Fine-tuned BERT on GoEmotions},
77
+ year = {2025},
78
+ url = {https://huggingface.co/codewithdark/bert-Gomotions}
79
+ }
80
+ ```