File size: 13,829 Bytes
b8ea2b2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 |
import numpy as np
from torchvision import transforms
import torch
import torch.nn as nn
import torch.nn.functional as F
import PIL
import random
import os
import matplotlib.pyplot as plt
import pandas as pd
import math
import webdataset as wds
import tempfile
from torchvision.utils import make_grid
# from diffusers.utils import randn_tensor
import json
from torchmetrics.image.fid import FrechetInceptionDistance
from PIL import Image
import requests
import io
import time
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
def is_interactive():
import __main__ as main
return not hasattr(main, '__file__')
def seed_everything(seed=0, cudnn_deterministic=True):
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
if cudnn_deterministic:
torch.backends.cudnn.deterministic = True
else:
## needs to be False to use conv3D
print('Note: not using cudnn.deterministic')
def np_to_Image(x):
if x.ndim==4:
x=x[0]
return PIL.Image.fromarray((x.transpose(1, 2, 0)*127.5+128).clip(0,255).astype('uint8'))
def torch_to_Image(x):
if x.ndim==4:
x=x[0]
return transforms.ToPILImage()(x)
def Image_to_torch(x):
try:
x = (transforms.ToTensor()(x)[:3].unsqueeze(0)-.5)/.5
except:
x = (transforms.ToTensor()(x[0])[:3].unsqueeze(0)-.5)/.5
return x
def torch_to_matplotlib(x,device=device):
if torch.mean(x)>10:
x = (x.permute(0, 2, 3, 1)).clamp(0, 255).to(torch.uint8)
else:
x = (x.permute(0, 2, 3, 1) * 255).clamp(0, 255).to(torch.uint8)
if device=='cpu':
return x[0]
else:
return x.cpu().numpy()[0]
def pairwise_cosine_similarity(A, B, dim=1, eps=1e-8):
#https://stackoverflow.com/questions/67199317/pytorch-cosine-similarity-nxn-elements
numerator = A @ B.T
A_l2 = torch.mul(A, A).sum(axis=dim)
B_l2 = torch.mul(B, B).sum(axis=dim)
denominator = torch.max(torch.sqrt(torch.outer(A_l2, B_l2)), torch.tensor(eps))
return torch.div(numerator, denominator)
def batchwise_pearson_correlation(Z, B):
# Calculate means
Z_mean = torch.mean(Z, dim=1, keepdim=True)
B_mean = torch.mean(B, dim=1, keepdim=True)
# Subtract means
Z_centered = Z - Z_mean
B_centered = B - B_mean
# Calculate Pearson correlation coefficient
numerator = Z_centered @ B_centered.T
Z_centered_norm = torch.linalg.norm(Z_centered, dim=1, keepdim=True)
B_centered_norm = torch.linalg.norm(B_centered, dim=1, keepdim=True)
denominator = Z_centered_norm @ B_centered_norm.T
pearson_correlation = (numerator / denominator)
return pearson_correlation
def batchwise_cosine_similarity(Z,B):
# https://www.h4pz.co/blog/2021/4/2/batch-cosine-similarity-in-pytorch-or-numpy-jax-cupy-etc
B = B.T
Z_norm = torch.linalg.norm(Z, dim=1, keepdim=True) # Size (n, 1).
B_norm = torch.linalg.norm(B, dim=0, keepdim=True) # Size (1, b).
cosine_similarity = ((Z @ B) / (Z_norm @ B_norm)).T
return cosine_similarity
def topk(similarities,labels,k=5):
if k > similarities.shape[0]:
k = similarities.shape[0]
topsum=0
for i in range(k):
topsum += torch.sum(torch.argsort(similarities,axis=1)[:,-(i+1)] == labels)/len(labels)
return topsum
def get_non_diagonals(a):
a = torch.triu(a,diagonal=1)+torch.tril(a,diagonal=-1)
# make diagonals -1
a=a.fill_diagonal_(-1)
return a
def gather_features(image_features, voxel_features, accelerator):
all_image_features = accelerator.gather(image_features.contiguous())
if voxel_features is not None:
all_voxel_features = accelerator.gather(voxel_features.contiguous())
return all_image_features, all_voxel_features
return all_image_features
def soft_clip_loss(preds, targs, temp=0.125): #, distributed=False, accelerator=None):
# if not distributed:
clip_clip = (targs @ targs.T)/temp
brain_clip = (preds @ targs.T)/temp
# else:
# all_targs = gather_features(targs, None, accelerator)
# clip_clip = (targs @ all_targs.T)/temp
# brain_clip = (preds @ all_targs.T)/temp
loss1 = -(brain_clip.log_softmax(-1) * clip_clip.softmax(-1)).sum(-1).mean()
loss2 = -(brain_clip.T.log_softmax(-1) * clip_clip.softmax(-1)).sum(-1).mean()
loss = (loss1 + loss2)/2
return loss
def soft_siglip_loss(preds, targs, temp, bias):
temp = torch.exp(temp)
logits = (preds @ targs.T) * temp + bias
# diagonals (aka paired samples) should be >0 and off-diagonals <0
labels = (targs @ targs.T) - 1 + (torch.eye(len(targs)).to(targs.dtype).to(targs.device))
loss1 = -torch.sum(nn.functional.logsigmoid(logits * labels[:len(preds)])) / len(preds)
loss2 = -torch.sum(nn.functional.logsigmoid(logits.T * labels[:,:len(preds)])) / len(preds)
loss = (loss1 + loss2)/2
return loss
def mixco_hard_siglip_loss(preds, targs, temp, bias, perm, betas):
temp = torch.exp(temp)
probs = torch.diag(betas)
probs[torch.arange(preds.shape[0]).to(preds.device), perm] = 1 - betas
logits = (preds @ targs.T) * temp + bias
labels = probs * 2 - 1
#labels = torch.eye(len(targs)).to(targs.dtype).to(targs.device) * 2 - 1
loss1 = -torch.sum(nn.functional.logsigmoid(logits * labels)) / len(preds)
loss2 = -torch.sum(nn.functional.logsigmoid(logits.T * labels)) / len(preds)
loss = (loss1 + loss2)/2
return loss
def mixco(voxels, beta=0.15, s_thresh=0.5, perm=None, betas=None, select=None):
if perm is None:
perm = torch.randperm(voxels.shape[0])
voxels_shuffle = voxels[perm].to(voxels.device,dtype=voxels.dtype)
if betas is None:
betas = torch.distributions.Beta(beta, beta).sample([voxels.shape[0]]).to(voxels.device,dtype=voxels.dtype)
if select is None:
select = (torch.rand(voxels.shape[0]) <= s_thresh).to(voxels.device)
betas_shape = [-1] + [1]*(len(voxels.shape)-1)
voxels[select] = voxels[select] * betas[select].reshape(*betas_shape) + \
voxels_shuffle[select] * (1 - betas[select]).reshape(*betas_shape)
betas[~select] = 1
return voxels, perm, betas, select
def mixco_clip_target(clip_target, perm, select, betas):
clip_target_shuffle = clip_target[perm]
clip_target[select] = clip_target[select] * betas[select].reshape(-1, 1) + \
clip_target_shuffle[select] * (1 - betas[select]).reshape(-1, 1)
return clip_target
def mixco_nce(preds, targs, temp=0.1, perm=None, betas=None, select=None, distributed=False,
accelerator=None, local_rank=None, bidirectional=True):
brain_clip = (preds @ targs.T)/temp
if perm is not None and betas is not None and select is not None:
probs = torch.diag(betas)
probs[torch.arange(preds.shape[0]).to(preds.device), perm] = 1 - betas
loss = -(brain_clip.log_softmax(-1) * probs).sum(-1).mean()
if bidirectional:
loss2 = -(brain_clip.T.log_softmax(-1) * probs.T).sum(-1).mean()
loss = (loss + loss2)/2
return loss
else:
loss = F.cross_entropy(brain_clip, torch.arange(brain_clip.shape[0]).to(brain_clip.device))
if bidirectional:
loss2 = F.cross_entropy(brain_clip.T, torch.arange(brain_clip.shape[0]).to(brain_clip.device))
loss = (loss + loss2)/2
return loss
def count_params(model):
total = sum(p.numel() for p in model.parameters())
trainable = sum(p.numel() for p in model.parameters() if p.requires_grad)
print('param counts:\n{:,} total\n{:,} trainable'.format(total, trainable))
def image_grid(imgs, rows, cols):
w, h = imgs[0].size
grid = PIL.Image.new('RGB', size=(cols*w, rows*h))
for i, img in enumerate(imgs):
grid.paste(img, box=(i%cols*w, i//cols*h))
return grid
def check_loss(loss):
if loss.isnan().any():
raise ValueError('NaN loss')
def cosine_anneal(start, end, steps):
return end + (start - end)/2 * (1 + torch.cos(torch.pi*torch.arange(steps)/(steps-1)))
def resize(img, img_size=128):
if img.ndim == 3: img = img[None]
return nn.functional.interpolate(img, size=(img_size, img_size), mode='nearest')
def patchify(img, patch_size=16):
B, C, H, W = img.size()
patches = img.unfold(2, patch_size, patch_size).unfold(3, patch_size, patch_size)
patches = patches.contiguous().view(B, C, -1, patch_size, patch_size)
return patches.permute(0, 2, 1, 3, 4)
def unpatchify(patches):
B, N, C, H, W = patches.shape # B=Batch size, N=Number of patches, C=Channels, H=Height, W=Width
patches = patches.view(B, int(N**0.5), int(N**0.5), C, H, W)
patches = patches.permute(0, 3, 1, 4, 2, 5).contiguous()
return patches.view(B, C, H*int(N**0.5), W*int(N**0.5))
import braceexpand
def get_dataloaders(
batch_size,
image_var='images',
num_devices=None,
num_workers=None,
train_url=None,
val_url=None,
meta_url=None,
num_train=None,
num_val=None,
cache_dir="/scratch/tmp/wds-cache",
seed=0,
voxels_key="nsdgeneral.npy",
val_batch_size=None,
to_tuple=["voxels", "images", "trial"],
local_rank=0,
world_size=1,
):
print("Getting dataloaders...")
assert image_var == 'images'
def my_split_by_node(urls):
return urls
train_url = list(braceexpand.braceexpand(train_url))
val_url = list(braceexpand.braceexpand(val_url))
if num_devices is None:
num_devices = torch.cuda.device_count()
if num_workers is None:
num_workers = num_devices
if num_train is None:
metadata = json.load(open(meta_url))
num_train = metadata['totals']['train']
if num_val is None:
metadata = json.load(open(meta_url))
num_val = metadata['totals']['val']
if val_batch_size is None:
val_batch_size = batch_size
global_batch_size = batch_size * num_devices
num_batches = math.floor(num_train / global_batch_size)
num_worker_batches = math.floor(num_batches / num_workers)
if num_worker_batches == 0: num_worker_batches = 1
print("\nnum_train",num_train)
print("global_batch_size",global_batch_size)
print("batch_size",batch_size)
print("num_workers",num_workers)
print("num_batches",num_batches)
print("num_worker_batches", num_worker_batches)
# train_url = train_url[local_rank:world_size]
train_data = wds.WebDataset(train_url, resampled=False, cache_dir=cache_dir, nodesplitter=my_split_by_node)\
.shuffle(500, initial=500, rng=random.Random(42))\
.decode("torch")\
.rename(images="jpg;png", voxels=voxels_key, trial="trial.npy", coco="coco73k.npy", reps="num_uniques.npy")\
.to_tuple(*to_tuple)#\
# .batched(batch_size, partial=True)#\
# .with_epoch(num_worker_batches)
# BATCH SIZE SHOULD BE NONE!!! FOR TRAIN AND VAL | resampled=True for train | .batched(val_batch_size, partial=False)
train_dl = torch.utils.data.DataLoader(train_data, batch_size=batch_size, num_workers=1, shuffle=False)
# Validation
print("val_batch_size",val_batch_size)
val_data = wds.WebDataset(val_url, resampled=False, cache_dir=cache_dir, nodesplitter=my_split_by_node)\
.shuffle(500, initial=500, rng=random.Random(42))\
.decode("torch")\
.rename(images="jpg;png", voxels=voxels_key, trial="trial.npy", coco="coco73k.npy", reps="num_uniques.npy")\
.to_tuple(*to_tuple)#\
# .batched(val_batch_size, partial=True)
val_dl = torch.utils.data.DataLoader(val_data, batch_size=val_batch_size, num_workers=1, shuffle=False, drop_last=True)
return train_dl, val_dl, num_train, num_val
pixcorr_preprocess = transforms.Compose([
transforms.Resize(425, interpolation=transforms.InterpolationMode.BILINEAR),
])
def pixcorr(images,brains):
all_images_flattened = pixcorr_preprocess(images).reshape(len(images), -1)
all_brain_recons_flattened = pixcorr_preprocess(brains).view(len(brains), -1)
corrmean = torch.diag(batchwise_pearson_correlation(all_images_flattened, all_brain_recons_flattened)).mean()
return corrmean
pixcorr_origsize_nanmean_preprocess = transforms.Compose([
transforms.Resize(128, interpolation=transforms.InterpolationMode.BILINEAR),
])
def pixcorr_origsize_nanmean(images,brains):
all_images_flattened = pixcorr_origsize_nanmean_preprocess(images).reshape(len(images), -1)
all_brain_recons_flattened = brains.view(len(brains), -1) # assuming it's already 128 size
corrmean = torch.nanmean(torch.diag(batchwise_pearson_correlation(all_images_flattened, all_brain_recons_flattened)))
return corrmean
def select_annotations(annots, random=False):
"""
There are 5 annotations per image. Select one of them for each image.
"""
for i, b in enumerate(annots):
t = ''
if random:
# select random non-empty annotation
while t == '':
rand = torch.randint(5, (1,1))[0][0]
t = b[rand]
else:
# select first non-empty annotation
for j in range(5):
if b[j] != '':
t = b[j]
break
if i == 0:
txt = np.array(t)
else:
txt = np.vstack((txt, t))
txt = txt.flatten()
return txt
def add_saturation(image, alpha=2):
gray_image = 0.2989 * image[:, 0, :, :] + 0.5870 * image[:, 1, :, :] + 0.1140 * image[:, 2, :, :]
gray_image = gray_image.unsqueeze(1).expand_as(image)
saturated_image = alpha * image + (1 - alpha) * gray_image
return torch.clamp(saturated_image, 0, 1) |