File size: 13,829 Bytes
b8ea2b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
import numpy as np
from torchvision import transforms
import torch
import torch.nn as nn
import torch.nn.functional as F
import PIL
import random
import os
import matplotlib.pyplot as plt
import pandas as pd
import math
import webdataset as wds
import tempfile
from torchvision.utils import make_grid
# from diffusers.utils import randn_tensor

import json
from torchmetrics.image.fid import FrechetInceptionDistance
from PIL import Image
import requests
import io
import time 

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

def is_interactive():
    import __main__ as main
    return not hasattr(main, '__file__')

def seed_everything(seed=0, cudnn_deterministic=True):
    random.seed(seed)
    os.environ['PYTHONHASHSEED'] = str(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)
    if cudnn_deterministic:
        torch.backends.cudnn.deterministic = True
    else:
        ## needs to be False to use conv3D
        print('Note: not using cudnn.deterministic')

def np_to_Image(x):
    if x.ndim==4:
        x=x[0]
    return PIL.Image.fromarray((x.transpose(1, 2, 0)*127.5+128).clip(0,255).astype('uint8'))

def torch_to_Image(x):
    if x.ndim==4:
        x=x[0]
    return transforms.ToPILImage()(x)

def Image_to_torch(x):
    try:
        x = (transforms.ToTensor()(x)[:3].unsqueeze(0)-.5)/.5
    except:
        x = (transforms.ToTensor()(x[0])[:3].unsqueeze(0)-.5)/.5
    return x

def torch_to_matplotlib(x,device=device):
    if torch.mean(x)>10:
        x = (x.permute(0, 2, 3, 1)).clamp(0, 255).to(torch.uint8)
    else:
        x = (x.permute(0, 2, 3, 1) * 255).clamp(0, 255).to(torch.uint8)
    if device=='cpu':
        return x[0]
    else:
        return x.cpu().numpy()[0]

def pairwise_cosine_similarity(A, B, dim=1, eps=1e-8):
    #https://stackoverflow.com/questions/67199317/pytorch-cosine-similarity-nxn-elements
    numerator = A @ B.T
    A_l2 = torch.mul(A, A).sum(axis=dim)
    B_l2 = torch.mul(B, B).sum(axis=dim)
    denominator = torch.max(torch.sqrt(torch.outer(A_l2, B_l2)), torch.tensor(eps))
    return torch.div(numerator, denominator)

def batchwise_pearson_correlation(Z, B):
    # Calculate means
    Z_mean = torch.mean(Z, dim=1, keepdim=True)
    B_mean = torch.mean(B, dim=1, keepdim=True)

    # Subtract means
    Z_centered = Z - Z_mean
    B_centered = B - B_mean

    # Calculate Pearson correlation coefficient
    numerator = Z_centered @ B_centered.T
    Z_centered_norm = torch.linalg.norm(Z_centered, dim=1, keepdim=True)
    B_centered_norm = torch.linalg.norm(B_centered, dim=1, keepdim=True)
    denominator = Z_centered_norm @ B_centered_norm.T

    pearson_correlation = (numerator / denominator)
    return pearson_correlation

def batchwise_cosine_similarity(Z,B):
    # https://www.h4pz.co/blog/2021/4/2/batch-cosine-similarity-in-pytorch-or-numpy-jax-cupy-etc
    B = B.T
    Z_norm = torch.linalg.norm(Z, dim=1, keepdim=True)  # Size (n, 1).
    B_norm = torch.linalg.norm(B, dim=0, keepdim=True)  # Size (1, b).
    cosine_similarity = ((Z @ B) / (Z_norm @ B_norm)).T
    return cosine_similarity

def topk(similarities,labels,k=5):
    if k > similarities.shape[0]:
        k = similarities.shape[0]
    topsum=0
    for i in range(k):
        topsum += torch.sum(torch.argsort(similarities,axis=1)[:,-(i+1)] == labels)/len(labels)
    return topsum

def get_non_diagonals(a):
    a = torch.triu(a,diagonal=1)+torch.tril(a,diagonal=-1)
    # make diagonals -1
    a=a.fill_diagonal_(-1)
    return a

def gather_features(image_features, voxel_features, accelerator):  
    all_image_features = accelerator.gather(image_features.contiguous())
    if voxel_features is not None:
        all_voxel_features = accelerator.gather(voxel_features.contiguous())
        return all_image_features, all_voxel_features
    return all_image_features

def soft_clip_loss(preds, targs, temp=0.125): #, distributed=False, accelerator=None):
    # if not distributed:
    clip_clip = (targs @ targs.T)/temp
    brain_clip = (preds @ targs.T)/temp
    # else:
    #     all_targs = gather_features(targs, None, accelerator)
    #     clip_clip = (targs @ all_targs.T)/temp
    #     brain_clip = (preds @ all_targs.T)/temp
    
    loss1 = -(brain_clip.log_softmax(-1) * clip_clip.softmax(-1)).sum(-1).mean()
    loss2 = -(brain_clip.T.log_softmax(-1) * clip_clip.softmax(-1)).sum(-1).mean()
    
    loss = (loss1 + loss2)/2
    return loss

def soft_siglip_loss(preds, targs, temp, bias):
    temp = torch.exp(temp)
    
    logits = (preds @ targs.T) * temp + bias
    # diagonals (aka paired samples) should be >0 and off-diagonals <0
    labels = (targs @ targs.T) - 1 + (torch.eye(len(targs)).to(targs.dtype).to(targs.device))

    loss1 = -torch.sum(nn.functional.logsigmoid(logits * labels[:len(preds)])) / len(preds)
    loss2 = -torch.sum(nn.functional.logsigmoid(logits.T * labels[:,:len(preds)])) / len(preds)
    loss = (loss1 + loss2)/2
    return loss

def mixco_hard_siglip_loss(preds, targs, temp, bias, perm, betas):
    temp = torch.exp(temp)
    
    probs = torch.diag(betas)
    probs[torch.arange(preds.shape[0]).to(preds.device), perm] = 1 - betas

    logits = (preds @ targs.T) * temp + bias
    labels = probs * 2 - 1
    #labels = torch.eye(len(targs)).to(targs.dtype).to(targs.device) * 2 - 1
    
    loss1 = -torch.sum(nn.functional.logsigmoid(logits * labels)) / len(preds)
    loss2 = -torch.sum(nn.functional.logsigmoid(logits.T * labels)) / len(preds)
    loss = (loss1 + loss2)/2
    return loss

def mixco(voxels, beta=0.15, s_thresh=0.5, perm=None, betas=None, select=None):
    if perm is None:
        perm = torch.randperm(voxels.shape[0])
    voxels_shuffle = voxels[perm].to(voxels.device,dtype=voxels.dtype)
    if betas is None:
        betas = torch.distributions.Beta(beta, beta).sample([voxels.shape[0]]).to(voxels.device,dtype=voxels.dtype)
    if select is None:
        select = (torch.rand(voxels.shape[0]) <= s_thresh).to(voxels.device)
    betas_shape = [-1] + [1]*(len(voxels.shape)-1)
    voxels[select] = voxels[select] * betas[select].reshape(*betas_shape) + \
        voxels_shuffle[select] * (1 - betas[select]).reshape(*betas_shape)
    betas[~select] = 1
    return voxels, perm, betas, select

def mixco_clip_target(clip_target, perm, select, betas):
    clip_target_shuffle = clip_target[perm]
    clip_target[select] = clip_target[select] * betas[select].reshape(-1, 1) + \
        clip_target_shuffle[select] * (1 - betas[select]).reshape(-1, 1)
    return clip_target

def mixco_nce(preds, targs, temp=0.1, perm=None, betas=None, select=None, distributed=False, 
              accelerator=None, local_rank=None, bidirectional=True):
    brain_clip = (preds @ targs.T)/temp
    
    if perm is not None and betas is not None and select is not None:
        probs = torch.diag(betas)
        probs[torch.arange(preds.shape[0]).to(preds.device), perm] = 1 - betas

        loss = -(brain_clip.log_softmax(-1) * probs).sum(-1).mean()
        if bidirectional:
            loss2 = -(brain_clip.T.log_softmax(-1) * probs.T).sum(-1).mean()
            loss = (loss + loss2)/2
        return loss
    else:
        loss =  F.cross_entropy(brain_clip, torch.arange(brain_clip.shape[0]).to(brain_clip.device))
        if bidirectional:
            loss2 = F.cross_entropy(brain_clip.T, torch.arange(brain_clip.shape[0]).to(brain_clip.device))
            loss = (loss + loss2)/2
        return loss
    
def count_params(model):
    total = sum(p.numel() for p in model.parameters())
    trainable = sum(p.numel() for p in model.parameters() if p.requires_grad)
    print('param counts:\n{:,} total\n{:,} trainable'.format(total, trainable))

def image_grid(imgs, rows, cols):
    w, h = imgs[0].size
    grid = PIL.Image.new('RGB', size=(cols*w, rows*h))
    for i, img in enumerate(imgs):
        grid.paste(img, box=(i%cols*w, i//cols*h))
    return grid
    
def check_loss(loss):
    if loss.isnan().any():
        raise ValueError('NaN loss')

def cosine_anneal(start, end, steps):
    return end + (start - end)/2 * (1 + torch.cos(torch.pi*torch.arange(steps)/(steps-1)))

def resize(img, img_size=128):
    if img.ndim == 3: img = img[None]
    return nn.functional.interpolate(img, size=(img_size, img_size), mode='nearest')

def patchify(img, patch_size=16):
    B, C, H, W = img.size()
    patches = img.unfold(2, patch_size, patch_size).unfold(3, patch_size, patch_size)
    patches = patches.contiguous().view(B, C, -1, patch_size, patch_size)
    return patches.permute(0, 2, 1, 3, 4)

def unpatchify(patches):
    B, N, C, H, W = patches.shape  # B=Batch size, N=Number of patches, C=Channels, H=Height, W=Width
    patches = patches.view(B, int(N**0.5), int(N**0.5), C, H, W)
    patches = patches.permute(0, 3, 1, 4, 2, 5).contiguous()
    return patches.view(B, C, H*int(N**0.5), W*int(N**0.5))

import braceexpand
def get_dataloaders(
    batch_size,
    image_var='images',
    num_devices=None,
    num_workers=None,
    train_url=None,
    val_url=None,
    meta_url=None,
    num_train=None,
    num_val=None,
    cache_dir="/scratch/tmp/wds-cache",
    seed=0,
    voxels_key="nsdgeneral.npy",
    val_batch_size=None,
    to_tuple=["voxels", "images", "trial"],
    local_rank=0,
    world_size=1,
):
    print("Getting dataloaders...")
    assert image_var == 'images'
    
    def my_split_by_node(urls):
        return urls
    
    train_url = list(braceexpand.braceexpand(train_url))
    val_url = list(braceexpand.braceexpand(val_url))

    if num_devices is None:
        num_devices = torch.cuda.device_count()
    
    if num_workers is None:
        num_workers = num_devices
    
    if num_train is None:
        metadata = json.load(open(meta_url))
        num_train = metadata['totals']['train']
    if num_val is None:
        metadata = json.load(open(meta_url))
        num_val = metadata['totals']['val']

    if val_batch_size is None:
        val_batch_size = batch_size
        
    global_batch_size = batch_size * num_devices
    num_batches = math.floor(num_train / global_batch_size)
    num_worker_batches = math.floor(num_batches / num_workers)
    if num_worker_batches == 0: num_worker_batches = 1
    
    print("\nnum_train",num_train)
    print("global_batch_size",global_batch_size)
    print("batch_size",batch_size)
    print("num_workers",num_workers)
    print("num_batches",num_batches)
    print("num_worker_batches", num_worker_batches)
    
    # train_url = train_url[local_rank:world_size]
    train_data = wds.WebDataset(train_url, resampled=False, cache_dir=cache_dir, nodesplitter=my_split_by_node)\
        .shuffle(500, initial=500, rng=random.Random(42))\
        .decode("torch")\
        .rename(images="jpg;png", voxels=voxels_key, trial="trial.npy", coco="coco73k.npy", reps="num_uniques.npy")\
        .to_tuple(*to_tuple)#\
        # .batched(batch_size, partial=True)#\
        # .with_epoch(num_worker_batches)
    
    # BATCH SIZE SHOULD BE NONE!!! FOR TRAIN AND VAL | resampled=True for train | .batched(val_batch_size, partial=False)
    train_dl = torch.utils.data.DataLoader(train_data, batch_size=batch_size, num_workers=1, shuffle=False)

    # Validation 
    print("val_batch_size",val_batch_size)
    val_data = wds.WebDataset(val_url, resampled=False, cache_dir=cache_dir, nodesplitter=my_split_by_node)\
        .shuffle(500, initial=500, rng=random.Random(42))\
        .decode("torch")\
        .rename(images="jpg;png", voxels=voxels_key, trial="trial.npy", coco="coco73k.npy", reps="num_uniques.npy")\
        .to_tuple(*to_tuple)#\
        # .batched(val_batch_size, partial=True)
    val_dl = torch.utils.data.DataLoader(val_data, batch_size=val_batch_size, num_workers=1, shuffle=False, drop_last=True)

    return train_dl, val_dl, num_train, num_val

pixcorr_preprocess = transforms.Compose([
    transforms.Resize(425, interpolation=transforms.InterpolationMode.BILINEAR),
])
def pixcorr(images,brains):
    all_images_flattened = pixcorr_preprocess(images).reshape(len(images), -1)
    all_brain_recons_flattened = pixcorr_preprocess(brains).view(len(brains), -1)
    corrmean = torch.diag(batchwise_pearson_correlation(all_images_flattened, all_brain_recons_flattened)).mean()
    return corrmean
    
pixcorr_origsize_nanmean_preprocess = transforms.Compose([
    transforms.Resize(128, interpolation=transforms.InterpolationMode.BILINEAR),
])
def pixcorr_origsize_nanmean(images,brains):
    all_images_flattened = pixcorr_origsize_nanmean_preprocess(images).reshape(len(images), -1)
    all_brain_recons_flattened = brains.view(len(brains), -1) # assuming it's already 128 size
    corrmean = torch.nanmean(torch.diag(batchwise_pearson_correlation(all_images_flattened, all_brain_recons_flattened)))
    return corrmean

def select_annotations(annots, random=False):
    """
    There are 5 annotations per image. Select one of them for each image.
    """
    for i, b in enumerate(annots):
        t = ''
        if random:
            # select random non-empty annotation
            while t == '':
                rand = torch.randint(5, (1,1))[0][0]
                t = b[rand]
        else:
            # select first non-empty annotation
            for j in range(5):
                if b[j] != '':
                    t = b[j]
                    break
        if i == 0:
            txt = np.array(t)
        else:
            txt = np.vstack((txt, t))
    txt = txt.flatten()
    return txt

def add_saturation(image, alpha=2):
    gray_image = 0.2989 * image[:, 0, :, :] + 0.5870 * image[:, 1, :, :] + 0.1140 * image[:, 2, :, :]
    gray_image = gray_image.unsqueeze(1).expand_as(image)
    saturated_image = alpha * image + (1 - alpha) * gray_image
    return torch.clamp(saturated_image, 0, 1)