Upload folder using huggingface_hub
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitignore +164 -0
- LICENSE +21 -0
- README.md +12 -0
- src/Train-with-memory-Copy1.ipynb +0 -0
- src/Train-with-memory-cat-trial.ipynb +0 -0
- src/Train-with-memory-cat.ipynb +0 -0
- src/Train-with-memory-cat.py +1056 -0
- src/Train-with-memory-rr-dropout.py +1040 -0
- src/Train-with-memory-rr-mlpmix.ipynb +0 -0
- src/Train-with-memory-rr.ipynb +0 -0
- src/Train-with-memory-rr.py +1018 -0
- src/Train-with-memory.ipynb +0 -0
- src/Train-with-memory.py +978 -0
- src/Train.ipynb +0 -0
- src/Train.py +761 -0
- src/Train_MLPMixer-Copy1.ipynb +0 -0
- src/Train_MLPMixer-Copy1.py +1352 -0
- src/Train_MLPMixer-Copy2.py +1275 -0
- src/Train_MLPMixer-img.ipynb +0 -0
- src/Train_MLPMixer-img.py +1444 -0
- src/Train_MLPMixer.ipynb +0 -0
- src/Train_MLPMixer.py +1275 -0
- src/Train_diffusion.ipynb +0 -0
- src/accel.slurm +38 -0
- src/accel2.slurm +40 -0
- src/accel3.slurm +40 -0
- src/accel4.slurm +40 -0
- src/accel5.slurm +40 -0
- src/accel6.slurm +40 -0
- src/accel7.slurm +41 -0
- src/accel8.slurm +41 -0
- src/accel9.slurm +44 -0
- src/blip2_captions.py +71 -0
- src/blip_tryal.ipynb +0 -0
- src/checking_models.ipynb +1526 -0
- src/deepspeed_config_stage1.json +1 -0
- src/deepspeed_config_stage2.json +1 -0
- src/deepspeed_config_stage2_cpuoffload.json +44 -0
- src/deepspeed_config_stage3.json +1 -0
- src/huggingface_to_s3.ipynb +422 -0
- src/models.py +210 -0
- src/setup.sh +15 -0
- src/train2-tryal.ipynb +2409 -0
- src/train2.ipynb +1856 -0
- src/train2.py +1141 -0
- src/utils.py +368 -0
- train_mem_logs/error.pth +3 -0
- train_mem_logs/error_tensors.pth +3 -0
- train_mem_logs/test/last.pth +3 -0
- train_mem_logs/test_mem/last.pth +3 -0
.gitignore
ADDED
@@ -0,0 +1,164 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
wandb/
|
2 |
+
train_logs/
|
3 |
+
slurms/
|
4 |
+
|
5 |
+
# Byte-compiled / optimized / DLL files
|
6 |
+
__pycache__/
|
7 |
+
*.py[cod]
|
8 |
+
*$py.class
|
9 |
+
|
10 |
+
# C extensions
|
11 |
+
*.so
|
12 |
+
|
13 |
+
# Distribution / packaging
|
14 |
+
.Python
|
15 |
+
build/
|
16 |
+
develop-eggs/
|
17 |
+
dist/
|
18 |
+
downloads/
|
19 |
+
eggs/
|
20 |
+
.eggs/
|
21 |
+
lib/
|
22 |
+
lib64/
|
23 |
+
parts/
|
24 |
+
sdist/
|
25 |
+
var/
|
26 |
+
wheels/
|
27 |
+
share/python-wheels/
|
28 |
+
*.egg-info/
|
29 |
+
.installed.cfg
|
30 |
+
*.egg
|
31 |
+
MANIFEST
|
32 |
+
|
33 |
+
# PyInstaller
|
34 |
+
# Usually these files are written by a python script from a template
|
35 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
36 |
+
*.manifest
|
37 |
+
*.spec
|
38 |
+
|
39 |
+
# Installer logs
|
40 |
+
pip-log.txt
|
41 |
+
pip-delete-this-directory.txt
|
42 |
+
|
43 |
+
# Unit test / coverage reports
|
44 |
+
htmlcov/
|
45 |
+
.tox/
|
46 |
+
.nox/
|
47 |
+
.coverage
|
48 |
+
.coverage.*
|
49 |
+
.cache
|
50 |
+
nosetests.xml
|
51 |
+
coverage.xml
|
52 |
+
*.cover
|
53 |
+
*.py,cover
|
54 |
+
.hypothesis/
|
55 |
+
.pytest_cache/
|
56 |
+
cover/
|
57 |
+
|
58 |
+
# Translations
|
59 |
+
*.mo
|
60 |
+
*.pot
|
61 |
+
|
62 |
+
# Django stuff:
|
63 |
+
*.log
|
64 |
+
local_settings.py
|
65 |
+
db.sqlite3
|
66 |
+
db.sqlite3-journal
|
67 |
+
|
68 |
+
# Flask stuff:
|
69 |
+
instance/
|
70 |
+
.webassets-cache
|
71 |
+
|
72 |
+
# Scrapy stuff:
|
73 |
+
.scrapy
|
74 |
+
|
75 |
+
# Sphinx documentation
|
76 |
+
docs/_build/
|
77 |
+
|
78 |
+
# PyBuilder
|
79 |
+
.pybuilder/
|
80 |
+
target/
|
81 |
+
|
82 |
+
# Jupyter Notebook
|
83 |
+
.ipynb_checkpoints
|
84 |
+
|
85 |
+
# IPython
|
86 |
+
profile_default/
|
87 |
+
ipython_config.py
|
88 |
+
|
89 |
+
# pyenv
|
90 |
+
# For a library or package, you might want to ignore these files since the code is
|
91 |
+
# intended to run in multiple environments; otherwise, check them in:
|
92 |
+
# .python-version
|
93 |
+
|
94 |
+
# pipenv
|
95 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
96 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
97 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
98 |
+
# install all needed dependencies.
|
99 |
+
#Pipfile.lock
|
100 |
+
|
101 |
+
# poetry
|
102 |
+
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
103 |
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
104 |
+
# commonly ignored for libraries.
|
105 |
+
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
106 |
+
#poetry.lock
|
107 |
+
|
108 |
+
# pdm
|
109 |
+
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
110 |
+
#pdm.lock
|
111 |
+
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
|
112 |
+
# in version control.
|
113 |
+
# https://pdm.fming.dev/#use-with-ide
|
114 |
+
.pdm.toml
|
115 |
+
|
116 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
117 |
+
__pypackages__/
|
118 |
+
|
119 |
+
# Celery stuff
|
120 |
+
celerybeat-schedule
|
121 |
+
celerybeat.pid
|
122 |
+
|
123 |
+
# SageMath parsed files
|
124 |
+
*.sage.py
|
125 |
+
|
126 |
+
# Environments
|
127 |
+
.env
|
128 |
+
.venv
|
129 |
+
env/
|
130 |
+
venv/
|
131 |
+
ENV/
|
132 |
+
env.bak/
|
133 |
+
venv.bak/
|
134 |
+
|
135 |
+
# Spyder project settings
|
136 |
+
.spyderproject
|
137 |
+
.spyproject
|
138 |
+
|
139 |
+
# Rope project settings
|
140 |
+
.ropeproject
|
141 |
+
|
142 |
+
# mkdocs documentation
|
143 |
+
/site
|
144 |
+
|
145 |
+
# mypy
|
146 |
+
.mypy_cache/
|
147 |
+
.dmypy.json
|
148 |
+
dmypy.json
|
149 |
+
|
150 |
+
# Pyre type checker
|
151 |
+
.pyre/
|
152 |
+
|
153 |
+
# pytype static type analyzer
|
154 |
+
.pytype/
|
155 |
+
|
156 |
+
# Cython debug symbols
|
157 |
+
cython_debug/
|
158 |
+
|
159 |
+
# PyCharm
|
160 |
+
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
161 |
+
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
162 |
+
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
163 |
+
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
164 |
+
#.idea/
|
LICENSE
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MIT License
|
2 |
+
|
3 |
+
Copyright (c) 2023 MedARC
|
4 |
+
|
5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
of this software and associated documentation files (the "Software"), to deal
|
7 |
+
in the Software without restriction, including without limitation the rights
|
8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
copies of the Software, and to permit persons to whom the Software is
|
10 |
+
furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
The above copyright notice and this permission notice shall be included in all
|
13 |
+
copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
SOFTWARE.
|
README.md
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# MindEyeV2
|
2 |
+
|
3 |
+
In-progress -- this repo is under active development in the MedARC discord server (feel free to join us and help develop MindEyeV2!)
|
4 |
+
|
5 |
+
1. Download all of https://huggingface.co/datasets/pscotti/mindeyev2 and place them in a folder. You will need to specify the path to this folder as "data_path" variable.
|
6 |
+
|
7 |
+
2. Run setup.sh to install a new "fmri" conda environment.
|
8 |
+
|
9 |
+
3. Activate the conda environment with "conda activate fmri"
|
10 |
+
|
11 |
+
4. Run Train.ipynb or Train.py (they are the same code)
|
12 |
+
|
src/Train-with-memory-Copy1.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
src/Train-with-memory-cat-trial.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
src/Train-with-memory-cat.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
src/Train-with-memory-cat.py
ADDED
@@ -0,0 +1,1056 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# coding: utf-8
|
3 |
+
|
4 |
+
# In[3]:
|
5 |
+
|
6 |
+
|
7 |
+
# # Code to convert this notebook to .py if you want to run it via command line or with Slurm
|
8 |
+
# from subprocess import call
|
9 |
+
# command = "jupyter nbconvert Train-with-memory-cat.ipynb --to python"
|
10 |
+
# call(command,shell=True)
|
11 |
+
|
12 |
+
|
13 |
+
# # Import packages & functions
|
14 |
+
|
15 |
+
# In[4]:
|
16 |
+
|
17 |
+
|
18 |
+
import os
|
19 |
+
import sys
|
20 |
+
import json
|
21 |
+
import argparse
|
22 |
+
import numpy as np
|
23 |
+
import math
|
24 |
+
from einops import rearrange
|
25 |
+
import time
|
26 |
+
import random
|
27 |
+
import h5py
|
28 |
+
from tqdm import tqdm
|
29 |
+
|
30 |
+
import webdataset as wds
|
31 |
+
import gc
|
32 |
+
|
33 |
+
import matplotlib.pyplot as plt
|
34 |
+
import torch
|
35 |
+
import torch.nn as nn
|
36 |
+
from torchvision import transforms
|
37 |
+
|
38 |
+
from accelerate import Accelerator, DeepSpeedPlugin
|
39 |
+
|
40 |
+
# tf32 data type is faster than standard float32
|
41 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
42 |
+
|
43 |
+
# custom functions #
|
44 |
+
import utils
|
45 |
+
|
46 |
+
global_batch_size = 128 #128
|
47 |
+
|
48 |
+
|
49 |
+
# In[5]:
|
50 |
+
|
51 |
+
|
52 |
+
### Multi-GPU config ###
|
53 |
+
local_rank = os.getenv('RANK')
|
54 |
+
if local_rank is None:
|
55 |
+
local_rank = 0
|
56 |
+
else:
|
57 |
+
local_rank = int(local_rank)
|
58 |
+
print("LOCAL RANK ", local_rank)
|
59 |
+
|
60 |
+
num_devices = torch.cuda.device_count()
|
61 |
+
if num_devices==0: num_devices = 1
|
62 |
+
|
63 |
+
accelerator = Accelerator(split_batches=False)
|
64 |
+
|
65 |
+
### UNCOMMENT BELOW STUFF TO USE DEEPSPEED (also comment out the immediately above "accelerator = " line) ###
|
66 |
+
|
67 |
+
# if num_devices <= 1 and utils.is_interactive():
|
68 |
+
# # can emulate a distributed environment for deepspeed to work in jupyter notebook
|
69 |
+
# os.environ["MASTER_ADDR"] = "localhost"
|
70 |
+
# os.environ["MASTER_PORT"] = str(np.random.randint(10000)+9000)
|
71 |
+
# os.environ["RANK"] = "0"
|
72 |
+
# os.environ["LOCAL_RANK"] = "0"
|
73 |
+
# os.environ["WORLD_SIZE"] = "1"
|
74 |
+
# os.environ["GLOBAL_BATCH_SIZE"] = str(global_batch_size) # set this to your batch size!
|
75 |
+
# global_batch_size = os.environ["GLOBAL_BATCH_SIZE"]
|
76 |
+
|
77 |
+
# # alter the deepspeed config according to your global and local batch size
|
78 |
+
# if local_rank == 0:
|
79 |
+
# with open('deepspeed_config_stage2.json', 'r') as file:
|
80 |
+
# config = json.load(file)
|
81 |
+
# config['train_batch_size'] = int(os.environ["GLOBAL_BATCH_SIZE"])
|
82 |
+
# config['train_micro_batch_size_per_gpu'] = int(os.environ["GLOBAL_BATCH_SIZE"]) // num_devices
|
83 |
+
# with open('deepspeed_config_stage2.json', 'w') as file:
|
84 |
+
# json.dump(config, file)
|
85 |
+
# else:
|
86 |
+
# # give some time for the local_rank=0 gpu to prep new deepspeed config file
|
87 |
+
# time.sleep(10)
|
88 |
+
# deepspeed_plugin = DeepSpeedPlugin("deepspeed_config_stage2.json")
|
89 |
+
# accelerator = Accelerator(split_batches=False, deepspeed_plugin=deepspeed_plugin)
|
90 |
+
|
91 |
+
|
92 |
+
# In[6]:
|
93 |
+
|
94 |
+
|
95 |
+
print("PID of this process =",os.getpid())
|
96 |
+
device = accelerator.device
|
97 |
+
print("device:",device)
|
98 |
+
num_workers = num_devices
|
99 |
+
print(accelerator.state)
|
100 |
+
world_size = accelerator.state.num_processes
|
101 |
+
distributed = not accelerator.state.distributed_type == 'NO'
|
102 |
+
print("distributed =",distributed, "num_devices =", num_devices, "local rank =", local_rank, "world size =", world_size)
|
103 |
+
print = accelerator.print # only print if local_rank=0
|
104 |
+
|
105 |
+
|
106 |
+
# # Configurations
|
107 |
+
|
108 |
+
# In[7]:
|
109 |
+
|
110 |
+
|
111 |
+
# if running this interactively, can specify jupyter_args here for argparser to use
|
112 |
+
if utils.is_interactive():
|
113 |
+
# Example use
|
114 |
+
jupyter_args = f"--data_path=/fsx/proj-fmri/shared/mindeyev2_dataset \
|
115 |
+
--model_name=test \
|
116 |
+
--subj=1 --batch_size={global_batch_size} --n_samples_save=0 \
|
117 |
+
--max_lr=3e-5 --mixup_pct=.66 --num_epochs=12 --ckpt_interval=999 --no-use_image_aug"
|
118 |
+
|
119 |
+
jupyter_args = jupyter_args.split()
|
120 |
+
print(jupyter_args)
|
121 |
+
|
122 |
+
from IPython.display import clear_output # function to clear print outputs in cell
|
123 |
+
get_ipython().run_line_magic('load_ext', 'autoreload')
|
124 |
+
# this allows you to change functions in models.py or utils.py and have this notebook automatically update with your revisions
|
125 |
+
get_ipython().run_line_magic('autoreload', '2')
|
126 |
+
|
127 |
+
|
128 |
+
# In[8]:
|
129 |
+
|
130 |
+
|
131 |
+
parser = argparse.ArgumentParser(description="Model Training Configuration")
|
132 |
+
parser.add_argument(
|
133 |
+
"--model_name", type=str, default="testing",
|
134 |
+
help="name of model, used for ckpt saving and wandb logging (if enabled)",
|
135 |
+
)
|
136 |
+
parser.add_argument(
|
137 |
+
"--data_path", type=str, default="/fsx/proj-fmri/shared/natural-scenes-dataset",
|
138 |
+
help="Path to where NSD data is stored / where to download it to",
|
139 |
+
)
|
140 |
+
parser.add_argument(
|
141 |
+
"--subj",type=int, default=1, choices=[1,2,5,7],
|
142 |
+
)
|
143 |
+
parser.add_argument(
|
144 |
+
"--batch_size", type=int, default=32,
|
145 |
+
help="Batch size can be increased by 10x if only training v2c and not diffusion diffuser",
|
146 |
+
)
|
147 |
+
parser.add_argument(
|
148 |
+
"--wandb_log",action=argparse.BooleanOptionalAction,default=False,
|
149 |
+
help="whether to log to wandb",
|
150 |
+
)
|
151 |
+
parser.add_argument(
|
152 |
+
"--resume_from_ckpt",action=argparse.BooleanOptionalAction,default=False,
|
153 |
+
help="if not using wandb and want to resume from a ckpt",
|
154 |
+
)
|
155 |
+
parser.add_argument(
|
156 |
+
"--wandb_project",type=str,default="stability",
|
157 |
+
help="wandb project name",
|
158 |
+
)
|
159 |
+
parser.add_argument(
|
160 |
+
"--mixup_pct",type=float,default=.33,
|
161 |
+
help="proportion of way through training when to switch from BiMixCo to SoftCLIP",
|
162 |
+
)
|
163 |
+
parser.add_argument(
|
164 |
+
"--use_image_aug",action=argparse.BooleanOptionalAction,default=True,
|
165 |
+
help="whether to use image augmentation",
|
166 |
+
)
|
167 |
+
parser.add_argument(
|
168 |
+
"--num_epochs",type=int,default=240,
|
169 |
+
help="number of epochs of training",
|
170 |
+
)
|
171 |
+
parser.add_argument(
|
172 |
+
"--lr_scheduler_type",type=str,default='cycle',choices=['cycle','linear'],
|
173 |
+
)
|
174 |
+
parser.add_argument(
|
175 |
+
"--ckpt_saving",action=argparse.BooleanOptionalAction,default=True,
|
176 |
+
)
|
177 |
+
parser.add_argument(
|
178 |
+
"--ckpt_interval",type=int,default=5,
|
179 |
+
help="save backup ckpt and reconstruct every x epochs",
|
180 |
+
)
|
181 |
+
parser.add_argument(
|
182 |
+
"--seed",type=int,default=42,
|
183 |
+
)
|
184 |
+
parser.add_argument(
|
185 |
+
"--max_lr",type=float,default=3e-4,
|
186 |
+
)
|
187 |
+
parser.add_argument(
|
188 |
+
"--n_samples_save",type=int,default=0,choices=[0,1],
|
189 |
+
help="Number of reconstructions for monitoring progress, 0 will speed up training",
|
190 |
+
)
|
191 |
+
|
192 |
+
if utils.is_interactive():
|
193 |
+
args = parser.parse_args(jupyter_args)
|
194 |
+
else:
|
195 |
+
args = parser.parse_args()
|
196 |
+
|
197 |
+
# create global variables without the args prefix
|
198 |
+
for attribute_name in vars(args).keys():
|
199 |
+
globals()[attribute_name] = getattr(args, attribute_name)
|
200 |
+
|
201 |
+
print("global batch_size", batch_size)
|
202 |
+
batch_size = int(batch_size / num_devices)
|
203 |
+
print("batch_size", batch_size)
|
204 |
+
|
205 |
+
|
206 |
+
# In[9]:
|
207 |
+
|
208 |
+
|
209 |
+
outdir = os.path.abspath(f'../train_mem_logs/{model_name}')
|
210 |
+
if not os.path.exists(outdir):
|
211 |
+
os.makedirs(outdir,exist_ok=True)
|
212 |
+
if use_image_aug:
|
213 |
+
import kornia
|
214 |
+
from kornia.augmentation.container import AugmentationSequential
|
215 |
+
img_augment = AugmentationSequential(
|
216 |
+
kornia.augmentation.RandomResizedCrop((224,224), (0.6,1), p=0.3),
|
217 |
+
kornia.augmentation.Resize((224, 224)),
|
218 |
+
kornia.augmentation.RandomHorizontalFlip(p=0.3),
|
219 |
+
kornia.augmentation.ColorJitter(brightness=0.4, contrast=0.4, saturation=0.2, hue=0.1, p=0.3),
|
220 |
+
kornia.augmentation.RandomGrayscale(p=0.3),
|
221 |
+
same_on_batch=False,
|
222 |
+
data_keys=["input"],
|
223 |
+
)
|
224 |
+
|
225 |
+
|
226 |
+
# # Prep data, models, and dataloaders
|
227 |
+
|
228 |
+
# ## Dataloader
|
229 |
+
|
230 |
+
# In[10]:
|
231 |
+
|
232 |
+
|
233 |
+
if subj==1:
|
234 |
+
num_train = 24958
|
235 |
+
num_test = 2770
|
236 |
+
test_batch_size = num_test
|
237 |
+
|
238 |
+
def my_split_by_node(urls): return urls
|
239 |
+
|
240 |
+
train_url = f"{data_path}/wds/subj0{subj}/train/" + "{0..36}.tar"
|
241 |
+
print(train_url)
|
242 |
+
|
243 |
+
train_data = wds.WebDataset(train_url,resampled=False,nodesplitter=my_split_by_node)\
|
244 |
+
.shuffle(750, initial=1500, rng=random.Random(42))\
|
245 |
+
.decode("torch")\
|
246 |
+
.rename(behav="behav.npy", past_behav="past_behav.npy", future_behav="future_behav.npy", olds_behav="olds_behav.npy")\
|
247 |
+
.to_tuple(*["behav", "past_behav", "future_behav", "olds_behav"])
|
248 |
+
train_dl = torch.utils.data.DataLoader(train_data, batch_size=batch_size, shuffle=False, drop_last=False, pin_memory=True)
|
249 |
+
|
250 |
+
test_url = f"{data_path}/wds/subj0{subj}/test/" + "0.tar"
|
251 |
+
print(test_url)
|
252 |
+
|
253 |
+
test_data = wds.WebDataset(test_url,resampled=False,nodesplitter=my_split_by_node)\
|
254 |
+
.shuffle(750, initial=1500, rng=random.Random(42))\
|
255 |
+
.decode("torch")\
|
256 |
+
.rename(behav="behav.npy", past_behav="past_behav.npy", future_behav="future_behav.npy", olds_behav="olds_behav.npy")\
|
257 |
+
.to_tuple(*["behav", "past_behav", "future_behav", "olds_behav"])
|
258 |
+
test_dl = torch.utils.data.DataLoader(test_data, batch_size=test_batch_size, shuffle=False, drop_last=False, pin_memory=True)
|
259 |
+
|
260 |
+
|
261 |
+
# ### check dataloaders are working
|
262 |
+
|
263 |
+
# In[9]:
|
264 |
+
|
265 |
+
|
266 |
+
# test_indices = []
|
267 |
+
# test_images = []
|
268 |
+
# for test_i, (behav, past_behav, future_behav, old_behav) in enumerate(test_dl):
|
269 |
+
# test_indices = np.append(test_indices, behav[:,0,5].numpy())
|
270 |
+
# test_images = np.append(test_images, behav[:,0,0].numpy())
|
271 |
+
# test_indices = test_indices.astype(np.int16)
|
272 |
+
# print(test_i, (test_i+1) * test_batch_size, len(test_indices))
|
273 |
+
# print("---\n")
|
274 |
+
|
275 |
+
# train_indices = []
|
276 |
+
# train_images = []
|
277 |
+
# for train_i, (behav, past_behav, future_behav, old_behav) in enumerate(train_dl):
|
278 |
+
# train_indices = np.append(train_indices, behav[:,0,5].long().numpy())
|
279 |
+
# train_images = np.append(train_images, behav[:,0,0].numpy())
|
280 |
+
# train_indices = train_indices.astype(np.int16)
|
281 |
+
# print(train_i, (train_i+1) * batch_size, len(train_indices))
|
282 |
+
|
283 |
+
# # train_images = np.hstack((train_images, test_images))
|
284 |
+
# # print("WARNING: ADDED TEST IMAGES TO TRAIN IMAGES")
|
285 |
+
|
286 |
+
|
287 |
+
# ## Load data and images
|
288 |
+
|
289 |
+
# In[ ]:
|
290 |
+
|
291 |
+
|
292 |
+
# load betas
|
293 |
+
f = h5py.File(f'{data_path}/betas_all_subj0{subj}.hdf5', 'r')
|
294 |
+
voxels = f['betas'][:]
|
295 |
+
print(f"subj0{subj} betas loaded into memory")
|
296 |
+
voxels = torch.Tensor(voxels).to("cpu").half()
|
297 |
+
if subj==1:
|
298 |
+
voxels = torch.hstack((voxels, torch.zeros((len(voxels), 5))))
|
299 |
+
print("voxels", voxels.shape)
|
300 |
+
num_voxels = voxels.shape[-1]
|
301 |
+
|
302 |
+
# load orig images
|
303 |
+
f = h5py.File(f'{data_path}/coco_images_224_float16.hdf5', 'r')
|
304 |
+
images = f['images'][:]
|
305 |
+
images = torch.Tensor(images).to("cpu").half()
|
306 |
+
print("images", images.shape)
|
307 |
+
|
308 |
+
|
309 |
+
# ## Load models
|
310 |
+
|
311 |
+
# ### CLIP image embeddings model
|
312 |
+
|
313 |
+
# In[ ]:
|
314 |
+
|
315 |
+
|
316 |
+
from models import Clipper
|
317 |
+
clip_model = Clipper("ViT-L/14", device=torch.device(f"cuda:{local_rank}"), hidden_state=True, norm_embs=True)
|
318 |
+
|
319 |
+
clip_seq_dim = 257
|
320 |
+
clip_emb_dim = 768
|
321 |
+
hidden_dim = 4096
|
322 |
+
|
323 |
+
|
324 |
+
# ### SD VAE (blurry images)
|
325 |
+
|
326 |
+
# In[ ]:
|
327 |
+
|
328 |
+
|
329 |
+
from diffusers import AutoencoderKL
|
330 |
+
autoenc = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16, cache_dir="/fsx/proj-fmri/shared/cache")
|
331 |
+
# autoenc.load_state_dict(torch.load('../train_logs/sdxl_vae_normed/best.pth')["model_state_dict"])
|
332 |
+
autoenc.eval()
|
333 |
+
autoenc.requires_grad_(False)
|
334 |
+
autoenc.to(device)
|
335 |
+
utils.count_params(autoenc)
|
336 |
+
|
337 |
+
|
338 |
+
# ### MindEye modules
|
339 |
+
|
340 |
+
# In[13]:
|
341 |
+
|
342 |
+
|
343 |
+
class MindEyeModule(nn.Module):
|
344 |
+
def __init__(self):
|
345 |
+
super(MindEyeModule, self).__init__()
|
346 |
+
def forward(self, x):
|
347 |
+
return x
|
348 |
+
|
349 |
+
model = MindEyeModule()
|
350 |
+
model
|
351 |
+
|
352 |
+
|
353 |
+
# In[14]:
|
354 |
+
|
355 |
+
|
356 |
+
class RidgeRegression(torch.nn.Module):
|
357 |
+
# make sure to add weight_decay when initializing optimizer
|
358 |
+
def __init__(self, input_size, out_features):
|
359 |
+
super(RidgeRegression, self).__init__()
|
360 |
+
self.out_features = out_features
|
361 |
+
self.linear = torch.nn.Linear(input_size, out_features)
|
362 |
+
def forward(self, x):
|
363 |
+
return self.linear(x)
|
364 |
+
|
365 |
+
model.ridge = RidgeRegression(voxels.shape[1], out_features=hidden_dim)
|
366 |
+
utils.count_params(model.ridge)
|
367 |
+
utils.count_params(model)
|
368 |
+
|
369 |
+
b = torch.randn((2,1,voxels.shape[1]))
|
370 |
+
print(b.shape, model.ridge(b).shape)
|
371 |
+
|
372 |
+
|
373 |
+
# In[22]:
|
374 |
+
|
375 |
+
|
376 |
+
from functools import partial
|
377 |
+
from diffusers.models.vae import Decoder
|
378 |
+
class BrainNetwork(nn.Module):
|
379 |
+
def __init__(self, out_dim=768, in_dim=15724, clip_size=768, h=4096, n_blocks=4, norm_type='ln', act_first=False, drop=.15, blurry_dim=16):
|
380 |
+
super().__init__()
|
381 |
+
self.blurry_dim = blurry_dim
|
382 |
+
norm_func = partial(nn.BatchNorm1d, num_features=h) if norm_type == 'bn' else partial(nn.LayerNorm, normalized_shape=h)
|
383 |
+
act_fn = partial(nn.ReLU, inplace=True) if norm_type == 'bn' else nn.GELU
|
384 |
+
act_and_norm = (act_fn, norm_func) if act_first else (norm_func, act_fn)
|
385 |
+
self.lin0 = nn.Linear(in_dim, h)
|
386 |
+
self.mlp = nn.ModuleList([
|
387 |
+
nn.Sequential(
|
388 |
+
nn.Linear(h, h),
|
389 |
+
*[item() for item in act_and_norm],
|
390 |
+
nn.Dropout(drop)
|
391 |
+
) for _ in range(n_blocks)
|
392 |
+
])
|
393 |
+
self.lin1 = nn.Linear(h, out_dim, bias=True)
|
394 |
+
self.blin1 = nn.Linear(out_dim, blurry_dim, bias=True)
|
395 |
+
self.n_blocks = n_blocks
|
396 |
+
self.clip_size = clip_size
|
397 |
+
self.clip_proj = nn.Sequential(
|
398 |
+
nn.LayerNorm(clip_size),
|
399 |
+
nn.GELU(),
|
400 |
+
nn.Linear(clip_size, 2048),
|
401 |
+
nn.LayerNorm(2048),
|
402 |
+
nn.GELU(),
|
403 |
+
nn.Linear(2048, 2048),
|
404 |
+
nn.LayerNorm(2048),
|
405 |
+
nn.GELU(),
|
406 |
+
nn.Linear(2048, clip_size)
|
407 |
+
)
|
408 |
+
self.upsampler = Decoder(
|
409 |
+
in_channels=64,
|
410 |
+
out_channels=4,
|
411 |
+
up_block_types=["UpDecoderBlock2D","UpDecoderBlock2D","UpDecoderBlock2D"],
|
412 |
+
block_out_channels=[64, 128, 256],
|
413 |
+
layers_per_block=1,
|
414 |
+
)
|
415 |
+
|
416 |
+
def forward(self, x):
|
417 |
+
x = self.lin0(x)
|
418 |
+
residual = x
|
419 |
+
for res_block in range(self.n_blocks):
|
420 |
+
x = self.mlp[res_block](x)
|
421 |
+
x += residual
|
422 |
+
residual = x
|
423 |
+
x = x.reshape(len(x), -1)
|
424 |
+
x = self.lin1(x)
|
425 |
+
b = self.blin1(x)
|
426 |
+
b = self.upsampler(b.reshape(len(b), -1, 7, 7))
|
427 |
+
c = self.clip_proj(x.reshape(len(x), -1, self.clip_size))
|
428 |
+
return c, b
|
429 |
+
|
430 |
+
model.backbone = BrainNetwork(h=2048, in_dim=hidden_dim*2, clip_size=clip_emb_dim, out_dim=clip_emb_dim*clip_seq_dim, blurry_dim=64*7*7)
|
431 |
+
utils.count_params(model.backbone)
|
432 |
+
utils.count_params(model)
|
433 |
+
|
434 |
+
b = torch.randn((2,8192))
|
435 |
+
print(b.shape)
|
436 |
+
clip_, blur_ = model.backbone(b)
|
437 |
+
print(clip_.shape, blur_.shape)
|
438 |
+
|
439 |
+
|
440 |
+
# In[23]:
|
441 |
+
|
442 |
+
|
443 |
+
# memory model
|
444 |
+
|
445 |
+
from timm.layers.mlp import Mlp
|
446 |
+
|
447 |
+
class MemoryEncoder(nn.Module):
|
448 |
+
def __init__(self, in_dim=15279, out_dim=768, h=4096, num_past_voxels=15, embedding_time_dim = 512, n_blocks=4, norm_type='ln', act_first=False, drop=.15):
|
449 |
+
super().__init__()
|
450 |
+
norm_func = partial(nn.BatchNorm1d, num_features=h) if norm_type == 'bn' else partial(nn.LayerNorm, normalized_shape=h)
|
451 |
+
act_fn = partial(nn.ReLU, inplace=True) if norm_type == 'bn' else nn.GELU
|
452 |
+
act_and_norm = (act_fn, norm_func) if act_first else (norm_func, act_fn)
|
453 |
+
self.out_dim = out_dim
|
454 |
+
self.embedding_time = nn.Embedding(num_past_voxels, embedding_time_dim)
|
455 |
+
self.final_input_dim = in_dim + embedding_time_dim
|
456 |
+
self.lin0 = nn.Linear(self.final_input_dim, h)
|
457 |
+
self.mlp = nn.ModuleList([
|
458 |
+
nn.Sequential(
|
459 |
+
nn.Linear(h, h),
|
460 |
+
*[item() for item in act_and_norm],
|
461 |
+
nn.Dropout(drop)
|
462 |
+
) for _ in range(n_blocks)
|
463 |
+
])
|
464 |
+
self.lin1 = nn.Linear(h, out_dim, bias=True)
|
465 |
+
self.n_blocks = n_blocks
|
466 |
+
self.num_past_voxels = num_past_voxels
|
467 |
+
self.embedding_time_dim = embedding_time_dim
|
468 |
+
self.memory = nn.Parameter(torch.randn((self.num_past_voxels, self.embedding_time_dim)))
|
469 |
+
|
470 |
+
|
471 |
+
def forward(self, x, time):
|
472 |
+
time = time.long()
|
473 |
+
time = self.embedding_time(time)
|
474 |
+
x = torch.cat((x, time), dim=-1)
|
475 |
+
x = self.lin0(x)
|
476 |
+
residual = x
|
477 |
+
for res_block in range(self.n_blocks):
|
478 |
+
x = self.mlp[res_block](x)
|
479 |
+
x += residual
|
480 |
+
residual = x
|
481 |
+
x = x.reshape(len(x), -1)
|
482 |
+
x = self.lin1(x)
|
483 |
+
return x
|
484 |
+
|
485 |
+
# # test the memory encoder
|
486 |
+
# memory_encoder = MemoryEncoder(in_dim=voxels.shape[1], out_dim=hidden_dim, num_past_voxels=15, embedding_time_dim=512)
|
487 |
+
|
488 |
+
# device = torch.device("cpu")
|
489 |
+
# memory_encoder.to(device)
|
490 |
+
|
491 |
+
# # count params
|
492 |
+
# total_parameters = 0
|
493 |
+
# for parameter in memory_encoder.parameters():
|
494 |
+
# total_parameters += parameter.numel()
|
495 |
+
|
496 |
+
# rand_input = torch.randn((2, 15279)).to(device)
|
497 |
+
# rand_time = torch.randint(0, 15, (2,)).to(device)
|
498 |
+
# print(rand_input.shape, rand_time.shape)
|
499 |
+
# memory_encoder(rand_input, rand_time).shape
|
500 |
+
|
501 |
+
class MemoryCompressor(nn.Module):
|
502 |
+
def __init__(self, in_dim=768, num_past = 15, output_dim=768, h=4096, n_blocks=4, norm_type='ln', act_first=False, drop=.15):
|
503 |
+
super().__init__()
|
504 |
+
self.num_past = num_past
|
505 |
+
norm_func = partial(nn.BatchNorm1d, num_features=h) if norm_type == 'bn' else partial(nn.LayerNorm, normalized_shape=h)
|
506 |
+
act_fn = partial(nn.ReLU, inplace=True) if norm_type == 'bn' else nn.GELU
|
507 |
+
act_and_norm = (act_fn, norm_func) if act_first else (norm_func, act_fn)
|
508 |
+
self.final_input_dim = in_dim * num_past
|
509 |
+
self.lin0 = nn.Linear(self.final_input_dim, h)
|
510 |
+
self.mlp = nn.ModuleList([
|
511 |
+
nn.Sequential(
|
512 |
+
nn.Linear(h, h),
|
513 |
+
*[item() for item in act_and_norm],
|
514 |
+
nn.Dropout(drop)
|
515 |
+
) for _ in range(n_blocks)
|
516 |
+
])
|
517 |
+
self.lin1 = nn.Linear(h, output_dim, bias=True)
|
518 |
+
self.n_blocks = n_blocks
|
519 |
+
self.num_past = num_past
|
520 |
+
self.output_dim = output_dim
|
521 |
+
|
522 |
+
def forward(self, x):
|
523 |
+
# x is (batch_size, num_past, in_dim)
|
524 |
+
x = x.reshape(len(x), -1)
|
525 |
+
x = self.lin0(x)
|
526 |
+
residual = x
|
527 |
+
for res_block in range(self.n_blocks):
|
528 |
+
x = self.mlp[res_block](x)
|
529 |
+
x += residual
|
530 |
+
residual = x
|
531 |
+
x = x.reshape(len(x), -1)
|
532 |
+
x = self.lin1(x)
|
533 |
+
return x
|
534 |
+
|
535 |
+
# # test the memory compressor
|
536 |
+
# memory_compressor = MemoryCompressor(in_dim=768, num_past=15, output_dim=768)
|
537 |
+
|
538 |
+
# device = torch.device("cpu")
|
539 |
+
# memory_compressor.to(device)
|
540 |
+
|
541 |
+
# # count params
|
542 |
+
# total_parameters = 0
|
543 |
+
# for parameter in memory_compressor.parameters():
|
544 |
+
# total_parameters += parameter.numel()
|
545 |
+
|
546 |
+
# rand_input = torch.randn((2, 15, 768)).to(device)
|
547 |
+
# print(rand_input.shape)
|
548 |
+
# memory_compressor(rand_input).shape
|
549 |
+
|
550 |
+
model.memory_encoder = MemoryEncoder(in_dim=voxels.shape[1], out_dim=4096, num_past_voxels=15, embedding_time_dim=512)
|
551 |
+
model.memory_compressor = MemoryCompressor(in_dim=model.memory_encoder.out_dim, num_past=15, output_dim=4096)
|
552 |
+
|
553 |
+
utils.count_params(model.memory_encoder)
|
554 |
+
utils.count_params(model.memory_compressor)
|
555 |
+
utils.count_params(model)
|
556 |
+
|
557 |
+
|
558 |
+
|
559 |
+
# In[24]:
|
560 |
+
|
561 |
+
|
562 |
+
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
|
563 |
+
opt_grouped_parameters = [
|
564 |
+
{'params': [p for n, p in model.ridge.named_parameters()], 'weight_decay': 1e-2},
|
565 |
+
{'params': [p for n, p in model.backbone.named_parameters() if not any(nd in n for nd in no_decay)], 'weight_decay': 1e-2},
|
566 |
+
{'params': [p for n, p in model.backbone.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0},
|
567 |
+
{'params': [p for n, p in model.memory_encoder.named_parameters()], 'weight_decay': 1e-2},
|
568 |
+
{'params': [p for n, p in model.memory_compressor.named_parameters()], 'weight_decay': 1e-2},
|
569 |
+
]
|
570 |
+
|
571 |
+
optimizer = torch.optim.AdamW(opt_grouped_parameters, lr=max_lr, betas=(0.9, 0.95))
|
572 |
+
|
573 |
+
if lr_scheduler_type == 'linear':
|
574 |
+
lr_scheduler = torch.optim.lr_scheduler.LinearLR(
|
575 |
+
optimizer,
|
576 |
+
total_iters=int(num_epochs*(num_train*num_devices//batch_size)),
|
577 |
+
last_epoch=-1
|
578 |
+
)
|
579 |
+
elif lr_scheduler_type == 'cycle':
|
580 |
+
total_steps=int(num_epochs*(num_train*num_devices//batch_size))
|
581 |
+
lr_scheduler = torch.optim.lr_scheduler.OneCycleLR(
|
582 |
+
optimizer,
|
583 |
+
max_lr=max_lr,
|
584 |
+
total_steps=total_steps,
|
585 |
+
final_div_factor=1000,
|
586 |
+
last_epoch=-1, pct_start=2/num_epochs
|
587 |
+
)
|
588 |
+
|
589 |
+
def save_ckpt(tag):
|
590 |
+
ckpt_path = outdir+f'/{tag}.pth'
|
591 |
+
print(f'saving {ckpt_path}',flush=True)
|
592 |
+
unwrapped_model = accelerator.unwrap_model(model)
|
593 |
+
try:
|
594 |
+
torch.save({
|
595 |
+
'epoch': epoch,
|
596 |
+
'model_state_dict': unwrapped_model.state_dict(),
|
597 |
+
'optimizer_state_dict': optimizer.state_dict(),
|
598 |
+
'lr_scheduler': lr_scheduler.state_dict(),
|
599 |
+
'train_losses': losses,
|
600 |
+
'test_losses': test_losses,
|
601 |
+
'lrs': lrs,
|
602 |
+
}, ckpt_path)
|
603 |
+
except:
|
604 |
+
print("Couldn't save... moving on to prevent crashing.")
|
605 |
+
del unwrapped_model
|
606 |
+
|
607 |
+
print("\nDone with model preparations!")
|
608 |
+
utils.count_params(model)
|
609 |
+
|
610 |
+
|
611 |
+
# In[18]:
|
612 |
+
|
613 |
+
|
614 |
+
|
615 |
+
|
616 |
+
|
617 |
+
# # Weights and Biases
|
618 |
+
|
619 |
+
# In[25]:
|
620 |
+
|
621 |
+
|
622 |
+
# params for wandb
|
623 |
+
wandb_log = True
|
624 |
+
if local_rank==0 and wandb_log: # only use main process for wandb logging
|
625 |
+
import wandb
|
626 |
+
|
627 |
+
wandb_project = 'stability'
|
628 |
+
wandb_run = model_name
|
629 |
+
wandb_notes = ''
|
630 |
+
|
631 |
+
print(f"wandb {wandb_project} run {wandb_run}")
|
632 |
+
wandb.login(host='https://stability.wandb.io')#, relogin=True)
|
633 |
+
wandb_config = {
|
634 |
+
"model_name": model_name,
|
635 |
+
"batch_size": batch_size,
|
636 |
+
"num_epochs": num_epochs,
|
637 |
+
"use_image_aug": use_image_aug,
|
638 |
+
"max_lr": max_lr,
|
639 |
+
"lr_scheduler_type": lr_scheduler_type,
|
640 |
+
"mixup_pct": mixup_pct,
|
641 |
+
"num_train": num_train,
|
642 |
+
"num_test": num_test,
|
643 |
+
"seed": seed,
|
644 |
+
"distributed": distributed,
|
645 |
+
"num_devices": num_devices,
|
646 |
+
"world_size": world_size,
|
647 |
+
}
|
648 |
+
print("wandb_config:\n",wandb_config)
|
649 |
+
if False: # wandb_auto_resume
|
650 |
+
print("wandb_id:",model_name)
|
651 |
+
wandb.init(
|
652 |
+
id = model_name,
|
653 |
+
project=wandb_project,
|
654 |
+
name=wandb_run,
|
655 |
+
config=wandb_config,
|
656 |
+
notes=wandb_notes,
|
657 |
+
resume="allow",
|
658 |
+
)
|
659 |
+
else:
|
660 |
+
wandb.init(
|
661 |
+
project=wandb_project,
|
662 |
+
name=model_name,
|
663 |
+
config=wandb_config,
|
664 |
+
notes=wandb_notes,
|
665 |
+
)
|
666 |
+
else:
|
667 |
+
wandb_log = False
|
668 |
+
|
669 |
+
|
670 |
+
# # More custom functions
|
671 |
+
|
672 |
+
# In[26]:
|
673 |
+
|
674 |
+
|
675 |
+
# using the same preprocessing as was used in MindEye + BrainDiffuser
|
676 |
+
pixcorr_preprocess = transforms.Compose([
|
677 |
+
transforms.Resize(425, interpolation=transforms.InterpolationMode.BILINEAR),
|
678 |
+
])
|
679 |
+
def pixcorr(images,brains):
|
680 |
+
# Flatten images while keeping the batch dimension
|
681 |
+
all_images_flattened = pixcorr_preprocess(images).reshape(len(images), -1)
|
682 |
+
all_brain_recons_flattened = pixcorr_preprocess(brains).view(len(brains), -1)
|
683 |
+
corrmean = torch.diag(utils.batchwise_pearson_correlation(all_images_flattened, all_brain_recons_flattened)).mean()
|
684 |
+
return corrmean
|
685 |
+
|
686 |
+
|
687 |
+
# # Main
|
688 |
+
|
689 |
+
# In[27]:
|
690 |
+
|
691 |
+
|
692 |
+
epoch = 0
|
693 |
+
losses, test_losses, lrs = [], [], []
|
694 |
+
best_test_loss = 1e9
|
695 |
+
soft_loss_temps = utils.cosine_anneal(0.004, 0.0075, num_epochs - int(mixup_pct * num_epochs))
|
696 |
+
|
697 |
+
# Optionally resume from checkpoint #
|
698 |
+
if resume_from_ckpt:
|
699 |
+
print("\n---resuming from last.pth ckpt---\n")
|
700 |
+
try:
|
701 |
+
checkpoint = torch.load(outdir+'/last.pth', map_location='cpu')
|
702 |
+
except:
|
703 |
+
print('last.pth failed... trying last_backup.pth')
|
704 |
+
checkpoint = torch.load(outdir+'/last_backup.pth', map_location='cpu')
|
705 |
+
epoch = checkpoint['epoch']
|
706 |
+
print("Epoch",epoch)
|
707 |
+
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
|
708 |
+
lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
|
709 |
+
diffusion_diffuser.load_state_dict(checkpoint['model_state_dict'])
|
710 |
+
del checkpoint
|
711 |
+
elif wandb_log:
|
712 |
+
if wandb.run.resumed:
|
713 |
+
print("\n---resuming from last.pth ckpt---\n")
|
714 |
+
try:
|
715 |
+
checkpoint = torch.load(outdir+'/last.pth', map_location='cpu')
|
716 |
+
except:
|
717 |
+
print('last.pth failed... trying last_backup.pth')
|
718 |
+
checkpoint = torch.load(outdir+'/last_backup.pth', map_location='cpu')
|
719 |
+
epoch = checkpoint['epoch']
|
720 |
+
print("Epoch",epoch)
|
721 |
+
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
|
722 |
+
lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
|
723 |
+
diffusion_diffuser.load_state_dict(checkpoint['model_state_dict'])
|
724 |
+
del checkpoint
|
725 |
+
torch.cuda.empty_cache()
|
726 |
+
|
727 |
+
|
728 |
+
# In[28]:
|
729 |
+
|
730 |
+
|
731 |
+
model, optimizer, train_dl, test_dl, lr_scheduler = accelerator.prepare(
|
732 |
+
model, optimizer, train_dl, test_dl, lr_scheduler
|
733 |
+
)
|
734 |
+
|
735 |
+
|
736 |
+
# In[29]:
|
737 |
+
no_more = False
|
738 |
+
|
739 |
+
|
740 |
+
print(f"{model_name} starting with epoch {epoch} / {num_epochs}")
|
741 |
+
progress_bar = tqdm(range(0,num_epochs), ncols=1200, disable=(local_rank!=0))
|
742 |
+
test_image, test_voxel = None, None
|
743 |
+
mse = nn.MSELoss()
|
744 |
+
for epoch in progress_bar:
|
745 |
+
model.train()
|
746 |
+
|
747 |
+
fwd_percent_correct = 0.
|
748 |
+
bwd_percent_correct = 0.
|
749 |
+
test_fwd_percent_correct = 0.
|
750 |
+
test_bwd_percent_correct = 0.
|
751 |
+
|
752 |
+
loss_clip_total = 0.
|
753 |
+
loss_blurry_total = 0.
|
754 |
+
test_loss_clip_total = 0.
|
755 |
+
test_loss_blurry_total = 0.
|
756 |
+
|
757 |
+
blurry_pixcorr = 0.
|
758 |
+
test_blurry_pixcorr = 0. # needs >.456 to beat low-level subj01 results in mindeye v1
|
759 |
+
|
760 |
+
for train_i, (behav, past_behav, future_behav, old_behav) in enumerate(train_dl):
|
761 |
+
#if epoch == 0 or epoch == 1:
|
762 |
+
# break
|
763 |
+
with torch.cuda.amp.autocast():
|
764 |
+
optimizer.zero_grad()
|
765 |
+
|
766 |
+
voxel = voxels[behav[:,0,5].cpu().long()].to(device)
|
767 |
+
|
768 |
+
image = images[behav[:,0,0].cpu().long()].to(device).float()
|
769 |
+
|
770 |
+
past_15_voxels = voxels[past_behav[:,:,5].cpu().long()].to(device) # batch_size, 15, 15279
|
771 |
+
past_15_times = torch.Tensor([i for i in range(15)]).to(device) # 15
|
772 |
+
|
773 |
+
blurry_image_enc = autoenc.encode(image).latent_dist.mode()
|
774 |
+
|
775 |
+
if use_image_aug: image = img_augment(image)
|
776 |
+
|
777 |
+
clip_target = clip_model.embed_image(image)
|
778 |
+
assert not torch.any(torch.isnan(clip_target))
|
779 |
+
|
780 |
+
if epoch < int(mixup_pct * num_epochs):
|
781 |
+
voxel, perm, betas, select = utils.mixco(voxel)
|
782 |
+
|
783 |
+
# reshape past voxels to be (batch_size * 15, 15279)
|
784 |
+
past_15_voxels = past_15_voxels.reshape(-1, past_15_voxels.shape[-1])
|
785 |
+
past_15_times = past_15_times.repeat(voxel.shape[0], 1)
|
786 |
+
past_15_times = past_15_times.reshape(-1)
|
787 |
+
|
788 |
+
#print(past_15_voxels.shape, past_15_times.shape)
|
789 |
+
|
790 |
+
embeds_past_voxels = model.memory_encoder(past_15_voxels, past_15_times)
|
791 |
+
#print(embeds_past_voxels.shape)
|
792 |
+
embeds_past_voxels = embeds_past_voxels.reshape(voxel.shape[0], 15, -1)
|
793 |
+
#print(embeds_past_voxels.shape)
|
794 |
+
information_past_voxels = model.memory_compressor(embeds_past_voxels)
|
795 |
+
|
796 |
+
|
797 |
+
voxel_ridge = torch.cat([model.ridge(voxel), information_past_voxels], dim=-1)
|
798 |
+
|
799 |
+
clip_voxels, blurry_image_enc_ = model.backbone(voxel_ridge)
|
800 |
+
|
801 |
+
clip_voxels_norm = nn.functional.normalize(clip_voxels.flatten(1), dim=-1)
|
802 |
+
clip_target_norm = nn.functional.normalize(clip_target.flatten(1), dim=-1)
|
803 |
+
|
804 |
+
if epoch < int(mixup_pct * num_epochs):
|
805 |
+
loss_clip = utils.mixco_nce(
|
806 |
+
clip_voxels_norm,
|
807 |
+
clip_target_norm,
|
808 |
+
temp=.006,
|
809 |
+
perm=perm, betas=betas, select=select)
|
810 |
+
else:
|
811 |
+
epoch_temp = soft_loss_temps[epoch-int(mixup_pct*num_epochs)]
|
812 |
+
loss_clip = utils.soft_clip_loss(
|
813 |
+
clip_voxels_norm,
|
814 |
+
clip_target_norm,
|
815 |
+
temp=epoch_temp)
|
816 |
+
|
817 |
+
loss_blurry = mse(blurry_image_enc_, blurry_image_enc)
|
818 |
+
|
819 |
+
loss_clip_total += loss_clip.item()
|
820 |
+
loss_blurry_total += loss_blurry.item()
|
821 |
+
|
822 |
+
loss = loss_blurry + loss_clip
|
823 |
+
|
824 |
+
|
825 |
+
print('voxel', voxel.shape, voxel)
|
826 |
+
print('image', image.shape, image)
|
827 |
+
print('past_15_voxels', past_15_voxels.shape)
|
828 |
+
print('past_15_times', past_15_times.shape)
|
829 |
+
print('embeds_past_voxels', embeds_past_voxels.shape)
|
830 |
+
print('information_past_voxels', information_past_voxels.shape)
|
831 |
+
print('voxel_ridge', voxel_ridge.shape)
|
832 |
+
print('clip_target', clip_target.shape)
|
833 |
+
print('clip_voxels', clip_voxels.shape)
|
834 |
+
print('clip_voxels_norm', clip_voxels_norm.shape)
|
835 |
+
print('clip_target_norm', clip_target_norm.shape)
|
836 |
+
print('loss_clip_total', loss_clip_total)
|
837 |
+
print('loss_blurry_total', loss_blurry_total)
|
838 |
+
print('loss_clip', loss_clip)
|
839 |
+
print('loss_blurry', loss_blurry)
|
840 |
+
print('train_i', train_i)
|
841 |
+
print('epoch', epoch)
|
842 |
+
|
843 |
+
e = utils.check_loss(loss)
|
844 |
+
if e == 'NaN loss':
|
845 |
+
no_more = True
|
846 |
+
print("saving ckpt")
|
847 |
+
save_ckpt(f'error')
|
848 |
+
# save all the tensors
|
849 |
+
torch.save({
|
850 |
+
'voxel': voxel,
|
851 |
+
'image': image,
|
852 |
+
'past_15_voxels': past_15_voxels,
|
853 |
+
'past_15_times': past_15_times,
|
854 |
+
'embeds_past_voxels': embeds_past_voxels,
|
855 |
+
'information_past_voxels': information_past_voxels,
|
856 |
+
'voxel_ridge': voxel_ridge,
|
857 |
+
'blurry_image_enc': blurry_image_enc,
|
858 |
+
'clip_target': clip_target,
|
859 |
+
'clip_voxels': clip_voxels,
|
860 |
+
'blurry_image_enc_': blurry_image_enc_,
|
861 |
+
'clip_voxels_norm': clip_voxels_norm,
|
862 |
+
'clip_target_norm': clip_target_norm,
|
863 |
+
'loss': loss,
|
864 |
+
'loss_clip': loss_clip,
|
865 |
+
'loss_blurry': loss_blurry,
|
866 |
+
'loss_clip_total': loss_clip_total,
|
867 |
+
'loss_blurry_total': loss_blurry_total,
|
868 |
+
'train_i': train_i,
|
869 |
+
'epoch': epoch,
|
870 |
+
'model_state_dict': model.state_dict(),
|
871 |
+
}, outdir+f'/error_tensors.pth')
|
872 |
+
|
873 |
+
print("Error with loss here")
|
874 |
+
print('voxel', voxel.shape, voxel)
|
875 |
+
print('image', image.shape, image)
|
876 |
+
print('past_15_voxels', past_15_voxels.shape, past_15_voxels)
|
877 |
+
print('past_15_times', past_15_times.shape, past_15_times)
|
878 |
+
print('embeds_past_voxels', embeds_past_voxels.shape, embeds_past_voxels)
|
879 |
+
print('information_past_voxels', information_past_voxels.shape, information_past_voxels)
|
880 |
+
print('voxel_ridge', voxel_ridge.shape, voxel_ridge)
|
881 |
+
print('clip_target', clip_target.shape, clip_target)
|
882 |
+
print('clip_voxels', clip_voxels.shape, clip_voxels)
|
883 |
+
print('clip_voxels_norm', clip_voxels_norm.shape, clip_voxels_norm)
|
884 |
+
print('clip_target_norm', clip_target_norm.shape, clip_target_norm)
|
885 |
+
print('loss_clip_total', loss_clip_total)
|
886 |
+
print('loss_blurry_total', loss_blurry_total)
|
887 |
+
print('loss_clip', loss_clip)
|
888 |
+
print('loss_blurry', loss_blurry)
|
889 |
+
print('train_i', train_i)
|
890 |
+
print('epoch', epoch)
|
891 |
+
|
892 |
+
|
893 |
+
|
894 |
+
|
895 |
+
|
896 |
+
accelerator.backward(loss)
|
897 |
+
optimizer.step()
|
898 |
+
|
899 |
+
losses.append(loss.item())
|
900 |
+
lrs.append(optimizer.param_groups[0]['lr'])
|
901 |
+
|
902 |
+
# forward and backward top 1 accuracy
|
903 |
+
labels = torch.arange(len(clip_target_norm)).to(clip_voxels_norm.device)
|
904 |
+
fwd_percent_correct += utils.topk(utils.batchwise_cosine_similarity(clip_voxels_norm, clip_target_norm), labels, k=1)
|
905 |
+
bwd_percent_correct += utils.topk(utils.batchwise_cosine_similarity(clip_target_norm, clip_voxels_norm), labels, k=1)
|
906 |
+
|
907 |
+
with torch.no_grad():
|
908 |
+
# only doing pixcorr eval on a subset (8) of the samples per batch because its costly & slow to compute autoenc.decode()
|
909 |
+
random_samps = np.random.choice(np.arange(len(voxel)), size=2, replace=False)
|
910 |
+
blurry_recon_images = autoenc.decode(blurry_image_enc_[random_samps]).sample.clamp(0,1)
|
911 |
+
blurry_pixcorr += pixcorr(image[random_samps], blurry_recon_images)
|
912 |
+
|
913 |
+
if lr_scheduler_type is not None:
|
914 |
+
lr_scheduler.step()
|
915 |
+
|
916 |
+
model.eval()
|
917 |
+
for test_i, (behav, past_behav, future_behav, old_behav) in enumerate(test_dl):
|
918 |
+
print('test')
|
919 |
+
with torch.cuda.amp.autocast():
|
920 |
+
with torch.no_grad():
|
921 |
+
# all test samples should be loaded per batch such that test_i should never exceed 0
|
922 |
+
if len(behav) != num_test: print("!",len(behav),num_test)
|
923 |
+
|
924 |
+
|
925 |
+
## Average same-image repeats ##
|
926 |
+
if test_image is None:
|
927 |
+
voxel = voxels[behav[:,0,5].cpu().long()].to(device)
|
928 |
+
|
929 |
+
image = behav[:,0,0].cpu().long()
|
930 |
+
|
931 |
+
unique_image, sort_indices = torch.unique(image, return_inverse=True)
|
932 |
+
for im in unique_image:
|
933 |
+
locs = torch.where(im == image)[0]
|
934 |
+
if test_image is None:
|
935 |
+
test_image = images[im][None]
|
936 |
+
test_voxel = torch.mean(voxel[locs],axis=0)[None]
|
937 |
+
else:
|
938 |
+
test_image = torch.vstack((test_image, images[im][None]))
|
939 |
+
test_voxel = torch.vstack((test_voxel, torch.mean(voxel[locs],axis=0)[None]))
|
940 |
+
|
941 |
+
# sample of batch_size
|
942 |
+
random_indices = torch.arange(len(test_voxel))[:batch_size] #torch.randperm(len(test_voxel))[:300]
|
943 |
+
voxel = test_voxel[random_indices].to(device)
|
944 |
+
image = test_image[random_indices].to(device)
|
945 |
+
|
946 |
+
current_past_behav = past_behav[random_indices]
|
947 |
+
|
948 |
+
past_15_voxels = voxels[current_past_behav[:,:,5].cpu().long()].to(device) # batch_size, 15, 15279
|
949 |
+
past_15_times = torch.Tensor([i for i in range(15)]).to(device) # 15
|
950 |
+
|
951 |
+
assert len(image) == batch_size
|
952 |
+
|
953 |
+
blurry_image_enc = autoenc.encode(image).latent_dist.mode()
|
954 |
+
|
955 |
+
clip_target = clip_model.embed_image(image.float())
|
956 |
+
|
957 |
+
past_15_voxels = past_15_voxels.reshape(-1, past_15_voxels.shape[-1])
|
958 |
+
past_15_times = past_15_times.repeat(voxel.shape[0], 1)
|
959 |
+
past_15_times = past_15_times.reshape(-1)
|
960 |
+
|
961 |
+
print(past_15_voxels.shape, past_15_times.shape)
|
962 |
+
|
963 |
+
embeds_past_voxels = model.memory_encoder(past_15_voxels, past_15_times)
|
964 |
+
embeds_past_voxels = embeds_past_voxels.reshape(batch_size, 15, -1)
|
965 |
+
information_past_voxels = model.memory_compressor(embeds_past_voxels)
|
966 |
+
|
967 |
+
|
968 |
+
voxel_ridge = torch.cat([model.ridge(voxel), information_past_voxels], dim=-1)
|
969 |
+
|
970 |
+
clip_voxels, blurry_image_enc_ = model.backbone(voxel_ridge)
|
971 |
+
|
972 |
+
clip_voxels_norm = nn.functional.normalize(clip_voxels.flatten(1), dim=-1)
|
973 |
+
clip_target_norm = nn.functional.normalize(clip_target.flatten(1), dim=-1)
|
974 |
+
|
975 |
+
loss_clip = utils.soft_clip_loss(
|
976 |
+
clip_voxels_norm,
|
977 |
+
clip_target_norm,
|
978 |
+
temp=.006)
|
979 |
+
|
980 |
+
loss_blurry = mse(blurry_image_enc_, blurry_image_enc)
|
981 |
+
|
982 |
+
loss = loss_blurry + loss_clip
|
983 |
+
|
984 |
+
utils.check_loss(loss)
|
985 |
+
|
986 |
+
test_losses.append(loss.item())
|
987 |
+
|
988 |
+
# forward and backward top 1 accuracy
|
989 |
+
labels = torch.arange(len(clip_target_norm)).to(clip_voxels_norm.device)
|
990 |
+
test_fwd_percent_correct += utils.topk(utils.batchwise_cosine_similarity(clip_voxels_norm, clip_target_norm), labels, k=1)
|
991 |
+
test_bwd_percent_correct += utils.topk(utils.batchwise_cosine_similarity(clip_target_norm, clip_voxels_norm), labels, k=1)
|
992 |
+
|
993 |
+
# halving the batch size because the decoder is computationally heavy
|
994 |
+
blurry_recon_images = autoenc.decode(blurry_image_enc_[:len(voxel)//2]).sample.clamp(0,1)
|
995 |
+
blurry_recon_images = torch.vstack((blurry_recon_images, autoenc.decode(blurry_image_enc_[len(voxel)//2:]).sample.clamp(0,1)))
|
996 |
+
test_blurry_pixcorr += pixcorr(image, blurry_recon_images)
|
997 |
+
|
998 |
+
# transform blurry recon latents to images and plot it
|
999 |
+
fig, axes = plt.subplots(1, 4, figsize=(8, 4))
|
1000 |
+
axes[0].imshow(utils.torch_to_Image(image[[0]]))
|
1001 |
+
axes[1].imshow(utils.torch_to_Image(autoenc.decode(blurry_image_enc_[[0]]).sample.clamp(0,1)))
|
1002 |
+
axes[2].imshow(utils.torch_to_Image(image[[1]]))
|
1003 |
+
axes[3].imshow(utils.torch_to_Image(autoenc.decode(blurry_image_enc_[[1]]).sample.clamp(0,1)))
|
1004 |
+
axes[0].axis('off'); axes[1].axis('off'); axes[2].axis('off'); axes[3].axis('off')
|
1005 |
+
plt.show()
|
1006 |
+
|
1007 |
+
if local_rank==0:
|
1008 |
+
# if utils.is_interactive(): clear_output(wait=True)
|
1009 |
+
assert (test_i+1) == 1
|
1010 |
+
logs = {"train/loss": np.mean(losses[-(train_i+1):]),
|
1011 |
+
"test/loss": np.mean(test_losses[-(test_i+1):]),
|
1012 |
+
"train/lr": lrs[-1],
|
1013 |
+
"train/num_steps": len(losses),
|
1014 |
+
"test/num_steps": len(test_losses),
|
1015 |
+
"train/fwd_pct_correct": fwd_percent_correct / (train_i + 1),
|
1016 |
+
"train/bwd_pct_correct": bwd_percent_correct / (train_i + 1),
|
1017 |
+
"test/test_fwd_pct_correct": test_fwd_percent_correct / (test_i + 1),
|
1018 |
+
"test/test_bwd_pct_correct": test_bwd_percent_correct / (test_i + 1),
|
1019 |
+
"train/loss_clip_total": loss_clip_total / (train_i + 1),
|
1020 |
+
"train/loss_blurry_total": loss_blurry_total / (train_i + 1),
|
1021 |
+
"test/loss_clip_total": test_loss_clip_total / (test_i + 1),
|
1022 |
+
"test/loss_blurry_total": test_loss_blurry_total / (test_i + 1),
|
1023 |
+
"train/blurry_pixcorr": blurry_pixcorr / (train_i + 1),
|
1024 |
+
"test/blurry_pixcorr": test_blurry_pixcorr / (test_i + 1),
|
1025 |
+
}
|
1026 |
+
progress_bar.set_postfix(**logs)
|
1027 |
+
|
1028 |
+
# Save model checkpoint and reconstruct
|
1029 |
+
if no_more:
|
1030 |
+
print("not writing more")
|
1031 |
+
if ((epoch % ckpt_interval == 0) and (not no_more)):
|
1032 |
+
if not utils.is_interactive():
|
1033 |
+
save_ckpt(f'last')
|
1034 |
+
|
1035 |
+
if wandb_log: wandb.log(logs)
|
1036 |
+
|
1037 |
+
# wait for other GPUs to catch up if needed
|
1038 |
+
accelerator.wait_for_everyone()
|
1039 |
+
torch.cuda.empty_cache()
|
1040 |
+
gc.collect()
|
1041 |
+
|
1042 |
+
print("\n===Finished!===\n")
|
1043 |
+
if ckpt_saving:
|
1044 |
+
save_ckpt(f'last')
|
1045 |
+
if not utils.is_interactive():
|
1046 |
+
sys.exit(0)
|
1047 |
+
|
1048 |
+
|
1049 |
+
# In[ ]:
|
1050 |
+
|
1051 |
+
|
1052 |
+
plt.plot(losses)
|
1053 |
+
plt.show()
|
1054 |
+
plt.plot(test_losses)
|
1055 |
+
plt.show()
|
1056 |
+
|
src/Train-with-memory-rr-dropout.py
ADDED
@@ -0,0 +1,1040 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# coding: utf-8
|
3 |
+
|
4 |
+
# In[ ]:
|
5 |
+
|
6 |
+
|
7 |
+
# # Code to convert this notebook to .py if you want to run it via command line or with Slurm
|
8 |
+
#from subprocess import call
|
9 |
+
#command = "jupyter nbconvert Train-with-memory-rr.ipynb --to python"
|
10 |
+
#call(command,shell=True)
|
11 |
+
|
12 |
+
|
13 |
+
# In[24]:
|
14 |
+
|
15 |
+
|
16 |
+
#get_ipython().system('nvidia-smi')
|
17 |
+
|
18 |
+
|
19 |
+
# # Import packages & functions
|
20 |
+
|
21 |
+
# In[3]:
|
22 |
+
|
23 |
+
|
24 |
+
import os
|
25 |
+
import sys
|
26 |
+
import json
|
27 |
+
import argparse
|
28 |
+
import numpy as np
|
29 |
+
import math
|
30 |
+
from einops import rearrange
|
31 |
+
import time
|
32 |
+
import random
|
33 |
+
import h5py
|
34 |
+
from tqdm import tqdm
|
35 |
+
|
36 |
+
import webdataset as wds
|
37 |
+
import gc
|
38 |
+
|
39 |
+
import matplotlib.pyplot as plt
|
40 |
+
import torch
|
41 |
+
import torch.nn as nn
|
42 |
+
from torchvision import transforms
|
43 |
+
|
44 |
+
from accelerate import Accelerator, DeepSpeedPlugin
|
45 |
+
|
46 |
+
# tf32 data type is faster than standard float32
|
47 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
48 |
+
|
49 |
+
# custom functions #
|
50 |
+
import utils
|
51 |
+
|
52 |
+
global_batch_size = 512 #128
|
53 |
+
|
54 |
+
|
55 |
+
# In[4]:
|
56 |
+
|
57 |
+
|
58 |
+
### Multi-GPU config ###
|
59 |
+
local_rank = os.getenv('RANK')
|
60 |
+
if local_rank is None:
|
61 |
+
local_rank = 0
|
62 |
+
else:
|
63 |
+
local_rank = int(local_rank)
|
64 |
+
print("LOCAL RANK ", local_rank)
|
65 |
+
|
66 |
+
num_devices = torch.cuda.device_count()
|
67 |
+
if num_devices==0: num_devices = 1
|
68 |
+
|
69 |
+
accelerator = Accelerator(split_batches=False)
|
70 |
+
|
71 |
+
### UNCOMMENT BELOW STUFF TO USE DEEPSPEED (also comment out the immediately above "accelerator = " line) ###
|
72 |
+
|
73 |
+
# if num_devices <= 1 and utils.is_interactive():
|
74 |
+
# # can emulate a distributed environment for deepspeed to work in jupyter notebook
|
75 |
+
# os.environ["MASTER_ADDR"] = "localhost"
|
76 |
+
# os.environ["MASTER_PORT"] = str(np.random.randint(10000)+9000)
|
77 |
+
# os.environ["RANK"] = "0"
|
78 |
+
# os.environ["LOCAL_RANK"] = "0"
|
79 |
+
# os.environ["WORLD_SIZE"] = "1"
|
80 |
+
# os.environ["GLOBAL_BATCH_SIZE"] = str(global_batch_size) # set this to your batch size!
|
81 |
+
# global_batch_size = os.environ["GLOBAL_BATCH_SIZE"]
|
82 |
+
|
83 |
+
# # alter the deepspeed config according to your global and local batch size
|
84 |
+
# if local_rank == 0:
|
85 |
+
# with open('deepspeed_config_stage2.json', 'r') as file:
|
86 |
+
# config = json.load(file)
|
87 |
+
# config['train_batch_size'] = int(os.environ["GLOBAL_BATCH_SIZE"])
|
88 |
+
# config['train_micro_batch_size_per_gpu'] = int(os.environ["GLOBAL_BATCH_SIZE"]) // num_devices
|
89 |
+
# with open('deepspeed_config_stage2.json', 'w') as file:
|
90 |
+
# json.dump(config, file)
|
91 |
+
# else:
|
92 |
+
# # give some time for the local_rank=0 gpu to prep new deepspeed config file
|
93 |
+
# time.sleep(10)
|
94 |
+
# deepspeed_plugin = DeepSpeedPlugin("deepspeed_config_stage2.json")
|
95 |
+
# accelerator = Accelerator(split_batches=False, deepspeed_plugin=deepspeed_plugin)
|
96 |
+
|
97 |
+
|
98 |
+
# In[5]:
|
99 |
+
|
100 |
+
|
101 |
+
print("PID of this process =",os.getpid())
|
102 |
+
device = accelerator.device
|
103 |
+
print("device:",device)
|
104 |
+
num_workers = num_devices
|
105 |
+
print(accelerator.state)
|
106 |
+
world_size = accelerator.state.num_processes
|
107 |
+
distributed = not accelerator.state.distributed_type == 'NO'
|
108 |
+
print("distributed =",distributed, "num_devices =", num_devices, "local rank =", local_rank, "world size =", world_size)
|
109 |
+
print = accelerator.print # only print if local_rank=0
|
110 |
+
|
111 |
+
|
112 |
+
# # Configurations
|
113 |
+
|
114 |
+
# In[6]:
|
115 |
+
|
116 |
+
|
117 |
+
# if running this interactively, can specify jupyter_args here for argparser to use
|
118 |
+
if utils.is_interactive():
|
119 |
+
# Example use
|
120 |
+
jupyter_args = f"--data_path=/fsx/proj-fmri/shared/mindeyev2_dataset \
|
121 |
+
--model_name=test \
|
122 |
+
--subj=1 --batch_size={global_batch_size} --n_samples_save=0 \
|
123 |
+
--max_lr=3e-5 --mixup_pct=.66 --num_epochs=12 --ckpt_interval=999 --no-use_image_aug"
|
124 |
+
|
125 |
+
jupyter_args = jupyter_args.split()
|
126 |
+
print(jupyter_args)
|
127 |
+
|
128 |
+
from IPython.display import clear_output # function to clear print outputs in cell
|
129 |
+
get_ipython().run_line_magic('load_ext', 'autoreload')
|
130 |
+
# this allows you to change functions in models.py or utils.py and have this notebook automatically update with your revisions
|
131 |
+
get_ipython().run_line_magic('autoreload', '2')
|
132 |
+
|
133 |
+
|
134 |
+
# In[7]:
|
135 |
+
|
136 |
+
|
137 |
+
parser = argparse.ArgumentParser(description="Model Training Configuration")
|
138 |
+
parser.add_argument(
|
139 |
+
"--model_name", type=str, default="memory_cat_rr",
|
140 |
+
help="name of model, used for ckpt saving and wandb logging (if enabled)",
|
141 |
+
)
|
142 |
+
parser.add_argument(
|
143 |
+
"--data_path", type=str, default="/fsx/proj-fmri/shared/natural-scenes-dataset",
|
144 |
+
help="Path to where NSD data is stored / where to download it to",
|
145 |
+
)
|
146 |
+
parser.add_argument(
|
147 |
+
"--subj",type=int, default=1, choices=[1,2,5,7],
|
148 |
+
)
|
149 |
+
parser.add_argument(
|
150 |
+
"--batch_size", type=int, default=32,
|
151 |
+
help="Batch size can be increased by 10x if only training v2c and not diffusion diffuser",
|
152 |
+
)
|
153 |
+
parser.add_argument(
|
154 |
+
"--wandb_log",action=argparse.BooleanOptionalAction,default=False,
|
155 |
+
help="whether to log to wandb",
|
156 |
+
)
|
157 |
+
parser.add_argument(
|
158 |
+
"--resume_from_ckpt",action=argparse.BooleanOptionalAction,default=False,
|
159 |
+
help="if not using wandb and want to resume from a ckpt",
|
160 |
+
)
|
161 |
+
parser.add_argument(
|
162 |
+
"--wandb_project",type=str,default="stability",
|
163 |
+
help="wandb project name",
|
164 |
+
)
|
165 |
+
parser.add_argument(
|
166 |
+
"--mixup_pct",type=float,default=.33,
|
167 |
+
help="proportion of way through training when to switch from BiMixCo to SoftCLIP",
|
168 |
+
)
|
169 |
+
parser.add_argument(
|
170 |
+
"--use_image_aug",action=argparse.BooleanOptionalAction,default=True,
|
171 |
+
help="whether to use image augmentation",
|
172 |
+
)
|
173 |
+
parser.add_argument(
|
174 |
+
"--num_epochs",type=int,default=240,
|
175 |
+
help="number of epochs of training",
|
176 |
+
)
|
177 |
+
parser.add_argument(
|
178 |
+
"--lr_scheduler_type",type=str,default='cycle',choices=['cycle','linear'],
|
179 |
+
)
|
180 |
+
parser.add_argument(
|
181 |
+
"--ckpt_saving",action=argparse.BooleanOptionalAction,default=True,
|
182 |
+
)
|
183 |
+
parser.add_argument(
|
184 |
+
"--ckpt_interval",type=int,default=5,
|
185 |
+
help="save backup ckpt and reconstruct every x epochs",
|
186 |
+
)
|
187 |
+
parser.add_argument(
|
188 |
+
"--seed",type=int,default=42,
|
189 |
+
)
|
190 |
+
parser.add_argument(
|
191 |
+
"--max_lr",type=float,default=3e-4,
|
192 |
+
)
|
193 |
+
parser.add_argument(
|
194 |
+
"--n_samples_save",type=int,default=0,choices=[0,1],
|
195 |
+
help="Number of reconstructions for monitoring progress, 0 will speed up training",
|
196 |
+
)
|
197 |
+
|
198 |
+
if utils.is_interactive():
|
199 |
+
args = parser.parse_args(jupyter_args)
|
200 |
+
else:
|
201 |
+
args = parser.parse_args()
|
202 |
+
|
203 |
+
# create global variables without the args prefix
|
204 |
+
for attribute_name in vars(args).keys():
|
205 |
+
globals()[attribute_name] = getattr(args, attribute_name)
|
206 |
+
|
207 |
+
print("global batch_size", batch_size)
|
208 |
+
batch_size = int(batch_size / num_devices)
|
209 |
+
print("batch_size", batch_size)
|
210 |
+
|
211 |
+
|
212 |
+
# In[8]:
|
213 |
+
|
214 |
+
|
215 |
+
outdir = os.path.abspath(f'../train_mem_logs/{model_name}')
|
216 |
+
if not os.path.exists(outdir):
|
217 |
+
os.makedirs(outdir,exist_ok=True)
|
218 |
+
if use_image_aug:
|
219 |
+
import kornia
|
220 |
+
from kornia.augmentation.container import AugmentationSequential
|
221 |
+
img_augment = AugmentationSequential(
|
222 |
+
kornia.augmentation.RandomResizedCrop((224,224), (0.6,1), p=0.3),
|
223 |
+
kornia.augmentation.Resize((224, 224)),
|
224 |
+
kornia.augmentation.RandomHorizontalFlip(p=0.3),
|
225 |
+
kornia.augmentation.ColorJitter(brightness=0.4, contrast=0.4, saturation=0.2, hue=0.1, p=0.3),
|
226 |
+
kornia.augmentation.RandomGrayscale(p=0.3),
|
227 |
+
same_on_batch=False,
|
228 |
+
data_keys=["input"],
|
229 |
+
)
|
230 |
+
|
231 |
+
|
232 |
+
# # Prep data, models, and dataloaders
|
233 |
+
|
234 |
+
# ## Dataloader
|
235 |
+
|
236 |
+
# In[9]:
|
237 |
+
|
238 |
+
|
239 |
+
if subj==1:
|
240 |
+
num_train = 24958
|
241 |
+
num_test = 2770
|
242 |
+
test_batch_size = num_test
|
243 |
+
|
244 |
+
def my_split_by_node(urls): return urls
|
245 |
+
|
246 |
+
train_url = f"{data_path}/wds/subj0{subj}/train/" + "{0..36}.tar"
|
247 |
+
print(train_url)
|
248 |
+
|
249 |
+
train_data = wds.WebDataset(train_url,resampled=False,nodesplitter=my_split_by_node)\
|
250 |
+
.shuffle(750, initial=1500, rng=random.Random(42))\
|
251 |
+
.decode("torch")\
|
252 |
+
.rename(behav="behav.npy", past_behav="past_behav.npy", future_behav="future_behav.npy", olds_behav="olds_behav.npy")\
|
253 |
+
.to_tuple(*["behav", "past_behav", "future_behav", "olds_behav"])
|
254 |
+
train_dl = torch.utils.data.DataLoader(train_data, batch_size=batch_size, shuffle=False, drop_last=False, pin_memory=True)
|
255 |
+
|
256 |
+
test_url = f"{data_path}/wds/subj0{subj}/test/" + "0.tar"
|
257 |
+
print(test_url)
|
258 |
+
|
259 |
+
test_data = wds.WebDataset(test_url,resampled=False,nodesplitter=my_split_by_node)\
|
260 |
+
.shuffle(750, initial=1500, rng=random.Random(42))\
|
261 |
+
.decode("torch")\
|
262 |
+
.rename(behav="behav.npy", past_behav="past_behav.npy", future_behav="future_behav.npy", olds_behav="olds_behav.npy")\
|
263 |
+
.to_tuple(*["behav", "past_behav", "future_behav", "olds_behav"])
|
264 |
+
test_dl = torch.utils.data.DataLoader(test_data, batch_size=test_batch_size, shuffle=False, drop_last=False, pin_memory=True)
|
265 |
+
|
266 |
+
|
267 |
+
# ### check dataloaders are working
|
268 |
+
|
269 |
+
# In[10]:
|
270 |
+
|
271 |
+
|
272 |
+
# test_indices = []
|
273 |
+
# test_images = []
|
274 |
+
# for test_i, (behav, past_behav, future_behav, old_behav) in enumerate(test_dl):
|
275 |
+
# test_indices = np.append(test_indices, behav[:,0,5].numpy())
|
276 |
+
# test_images = np.append(test_images, behav[:,0,0].numpy())
|
277 |
+
# test_indices = test_indices.astype(np.int16)
|
278 |
+
# print(test_i, (test_i+1) * test_batch_size, len(test_indices))
|
279 |
+
# print("---\n")
|
280 |
+
|
281 |
+
# train_indices = []
|
282 |
+
# train_images = []
|
283 |
+
# for train_i, (behav, past_behav, future_behav, old_behav) in enumerate(train_dl):
|
284 |
+
# train_indices = np.append(train_indices, behav[:,0,5].long().numpy())
|
285 |
+
# train_images = np.append(train_images, behav[:,0,0].numpy())
|
286 |
+
# train_indices = train_indices.astype(np.int16)
|
287 |
+
# print(train_i, (train_i+1) * batch_size, len(train_indices))
|
288 |
+
|
289 |
+
# # train_images = np.hstack((train_images, test_images))
|
290 |
+
# # print("WARNING: ADDED TEST IMAGES TO TRAIN IMAGES")
|
291 |
+
|
292 |
+
|
293 |
+
# ## Load data and images
|
294 |
+
|
295 |
+
# In[11]:
|
296 |
+
|
297 |
+
|
298 |
+
# load betas
|
299 |
+
f = h5py.File(f'{data_path}/betas_all_subj0{subj}.hdf5', 'r')
|
300 |
+
voxels = f['betas'][:]
|
301 |
+
print(f"subj0{subj} betas loaded into memory")
|
302 |
+
voxels = torch.Tensor(voxels).to("cpu").half()
|
303 |
+
if subj==1:
|
304 |
+
voxels = torch.hstack((voxels, torch.zeros((len(voxels), 5))))
|
305 |
+
print("voxels", voxels.shape)
|
306 |
+
num_voxels = voxels.shape[-1]
|
307 |
+
|
308 |
+
# load orig images
|
309 |
+
f = h5py.File(f'{data_path}/coco_images_224_float16.hdf5', 'r')
|
310 |
+
images = f['images'][:]
|
311 |
+
images = torch.Tensor(images).to("cpu").half()
|
312 |
+
print("images", images.shape)
|
313 |
+
|
314 |
+
|
315 |
+
# ## Load models
|
316 |
+
|
317 |
+
# ### CLIP image embeddings model
|
318 |
+
|
319 |
+
# In[12]:
|
320 |
+
|
321 |
+
|
322 |
+
from models import Clipper
|
323 |
+
clip_model = Clipper("ViT-L/14", device=torch.device(f"cuda:{local_rank}"), hidden_state=True, norm_embs=True)
|
324 |
+
|
325 |
+
clip_seq_dim = 257
|
326 |
+
clip_emb_dim = 768
|
327 |
+
hidden_dim = 4096
|
328 |
+
|
329 |
+
|
330 |
+
# ### SD VAE (blurry images)
|
331 |
+
|
332 |
+
# In[13]:
|
333 |
+
|
334 |
+
|
335 |
+
from diffusers import AutoencoderKL
|
336 |
+
autoenc = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16, cache_dir="/fsx/proj-fmri/shared/cache")
|
337 |
+
# autoenc.load_state_dict(torch.load('../train_logs/sdxl_vae_normed/best.pth')["model_state_dict"])
|
338 |
+
autoenc.eval()
|
339 |
+
autoenc.requires_grad_(False)
|
340 |
+
autoenc.to(device)
|
341 |
+
utils.count_params(autoenc)
|
342 |
+
|
343 |
+
|
344 |
+
# ### MindEye modules
|
345 |
+
|
346 |
+
# In[14]:
|
347 |
+
|
348 |
+
|
349 |
+
class MindEyeModule(nn.Module):
|
350 |
+
def __init__(self):
|
351 |
+
super(MindEyeModule, self).__init__()
|
352 |
+
def forward(self, x):
|
353 |
+
return x
|
354 |
+
|
355 |
+
model = MindEyeModule()
|
356 |
+
model
|
357 |
+
|
358 |
+
|
359 |
+
# In[15]:
|
360 |
+
|
361 |
+
|
362 |
+
time_embedding_dim = 512
|
363 |
+
|
364 |
+
class RidgeRegression(torch.nn.Module):
|
365 |
+
# make sure to add weight_decay when initializing optimizer
|
366 |
+
def __init__(self, input_size, out_features):
|
367 |
+
super(RidgeRegression, self).__init__()
|
368 |
+
self.out_features = out_features
|
369 |
+
self.linear = torch.nn.Linear(input_size, out_features)
|
370 |
+
def forward(self, x):
|
371 |
+
return self.linear(x)
|
372 |
+
|
373 |
+
model.ridge = RidgeRegression(voxels.shape[1] + time_embedding_dim, out_features=hidden_dim)
|
374 |
+
utils.count_params(model.ridge)
|
375 |
+
utils.count_params(model)
|
376 |
+
|
377 |
+
b = torch.randn((2,1,voxels.shape[1]))
|
378 |
+
time_emb_test = torch.randn((2,1,time_embedding_dim))
|
379 |
+
print(b.shape, model.ridge(torch.cat((b,time_emb_test),dim=-1)).shape)
|
380 |
+
|
381 |
+
|
382 |
+
# In[16]:
|
383 |
+
|
384 |
+
|
385 |
+
from functools import partial
|
386 |
+
from diffusers.models.vae import Decoder
|
387 |
+
class BrainNetwork(nn.Module):
|
388 |
+
def __init__(self, out_dim=768, in_dim=15724, clip_size=768, h=4096, n_blocks=4, norm_type='ln', act_first=False, drop=.75, blurry_dim=16):
|
389 |
+
super().__init__()
|
390 |
+
self.blurry_dim = blurry_dim
|
391 |
+
norm_func = partial(nn.BatchNorm1d, num_features=h) if norm_type == 'bn' else partial(nn.LayerNorm, normalized_shape=h)
|
392 |
+
act_fn = partial(nn.ReLU, inplace=True) if norm_type == 'bn' else nn.GELU
|
393 |
+
act_and_norm = (act_fn, norm_func) if act_first else (norm_func, act_fn)
|
394 |
+
self.lin0 = nn.Linear(in_dim, h)
|
395 |
+
self.mlp = nn.ModuleList([
|
396 |
+
nn.Sequential(
|
397 |
+
nn.Linear(h, h),
|
398 |
+
*[item() for item in act_and_norm],
|
399 |
+
nn.Dropout(drop)
|
400 |
+
) for _ in range(n_blocks)
|
401 |
+
])
|
402 |
+
self.lin1 = nn.Linear(h, out_dim, bias=True)
|
403 |
+
self.blin1 = nn.Linear(out_dim, blurry_dim, bias=True)
|
404 |
+
self.n_blocks = n_blocks
|
405 |
+
self.clip_size = clip_size
|
406 |
+
self.clip_proj = nn.Sequential(
|
407 |
+
nn.LayerNorm(clip_size),
|
408 |
+
nn.GELU(),
|
409 |
+
nn.Linear(clip_size, 2048),
|
410 |
+
nn.LayerNorm(2048),
|
411 |
+
nn.GELU(),
|
412 |
+
nn.Linear(2048, 2048),
|
413 |
+
nn.LayerNorm(2048),
|
414 |
+
nn.GELU(),
|
415 |
+
nn.Linear(2048, clip_size)
|
416 |
+
)
|
417 |
+
self.upsampler = Decoder(
|
418 |
+
in_channels=64,
|
419 |
+
out_channels=4,
|
420 |
+
up_block_types=["UpDecoderBlock2D","UpDecoderBlock2D","UpDecoderBlock2D"],
|
421 |
+
block_out_channels=[64, 128, 256],
|
422 |
+
layers_per_block=1,
|
423 |
+
)
|
424 |
+
|
425 |
+
def forward(self, x):
|
426 |
+
x = self.lin0(x)
|
427 |
+
residual = x
|
428 |
+
for res_block in range(self.n_blocks):
|
429 |
+
x = self.mlp[res_block](x)
|
430 |
+
x += residual
|
431 |
+
residual = x
|
432 |
+
x = x.reshape(len(x), -1)
|
433 |
+
x = self.lin1(x)
|
434 |
+
b = self.blin1(x)
|
435 |
+
b = self.upsampler(b.reshape(len(b), -1, 7, 7))
|
436 |
+
c = self.clip_proj(x.reshape(len(x), -1, self.clip_size))
|
437 |
+
return c, b
|
438 |
+
|
439 |
+
model.backbone = BrainNetwork(h=2048, in_dim=hidden_dim*2, clip_size=clip_emb_dim, out_dim=clip_emb_dim*clip_seq_dim, blurry_dim=64*7*7)
|
440 |
+
utils.count_params(model.backbone)
|
441 |
+
utils.count_params(model)
|
442 |
+
|
443 |
+
b = torch.randn((2,8192))
|
444 |
+
print(b.shape)
|
445 |
+
clip_, blur_ = model.backbone(b)
|
446 |
+
print(clip_.shape, blur_.shape)
|
447 |
+
|
448 |
+
|
449 |
+
# In[17]:
|
450 |
+
|
451 |
+
|
452 |
+
# memory model
|
453 |
+
|
454 |
+
from timm.layers.mlp import Mlp
|
455 |
+
|
456 |
+
|
457 |
+
|
458 |
+
class MemoryDropout(nn.Module):
|
459 |
+
def __init__(self, p):
|
460 |
+
super(MemoryDropout, self).__init__()
|
461 |
+
self.p = p
|
462 |
+
|
463 |
+
def forward(self, x):
|
464 |
+
if self.training:
|
465 |
+
mask = torch.zeros(x.size(0), x.size(1)).bernoulli_(1 - self.p).unsqueeze(2).expand_as(x)
|
466 |
+
mask = mask.to(x.device)
|
467 |
+
x = x * mask / (1 - self.p)
|
468 |
+
return x
|
469 |
+
|
470 |
+
memory_dropout_percentage = 0.75
|
471 |
+
memory_dropout = MemoryDropout(memory_dropout_percentage)
|
472 |
+
|
473 |
+
class MemoryEncoder(nn.Module):
|
474 |
+
def __init__(self, in_dim=15279, out_dim=768, h=4096, num_past_voxels=15, embedding_time_dim = 512, n_blocks=4, norm_type='ln', act_first=False, drop=.85):
|
475 |
+
super().__init__()
|
476 |
+
norm_func = partial(nn.BatchNorm1d, num_features=h) if norm_type == 'bn' else partial(nn.LayerNorm, normalized_shape=h)
|
477 |
+
act_fn = partial(nn.ReLU, inplace=True) if norm_type == 'bn' else nn.GELU
|
478 |
+
act_and_norm = (act_fn, norm_func) if act_first else (norm_func, act_fn)
|
479 |
+
self.out_dim = out_dim
|
480 |
+
self.embedding_time = nn.Embedding(num_past_voxels, embedding_time_dim)
|
481 |
+
self.final_input_dim = in_dim + embedding_time_dim
|
482 |
+
self.lin0 = nn.Linear(self.final_input_dim, h)
|
483 |
+
self.mlp = nn.ModuleList([
|
484 |
+
nn.Sequential(
|
485 |
+
nn.Linear(h, h),
|
486 |
+
*[item() for item in act_and_norm],
|
487 |
+
nn.Dropout(drop)
|
488 |
+
) for _ in range(n_blocks)
|
489 |
+
])
|
490 |
+
self.lin1 = nn.Linear(h, out_dim, bias=True)
|
491 |
+
self.n_blocks = n_blocks
|
492 |
+
self.num_past_voxels = num_past_voxels
|
493 |
+
self.embedding_time_dim = embedding_time_dim
|
494 |
+
self.memory = nn.Parameter(torch.randn((self.num_past_voxels, self.embedding_time_dim)))
|
495 |
+
|
496 |
+
|
497 |
+
def forward(self, x, time):
|
498 |
+
time = time.long()
|
499 |
+
time = self.embedding_time(time)
|
500 |
+
x = torch.cat((x, time), dim=-1)
|
501 |
+
x = self.lin0(x)
|
502 |
+
residual = x
|
503 |
+
for res_block in range(self.n_blocks):
|
504 |
+
x = self.mlp[res_block](x)
|
505 |
+
x += residual
|
506 |
+
residual = x
|
507 |
+
x = x.reshape(len(x), -1)
|
508 |
+
x = self.lin1(x)
|
509 |
+
return x
|
510 |
+
|
511 |
+
# # test the memory encoder
|
512 |
+
# memory_encoder = MemoryEncoder(in_dim=voxels.shape[1], out_dim=hidden_dim, num_past_voxels=15, embedding_time_dim=512)
|
513 |
+
|
514 |
+
# device = torch.device("cpu")
|
515 |
+
# memory_encoder.to(device)
|
516 |
+
|
517 |
+
# # count params
|
518 |
+
# total_parameters = 0
|
519 |
+
# for parameter in memory_encoder.parameters():
|
520 |
+
# total_parameters += parameter.numel()
|
521 |
+
|
522 |
+
# rand_input = torch.randn((2, 15279)).to(device)
|
523 |
+
# rand_time = torch.randint(0, 15, (2,)).to(device)
|
524 |
+
# print(rand_input.shape, rand_time.shape)
|
525 |
+
# memory_encoder(rand_input, rand_time).shape
|
526 |
+
|
527 |
+
class MemoryCompressor(nn.Module):
|
528 |
+
def __init__(self, in_dim=768, num_past = 15, output_dim=768, h=4096, n_blocks=4, norm_type='ln', act_first=False, drop=.75):
|
529 |
+
super().__init__()
|
530 |
+
self.num_past = num_past
|
531 |
+
norm_func = partial(nn.BatchNorm1d, num_features=h) if norm_type == 'bn' else partial(nn.LayerNorm, normalized_shape=h)
|
532 |
+
act_fn = partial(nn.ReLU, inplace=True) if norm_type == 'bn' else nn.GELU
|
533 |
+
act_and_norm = (act_fn, norm_func) if act_first else (norm_func, act_fn)
|
534 |
+
self.final_input_dim = in_dim * num_past
|
535 |
+
self.lin0 = nn.Linear(self.final_input_dim, h)
|
536 |
+
self.mlp = nn.ModuleList([
|
537 |
+
nn.Sequential(
|
538 |
+
nn.Linear(h, h),
|
539 |
+
*[item() for item in act_and_norm],
|
540 |
+
nn.Dropout(drop)
|
541 |
+
) for _ in range(n_blocks)
|
542 |
+
])
|
543 |
+
self.lin1 = nn.Linear(h, output_dim, bias=True)
|
544 |
+
self.n_blocks = n_blocks
|
545 |
+
self.num_past = num_past
|
546 |
+
self.output_dim = output_dim
|
547 |
+
|
548 |
+
def forward(self, x):
|
549 |
+
# x is (batch_size, num_past, in_dim)
|
550 |
+
x = x.reshape(len(x), -1)
|
551 |
+
x = self.lin0(x)
|
552 |
+
residual = x
|
553 |
+
for res_block in range(self.n_blocks):
|
554 |
+
x = self.mlp[res_block](x)
|
555 |
+
x += residual
|
556 |
+
residual = x
|
557 |
+
x = x.reshape(len(x), -1)
|
558 |
+
x = self.lin1(x)
|
559 |
+
return x
|
560 |
+
|
561 |
+
# # test the memory compressor
|
562 |
+
# memory_compressor = MemoryCompressor(in_dim=768, num_past=15, output_dim=768)
|
563 |
+
|
564 |
+
# device = torch.device("cpu")
|
565 |
+
# memory_compressor.to(device)
|
566 |
+
|
567 |
+
# # count params
|
568 |
+
# total_parameters = 0
|
569 |
+
# for parameter in memory_compressor.parameters():
|
570 |
+
# total_parameters += parameter.numel()
|
571 |
+
|
572 |
+
# rand_input = torch.randn((2, 15, 768)).to(device)
|
573 |
+
# print(rand_input.shape)
|
574 |
+
# memory_compressor(rand_input).shape
|
575 |
+
|
576 |
+
class TimeEmbedding(nn.Module):
|
577 |
+
def __init__(self, embedding_time_dim=512, num_past_voxels=15):
|
578 |
+
super().__init__()
|
579 |
+
self.embedding_time = nn.Embedding(num_past_voxels, embedding_time_dim)
|
580 |
+
self.num_past_voxels = num_past_voxels
|
581 |
+
self.embedding_time_dim = embedding_time_dim
|
582 |
+
|
583 |
+
def forward(self, time):
|
584 |
+
# time is (batch_size,)
|
585 |
+
time = time.long()
|
586 |
+
time = self.embedding_time(time)
|
587 |
+
return time # (batch_size, embedding_time_dim)
|
588 |
+
|
589 |
+
|
590 |
+
#model.memory_encoder = MemoryEncoder(in_dim=voxels.shape[1], out_dim=4096, num_past_voxels=15, embedding_time_dim=512)
|
591 |
+
model.time_embedding = TimeEmbedding(embedding_time_dim=512, num_past_voxels=15)
|
592 |
+
model.memory_compressor = MemoryCompressor(in_dim=model.ridge.out_features, num_past=15, output_dim=4096)
|
593 |
+
|
594 |
+
#utils.count_params(model.memory_encoder)
|
595 |
+
utils.count_params(model.memory_compressor)
|
596 |
+
utils.count_params(model)
|
597 |
+
|
598 |
+
|
599 |
+
|
600 |
+
# In[18]:
|
601 |
+
|
602 |
+
|
603 |
+
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
|
604 |
+
opt_grouped_parameters = [
|
605 |
+
{'params': [p for n, p in model.ridge.named_parameters()], 'weight_decay': 1e-2},
|
606 |
+
{'params': [p for n, p in model.backbone.named_parameters() if not any(nd in n for nd in no_decay)], 'weight_decay': 1e-2},
|
607 |
+
{'params': [p for n, p in model.backbone.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0},
|
608 |
+
#{'params': [p for n, p in model.memory_encoder.named_parameters()], 'weight_decay': 1e-2},
|
609 |
+
{'params': [p for n, p in model.memory_compressor.named_parameters()], 'weight_decay': 1e-2},
|
610 |
+
{'params': [p for n, p in model.time_embedding.named_parameters()], 'weight_decay': 0.0},
|
611 |
+
]
|
612 |
+
|
613 |
+
optimizer = torch.optim.AdamW(opt_grouped_parameters, lr=max_lr, betas=(0.9, 0.95))
|
614 |
+
|
615 |
+
if lr_scheduler_type == 'linear':
|
616 |
+
lr_scheduler = torch.optim.lr_scheduler.LinearLR(
|
617 |
+
optimizer,
|
618 |
+
total_iters=int(num_epochs*(num_train*num_devices//batch_size)),
|
619 |
+
last_epoch=-1
|
620 |
+
)
|
621 |
+
elif lr_scheduler_type == 'cycle':
|
622 |
+
total_steps=int(num_epochs*(num_train*num_devices//batch_size))
|
623 |
+
lr_scheduler = torch.optim.lr_scheduler.OneCycleLR(
|
624 |
+
optimizer,
|
625 |
+
max_lr=max_lr,
|
626 |
+
total_steps=total_steps,
|
627 |
+
final_div_factor=1000,
|
628 |
+
last_epoch=-1, pct_start=2/num_epochs
|
629 |
+
)
|
630 |
+
|
631 |
+
def save_ckpt(tag):
|
632 |
+
ckpt_path = outdir+f'/{tag}.pth'
|
633 |
+
print(f'saving {ckpt_path}',flush=True)
|
634 |
+
unwrapped_model = accelerator.unwrap_model(model)
|
635 |
+
try:
|
636 |
+
torch.save({
|
637 |
+
'epoch': epoch,
|
638 |
+
'model_state_dict': unwrapped_model.state_dict(),
|
639 |
+
'optimizer_state_dict': optimizer.state_dict(),
|
640 |
+
'lr_scheduler': lr_scheduler.state_dict(),
|
641 |
+
'train_losses': losses,
|
642 |
+
'test_losses': test_losses,
|
643 |
+
'lrs': lrs,
|
644 |
+
}, ckpt_path)
|
645 |
+
except:
|
646 |
+
print("Couldn't save... moving on to prevent crashing.")
|
647 |
+
del unwrapped_model
|
648 |
+
|
649 |
+
print("\nDone with model preparations!")
|
650 |
+
utils.count_params(model)
|
651 |
+
|
652 |
+
|
653 |
+
# In[ ]:
|
654 |
+
|
655 |
+
|
656 |
+
|
657 |
+
|
658 |
+
|
659 |
+
# # Weights and Biases
|
660 |
+
|
661 |
+
# In[19]:
|
662 |
+
|
663 |
+
|
664 |
+
# params for wandb
|
665 |
+
wandb_log = True
|
666 |
+
if local_rank==0 and wandb_log: # only use main process for wandb logging
|
667 |
+
import wandb
|
668 |
+
|
669 |
+
wandb_project = 'stability'
|
670 |
+
wandb_run = model_name
|
671 |
+
wandb_notes = ''
|
672 |
+
|
673 |
+
print(f"wandb {wandb_project} run {wandb_run}")
|
674 |
+
wandb.login(host='https://stability.wandb.io')#, relogin=True)
|
675 |
+
wandb_config = {
|
676 |
+
"model_name": model_name,
|
677 |
+
"batch_size": batch_size,
|
678 |
+
"num_epochs": num_epochs,
|
679 |
+
"use_image_aug": use_image_aug,
|
680 |
+
"max_lr": max_lr,
|
681 |
+
"lr_scheduler_type": lr_scheduler_type,
|
682 |
+
"mixup_pct": mixup_pct,
|
683 |
+
"num_train": num_train,
|
684 |
+
"num_test": num_test,
|
685 |
+
"seed": seed,
|
686 |
+
"distributed": distributed,
|
687 |
+
"num_devices": num_devices,
|
688 |
+
"world_size": world_size,
|
689 |
+
}
|
690 |
+
print("wandb_config:\n",wandb_config)
|
691 |
+
if False: # wandb_auto_resume
|
692 |
+
print("wandb_id:",model_name)
|
693 |
+
wandb.init(
|
694 |
+
id = model_name,
|
695 |
+
project=wandb_project,
|
696 |
+
name=wandb_run,
|
697 |
+
config=wandb_config,
|
698 |
+
notes=wandb_notes,
|
699 |
+
resume="allow",
|
700 |
+
)
|
701 |
+
else:
|
702 |
+
wandb.init(
|
703 |
+
project=wandb_project,
|
704 |
+
name=model_name,
|
705 |
+
config=wandb_config,
|
706 |
+
notes=wandb_notes,
|
707 |
+
)
|
708 |
+
else:
|
709 |
+
wandb_log = False
|
710 |
+
|
711 |
+
|
712 |
+
# # More custom functions
|
713 |
+
|
714 |
+
# In[20]:
|
715 |
+
|
716 |
+
|
717 |
+
# using the same preprocessing as was used in MindEye + BrainDiffuser
|
718 |
+
pixcorr_preprocess = transforms.Compose([
|
719 |
+
transforms.Resize(425, interpolation=transforms.InterpolationMode.BILINEAR),
|
720 |
+
])
|
721 |
+
def pixcorr(images,brains):
|
722 |
+
# Flatten images while keeping the batch dimension
|
723 |
+
all_images_flattened = pixcorr_preprocess(images).reshape(len(images), -1)
|
724 |
+
all_brain_recons_flattened = pixcorr_preprocess(brains).view(len(brains), -1)
|
725 |
+
corrmean = torch.diag(utils.batchwise_pearson_correlation(all_images_flattened, all_brain_recons_flattened)).mean()
|
726 |
+
return corrmean
|
727 |
+
|
728 |
+
|
729 |
+
# # Main
|
730 |
+
|
731 |
+
# In[21]:
|
732 |
+
|
733 |
+
|
734 |
+
epoch = 0
|
735 |
+
losses, test_losses, lrs = [], [], []
|
736 |
+
best_test_loss = 1e9
|
737 |
+
soft_loss_temps = utils.cosine_anneal(0.004, 0.0075, num_epochs - int(mixup_pct * num_epochs))
|
738 |
+
|
739 |
+
# Optionally resume from checkpoint #
|
740 |
+
if resume_from_ckpt:
|
741 |
+
print("\n---resuming from last.pth ckpt---\n")
|
742 |
+
try:
|
743 |
+
checkpoint = torch.load(outdir+'/last.pth', map_location='cpu')
|
744 |
+
except:
|
745 |
+
print('last.pth failed... trying last_backup.pth')
|
746 |
+
checkpoint = torch.load(outdir+'/last_backup.pth', map_location='cpu')
|
747 |
+
epoch = checkpoint['epoch']
|
748 |
+
print("Epoch",epoch)
|
749 |
+
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
|
750 |
+
lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
|
751 |
+
diffusion_diffuser.load_state_dict(checkpoint['model_state_dict'])
|
752 |
+
del checkpoint
|
753 |
+
elif wandb_log:
|
754 |
+
if wandb.run.resumed:
|
755 |
+
print("\n---resuming from last.pth ckpt---\n")
|
756 |
+
try:
|
757 |
+
checkpoint = torch.load(outdir+'/last.pth', map_location='cpu')
|
758 |
+
except:
|
759 |
+
print('last.pth failed... trying last_backup.pth')
|
760 |
+
checkpoint = torch.load(outdir+'/last_backup.pth', map_location='cpu')
|
761 |
+
epoch = checkpoint['epoch']
|
762 |
+
print("Epoch",epoch)
|
763 |
+
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
|
764 |
+
lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
|
765 |
+
diffusion_diffuser.load_state_dict(checkpoint['model_state_dict'])
|
766 |
+
del checkpoint
|
767 |
+
torch.cuda.empty_cache()
|
768 |
+
|
769 |
+
|
770 |
+
# In[22]:
|
771 |
+
|
772 |
+
|
773 |
+
model, optimizer, train_dl, test_dl, lr_scheduler = accelerator.prepare(
|
774 |
+
model, optimizer, train_dl, test_dl, lr_scheduler
|
775 |
+
)
|
776 |
+
|
777 |
+
|
778 |
+
# In[23]:
|
779 |
+
|
780 |
+
|
781 |
+
print(f"{model_name} starting with epoch {epoch} / {num_epochs}")
|
782 |
+
progress_bar = tqdm(range(0,num_epochs), ncols=1200, disable=(local_rank!=0))
|
783 |
+
test_image, test_voxel = None, None
|
784 |
+
mse = nn.MSELoss()
|
785 |
+
for epoch in progress_bar:
|
786 |
+
model.train()
|
787 |
+
|
788 |
+
fwd_percent_correct = 0.
|
789 |
+
bwd_percent_correct = 0.
|
790 |
+
test_fwd_percent_correct = 0.
|
791 |
+
test_bwd_percent_correct = 0.
|
792 |
+
|
793 |
+
loss_clip_total = 0.
|
794 |
+
loss_blurry_total = 0.
|
795 |
+
test_loss_clip_total = 0.
|
796 |
+
test_loss_blurry_total = 0.
|
797 |
+
|
798 |
+
blurry_pixcorr = 0.
|
799 |
+
test_blurry_pixcorr = 0. # needs >.456 to beat low-level subj01 results in mindeye v1
|
800 |
+
|
801 |
+
for train_i, (behav, past_behav, future_behav, old_behav) in enumerate(train_dl):
|
802 |
+
#if epoch == 0 or epoch == 1:
|
803 |
+
# break
|
804 |
+
with torch.cuda.amp.autocast():
|
805 |
+
optimizer.zero_grad()
|
806 |
+
|
807 |
+
voxel = voxels[behav[:,0,5].cpu().long()].to(device)
|
808 |
+
|
809 |
+
image = images[behav[:,0,0].cpu().long()].to(device).float()
|
810 |
+
|
811 |
+
past_15_voxels = voxels[past_behav[:,:,5].cpu().long()].to(device) # batch_size, 15, 15279
|
812 |
+
past_15_times = torch.Tensor([i for i in range(15)]).to(device) # 15
|
813 |
+
|
814 |
+
blurry_image_enc = autoenc.encode(image).latent_dist.mode()
|
815 |
+
|
816 |
+
if use_image_aug: image = img_augment(image)
|
817 |
+
|
818 |
+
clip_target = clip_model.embed_image(image)
|
819 |
+
assert not torch.any(torch.isnan(clip_target))
|
820 |
+
|
821 |
+
if epoch < int(mixup_pct * num_epochs):
|
822 |
+
voxel, perm, betas, select = utils.mixco(voxel)
|
823 |
+
|
824 |
+
# reshape past voxels to be (batch_size * 15, 15279)
|
825 |
+
past_15_voxels = past_15_voxels.reshape(-1, past_15_voxels.shape[-1])
|
826 |
+
past_15_times = past_15_times.repeat(voxel.shape[0], 1)
|
827 |
+
past_15_times = past_15_times.reshape(-1)
|
828 |
+
|
829 |
+
#print(past_15_voxels.shape, past_15_times.shape)
|
830 |
+
time_embeddings = model.time_embedding(past_15_times)
|
831 |
+
past_info_full = torch.cat((past_15_voxels, time_embeddings), dim=-1)
|
832 |
+
embeds_past_voxels = model.ridge(past_info_full)
|
833 |
+
#print(embeds_past_voxels.shape)
|
834 |
+
embeds_past_voxels = embeds_past_voxels.reshape(voxel.shape[0], 15, -1)
|
835 |
+
embeds_past_voxels = memory_dropout(embeds_past_voxels)
|
836 |
+
#print(embeds_past_voxels.shape)
|
837 |
+
information_past_voxels = model.memory_compressor(embeds_past_voxels)
|
838 |
+
|
839 |
+
positional_current_voxel = torch.zeros((voxel.shape[0], time_embeddings.shape[-1])).to(voxel.device)
|
840 |
+
#print(torch.cat((voxel, positional_current_voxel), dim=-1).shape, positional_current_voxel.shape, voxel.shape)
|
841 |
+
voxel_ridge = torch.cat([model.ridge(torch.cat((voxel, positional_current_voxel), dim=-1)), information_past_voxels], dim=-1)
|
842 |
+
|
843 |
+
clip_voxels, blurry_image_enc_ = model.backbone(voxel_ridge)
|
844 |
+
|
845 |
+
clip_voxels_norm = nn.functional.normalize(clip_voxels.flatten(1), dim=-1)
|
846 |
+
clip_target_norm = nn.functional.normalize(clip_target.flatten(1), dim=-1)
|
847 |
+
|
848 |
+
if epoch < int(mixup_pct * num_epochs):
|
849 |
+
loss_clip = utils.mixco_nce(
|
850 |
+
clip_voxels_norm,
|
851 |
+
clip_target_norm,
|
852 |
+
temp=.006,
|
853 |
+
perm=perm, betas=betas, select=select)
|
854 |
+
else:
|
855 |
+
epoch_temp = soft_loss_temps[epoch-int(mixup_pct*num_epochs)]
|
856 |
+
loss_clip = utils.soft_clip_loss(
|
857 |
+
clip_voxels_norm,
|
858 |
+
clip_target_norm,
|
859 |
+
temp=epoch_temp)
|
860 |
+
|
861 |
+
loss_blurry = mse(blurry_image_enc_, blurry_image_enc)
|
862 |
+
|
863 |
+
loss_clip_total += loss_clip.item()
|
864 |
+
loss_blurry_total += loss_blurry.item()
|
865 |
+
|
866 |
+
loss = loss_blurry + loss_clip
|
867 |
+
|
868 |
+
utils.check_loss(loss)
|
869 |
+
|
870 |
+
accelerator.backward(loss)
|
871 |
+
optimizer.step()
|
872 |
+
|
873 |
+
losses.append(loss.item())
|
874 |
+
lrs.append(optimizer.param_groups[0]['lr'])
|
875 |
+
|
876 |
+
# forward and backward top 1 accuracy
|
877 |
+
labels = torch.arange(len(clip_target_norm)).to(clip_voxels_norm.device)
|
878 |
+
fwd_percent_correct += utils.topk(utils.batchwise_cosine_similarity(clip_voxels_norm, clip_target_norm), labels, k=1)
|
879 |
+
bwd_percent_correct += utils.topk(utils.batchwise_cosine_similarity(clip_target_norm, clip_voxels_norm), labels, k=1)
|
880 |
+
|
881 |
+
with torch.no_grad():
|
882 |
+
# only doing pixcorr eval on a subset (8) of the samples per batch because its costly & slow to compute autoenc.decode()
|
883 |
+
random_samps = np.random.choice(np.arange(len(voxel)), size=2, replace=False)
|
884 |
+
blurry_recon_images = autoenc.decode(blurry_image_enc_[random_samps]).sample.clamp(0,1)
|
885 |
+
blurry_pixcorr += pixcorr(image[random_samps], blurry_recon_images)
|
886 |
+
|
887 |
+
if lr_scheduler_type is not None:
|
888 |
+
lr_scheduler.step()
|
889 |
+
|
890 |
+
model.eval()
|
891 |
+
for test_i, (behav, past_behav, future_behav, old_behav) in enumerate(test_dl):
|
892 |
+
print('test')
|
893 |
+
with torch.cuda.amp.autocast():
|
894 |
+
with torch.no_grad():
|
895 |
+
# all test samples should be loaded per batch such that test_i should never exceed 0
|
896 |
+
if len(behav) != num_test: print("!",len(behav),num_test)
|
897 |
+
|
898 |
+
|
899 |
+
## Average same-image repeats ##
|
900 |
+
if test_image is None:
|
901 |
+
voxel = voxels[behav[:,0,5].cpu().long()].to(device)
|
902 |
+
|
903 |
+
image = behav[:,0,0].cpu().long()
|
904 |
+
|
905 |
+
unique_image, sort_indices = torch.unique(image, return_inverse=True)
|
906 |
+
for im in unique_image:
|
907 |
+
locs = torch.where(im == image)[0]
|
908 |
+
if test_image is None:
|
909 |
+
test_image = images[im][None]
|
910 |
+
test_voxel = torch.mean(voxel[locs],axis=0)[None]
|
911 |
+
else:
|
912 |
+
test_image = torch.vstack((test_image, images[im][None]))
|
913 |
+
test_voxel = torch.vstack((test_voxel, torch.mean(voxel[locs],axis=0)[None]))
|
914 |
+
|
915 |
+
# sample of batch_size
|
916 |
+
random_indices = torch.arange(len(test_voxel))[:batch_size] #torch.randperm(len(test_voxel))[:300]
|
917 |
+
voxel = test_voxel[random_indices].to(device)
|
918 |
+
image = test_image[random_indices].to(device)
|
919 |
+
|
920 |
+
current_past_behav = past_behav[random_indices]
|
921 |
+
|
922 |
+
past_15_voxels = voxels[current_past_behav[:,:,5].cpu().long()].to(device) # batch_size, 15, 15279
|
923 |
+
past_15_times = torch.Tensor([i for i in range(15)]).to(device) # 15
|
924 |
+
|
925 |
+
assert len(image) == batch_size
|
926 |
+
|
927 |
+
blurry_image_enc = autoenc.encode(image).latent_dist.mode()
|
928 |
+
|
929 |
+
clip_target = clip_model.embed_image(image.float())
|
930 |
+
|
931 |
+
past_15_voxels = past_15_voxels.reshape(-1, past_15_voxels.shape[-1])
|
932 |
+
past_15_times = past_15_times.repeat(voxel.shape[0], 1)
|
933 |
+
past_15_times = past_15_times.reshape(-1)
|
934 |
+
|
935 |
+
print(past_15_voxels.shape, past_15_times.shape)
|
936 |
+
|
937 |
+
#print(past_15_voxels.shape, past_15_times.shape)
|
938 |
+
time_embeddings = model.time_embedding(past_15_times)
|
939 |
+
past_info_full = torch.cat((past_15_voxels, time_embeddings), dim=-1)
|
940 |
+
embeds_past_voxels = model.ridge(past_info_full)
|
941 |
+
#print(embeds_past_voxels.shape)
|
942 |
+
embeds_past_voxels = embeds_past_voxels.reshape(voxel.shape[0], 15, -1)
|
943 |
+
#print(embeds_past_voxels.shape)
|
944 |
+
information_past_voxels = model.memory_compressor(embeds_past_voxels)
|
945 |
+
positional_current_voxel = torch.zeros((voxel.shape[0], time_embeddings.shape[-1])).to(voxel.device)
|
946 |
+
|
947 |
+
voxel_ridge = torch.cat([model.ridge(torch.cat((voxel, positional_current_voxel), dim=-1)), information_past_voxels], dim=-1)
|
948 |
+
|
949 |
+
clip_voxels, blurry_image_enc_ = model.backbone(voxel_ridge)
|
950 |
+
|
951 |
+
clip_voxels_norm = nn.functional.normalize(clip_voxels.flatten(1), dim=-1)
|
952 |
+
clip_target_norm = nn.functional.normalize(clip_target.flatten(1), dim=-1)
|
953 |
+
|
954 |
+
loss_clip = utils.soft_clip_loss(
|
955 |
+
clip_voxels_norm,
|
956 |
+
clip_target_norm,
|
957 |
+
temp=.006)
|
958 |
+
|
959 |
+
loss_blurry = mse(blurry_image_enc_, blurry_image_enc)
|
960 |
+
|
961 |
+
loss = loss_blurry + loss_clip
|
962 |
+
|
963 |
+
utils.check_loss(loss)
|
964 |
+
|
965 |
+
test_losses.append(loss.item())
|
966 |
+
|
967 |
+
# forward and backward top 1 accuracy
|
968 |
+
labels = torch.arange(len(clip_target_norm)).to(clip_voxels_norm.device)
|
969 |
+
test_fwd_percent_correct += utils.topk(utils.batchwise_cosine_similarity(clip_voxels_norm, clip_target_norm), labels, k=1)
|
970 |
+
test_bwd_percent_correct += utils.topk(utils.batchwise_cosine_similarity(clip_target_norm, clip_voxels_norm), labels, k=1)
|
971 |
+
|
972 |
+
# halving the batch size because the decoder is computationally heavy
|
973 |
+
blurry_recon_images = autoenc.decode(blurry_image_enc_[:len(voxel)//2]).sample.clamp(0,1)
|
974 |
+
blurry_recon_images = torch.vstack((blurry_recon_images, autoenc.decode(blurry_image_enc_[len(voxel)//2:]).sample.clamp(0,1)))
|
975 |
+
test_blurry_pixcorr += pixcorr(image, blurry_recon_images)
|
976 |
+
|
977 |
+
# transform blurry recon latents to images and plot it
|
978 |
+
#fig, axes = plt.subplots(1, 4, figsize=(8, 4))
|
979 |
+
#axes[0].imshow(utils.torch_to_Image(image[[0]]))
|
980 |
+
#axes[1].imshow(utils.torch_to_Image(autoenc.decode(blurry_image_enc_[[0]]).sample.clamp(0,1)))
|
981 |
+
#axes[2].imshow(utils.torch_to_Image(image[[1]]))
|
982 |
+
#axes[3].imshow(utils.torch_to_Image(autoenc.decode(blurry_image_enc_[[1]]).sample.clamp(0,1)))
|
983 |
+
#axes[0].axis('off'); axes[1].axis('off'); axes[2].axis('off'); axes[3].axis('off')
|
984 |
+
#plt.show()
|
985 |
+
|
986 |
+
|
987 |
+
if local_rank==0:
|
988 |
+
# if utils.is_interactive(): clear_output(wait=True)
|
989 |
+
with torch.cuda.amp.autocast():
|
990 |
+
with torch.no_grad():
|
991 |
+
wandb.log({"gt": [wandb.Image(utils.torch_to_Image(image[[0]])), wandb.Image(utils.torch_to_Image(image[[1]])) ]})
|
992 |
+
wandb.log({"preds": [wandb.Image(utils.torch_to_Image(autoenc.decode(blurry_image_enc_[[0]]).sample.clamp(0,1))), wandb.Image(utils.torch_to_Image(autoenc.decode(blurry_image_enc_[[1]]).sample.clamp(0,1))) ]})
|
993 |
+
|
994 |
+
assert (test_i+1) == 1
|
995 |
+
logs = {"train/loss": np.mean(losses[-(train_i+1):]),
|
996 |
+
"test/loss": np.mean(test_losses[-(test_i+1):]),
|
997 |
+
"train/lr": lrs[-1],
|
998 |
+
"train/num_steps": len(losses),
|
999 |
+
"test/num_steps": len(test_losses),
|
1000 |
+
"train/fwd_pct_correct": fwd_percent_correct / (train_i + 1),
|
1001 |
+
"train/bwd_pct_correct": bwd_percent_correct / (train_i + 1),
|
1002 |
+
"test/test_fwd_pct_correct": test_fwd_percent_correct / (test_i + 1),
|
1003 |
+
"test/test_bwd_pct_correct": test_bwd_percent_correct / (test_i + 1),
|
1004 |
+
"train/loss_clip_total": loss_clip_total / (train_i + 1),
|
1005 |
+
"train/loss_blurry_total": loss_blurry_total / (train_i + 1),
|
1006 |
+
"test/loss_clip_total": test_loss_clip_total / (test_i + 1),
|
1007 |
+
"test/loss_blurry_total": test_loss_blurry_total / (test_i + 1),
|
1008 |
+
"train/blurry_pixcorr": blurry_pixcorr / (train_i + 1),
|
1009 |
+
"test/blurry_pixcorr": test_blurry_pixcorr / (test_i + 1),
|
1010 |
+
}
|
1011 |
+
progress_bar.set_postfix(**logs)
|
1012 |
+
|
1013 |
+
# Save model checkpoint and reconstruct
|
1014 |
+
if epoch % ckpt_interval == 0:
|
1015 |
+
if not utils.is_interactive():
|
1016 |
+
save_ckpt(f'last')
|
1017 |
+
|
1018 |
+
if wandb_log: wandb.log(logs)
|
1019 |
+
|
1020 |
+
# wait for other GPUs to catch up if needed
|
1021 |
+
accelerator.wait_for_everyone()
|
1022 |
+
torch.cuda.empty_cache()
|
1023 |
+
gc.collect()
|
1024 |
+
|
1025 |
+
print("\n===Finished!===\n")
|
1026 |
+
if ckpt_saving:
|
1027 |
+
save_ckpt(f'last')
|
1028 |
+
if not utils.is_interactive():
|
1029 |
+
sys.exit(0)
|
1030 |
+
|
1031 |
+
|
1032 |
+
|
1033 |
+
# In[ ]:
|
1034 |
+
|
1035 |
+
|
1036 |
+
plt.plot(losses)
|
1037 |
+
plt.show()
|
1038 |
+
plt.plot(test_losses)
|
1039 |
+
plt.show()
|
1040 |
+
|
src/Train-with-memory-rr-mlpmix.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
src/Train-with-memory-rr.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
src/Train-with-memory-rr.py
ADDED
@@ -0,0 +1,1018 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# coding: utf-8
|
3 |
+
|
4 |
+
# In[ ]:
|
5 |
+
|
6 |
+
|
7 |
+
# # Code to convert this notebook to .py if you want to run it via command line or with Slurm
|
8 |
+
#from subprocess import call
|
9 |
+
#command = "jupyter nbconvert Train-with-memory-rr.ipynb --to python"
|
10 |
+
#call(command,shell=True)
|
11 |
+
|
12 |
+
|
13 |
+
# In[24]:
|
14 |
+
|
15 |
+
|
16 |
+
#get_ipython().system('nvidia-smi')
|
17 |
+
|
18 |
+
|
19 |
+
# # Import packages & functions
|
20 |
+
|
21 |
+
# In[3]:
|
22 |
+
|
23 |
+
|
24 |
+
import os
|
25 |
+
import sys
|
26 |
+
import json
|
27 |
+
import argparse
|
28 |
+
import numpy as np
|
29 |
+
import math
|
30 |
+
from einops import rearrange
|
31 |
+
import time
|
32 |
+
import random
|
33 |
+
import h5py
|
34 |
+
from tqdm import tqdm
|
35 |
+
|
36 |
+
import webdataset as wds
|
37 |
+
import gc
|
38 |
+
|
39 |
+
import matplotlib.pyplot as plt
|
40 |
+
import torch
|
41 |
+
import torch.nn as nn
|
42 |
+
from torchvision import transforms
|
43 |
+
|
44 |
+
from accelerate import Accelerator, DeepSpeedPlugin
|
45 |
+
|
46 |
+
# tf32 data type is faster than standard float32
|
47 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
48 |
+
|
49 |
+
# custom functions #
|
50 |
+
import utils
|
51 |
+
|
52 |
+
global_batch_size = 512 #128
|
53 |
+
|
54 |
+
|
55 |
+
# In[4]:
|
56 |
+
|
57 |
+
|
58 |
+
### Multi-GPU config ###
|
59 |
+
local_rank = os.getenv('RANK')
|
60 |
+
if local_rank is None:
|
61 |
+
local_rank = 0
|
62 |
+
else:
|
63 |
+
local_rank = int(local_rank)
|
64 |
+
print("LOCAL RANK ", local_rank)
|
65 |
+
|
66 |
+
num_devices = torch.cuda.device_count()
|
67 |
+
if num_devices==0: num_devices = 1
|
68 |
+
|
69 |
+
accelerator = Accelerator(split_batches=False)
|
70 |
+
|
71 |
+
### UNCOMMENT BELOW STUFF TO USE DEEPSPEED (also comment out the immediately above "accelerator = " line) ###
|
72 |
+
|
73 |
+
# if num_devices <= 1 and utils.is_interactive():
|
74 |
+
# # can emulate a distributed environment for deepspeed to work in jupyter notebook
|
75 |
+
# os.environ["MASTER_ADDR"] = "localhost"
|
76 |
+
# os.environ["MASTER_PORT"] = str(np.random.randint(10000)+9000)
|
77 |
+
# os.environ["RANK"] = "0"
|
78 |
+
# os.environ["LOCAL_RANK"] = "0"
|
79 |
+
# os.environ["WORLD_SIZE"] = "1"
|
80 |
+
# os.environ["GLOBAL_BATCH_SIZE"] = str(global_batch_size) # set this to your batch size!
|
81 |
+
# global_batch_size = os.environ["GLOBAL_BATCH_SIZE"]
|
82 |
+
|
83 |
+
# # alter the deepspeed config according to your global and local batch size
|
84 |
+
# if local_rank == 0:
|
85 |
+
# with open('deepspeed_config_stage2.json', 'r') as file:
|
86 |
+
# config = json.load(file)
|
87 |
+
# config['train_batch_size'] = int(os.environ["GLOBAL_BATCH_SIZE"])
|
88 |
+
# config['train_micro_batch_size_per_gpu'] = int(os.environ["GLOBAL_BATCH_SIZE"]) // num_devices
|
89 |
+
# with open('deepspeed_config_stage2.json', 'w') as file:
|
90 |
+
# json.dump(config, file)
|
91 |
+
# else:
|
92 |
+
# # give some time for the local_rank=0 gpu to prep new deepspeed config file
|
93 |
+
# time.sleep(10)
|
94 |
+
# deepspeed_plugin = DeepSpeedPlugin("deepspeed_config_stage2.json")
|
95 |
+
# accelerator = Accelerator(split_batches=False, deepspeed_plugin=deepspeed_plugin)
|
96 |
+
|
97 |
+
|
98 |
+
# In[5]:
|
99 |
+
|
100 |
+
|
101 |
+
print("PID of this process =",os.getpid())
|
102 |
+
device = accelerator.device
|
103 |
+
print("device:",device)
|
104 |
+
num_workers = num_devices
|
105 |
+
print(accelerator.state)
|
106 |
+
world_size = accelerator.state.num_processes
|
107 |
+
distributed = not accelerator.state.distributed_type == 'NO'
|
108 |
+
print("distributed =",distributed, "num_devices =", num_devices, "local rank =", local_rank, "world size =", world_size)
|
109 |
+
print = accelerator.print # only print if local_rank=0
|
110 |
+
|
111 |
+
|
112 |
+
# # Configurations
|
113 |
+
|
114 |
+
# In[6]:
|
115 |
+
|
116 |
+
|
117 |
+
# if running this interactively, can specify jupyter_args here for argparser to use
|
118 |
+
if utils.is_interactive():
|
119 |
+
# Example use
|
120 |
+
jupyter_args = f"--data_path=/fsx/proj-fmri/shared/mindeyev2_dataset \
|
121 |
+
--model_name=test \
|
122 |
+
--subj=1 --batch_size={global_batch_size} --n_samples_save=0 \
|
123 |
+
--max_lr=3e-5 --mixup_pct=.66 --num_epochs=12 --ckpt_interval=999 --no-use_image_aug"
|
124 |
+
|
125 |
+
jupyter_args = jupyter_args.split()
|
126 |
+
print(jupyter_args)
|
127 |
+
|
128 |
+
from IPython.display import clear_output # function to clear print outputs in cell
|
129 |
+
get_ipython().run_line_magic('load_ext', 'autoreload')
|
130 |
+
# this allows you to change functions in models.py or utils.py and have this notebook automatically update with your revisions
|
131 |
+
get_ipython().run_line_magic('autoreload', '2')
|
132 |
+
|
133 |
+
|
134 |
+
# In[7]:
|
135 |
+
|
136 |
+
|
137 |
+
parser = argparse.ArgumentParser(description="Model Training Configuration")
|
138 |
+
parser.add_argument(
|
139 |
+
"--model_name", type=str, default="memory_cat_rr",
|
140 |
+
help="name of model, used for ckpt saving and wandb logging (if enabled)",
|
141 |
+
)
|
142 |
+
parser.add_argument(
|
143 |
+
"--data_path", type=str, default="/fsx/proj-fmri/shared/natural-scenes-dataset",
|
144 |
+
help="Path to where NSD data is stored / where to download it to",
|
145 |
+
)
|
146 |
+
parser.add_argument(
|
147 |
+
"--subj",type=int, default=1, choices=[1,2,5,7],
|
148 |
+
)
|
149 |
+
parser.add_argument(
|
150 |
+
"--batch_size", type=int, default=32,
|
151 |
+
help="Batch size can be increased by 10x if only training v2c and not diffusion diffuser",
|
152 |
+
)
|
153 |
+
parser.add_argument(
|
154 |
+
"--wandb_log",action=argparse.BooleanOptionalAction,default=False,
|
155 |
+
help="whether to log to wandb",
|
156 |
+
)
|
157 |
+
parser.add_argument(
|
158 |
+
"--resume_from_ckpt",action=argparse.BooleanOptionalAction,default=False,
|
159 |
+
help="if not using wandb and want to resume from a ckpt",
|
160 |
+
)
|
161 |
+
parser.add_argument(
|
162 |
+
"--wandb_project",type=str,default="stability",
|
163 |
+
help="wandb project name",
|
164 |
+
)
|
165 |
+
parser.add_argument(
|
166 |
+
"--mixup_pct",type=float,default=.33,
|
167 |
+
help="proportion of way through training when to switch from BiMixCo to SoftCLIP",
|
168 |
+
)
|
169 |
+
parser.add_argument(
|
170 |
+
"--use_image_aug",action=argparse.BooleanOptionalAction,default=True,
|
171 |
+
help="whether to use image augmentation",
|
172 |
+
)
|
173 |
+
parser.add_argument(
|
174 |
+
"--num_epochs",type=int,default=240,
|
175 |
+
help="number of epochs of training",
|
176 |
+
)
|
177 |
+
parser.add_argument(
|
178 |
+
"--lr_scheduler_type",type=str,default='cycle',choices=['cycle','linear'],
|
179 |
+
)
|
180 |
+
parser.add_argument(
|
181 |
+
"--ckpt_saving",action=argparse.BooleanOptionalAction,default=True,
|
182 |
+
)
|
183 |
+
parser.add_argument(
|
184 |
+
"--ckpt_interval",type=int,default=5,
|
185 |
+
help="save backup ckpt and reconstruct every x epochs",
|
186 |
+
)
|
187 |
+
parser.add_argument(
|
188 |
+
"--seed",type=int,default=42,
|
189 |
+
)
|
190 |
+
parser.add_argument(
|
191 |
+
"--max_lr",type=float,default=3e-4,
|
192 |
+
)
|
193 |
+
parser.add_argument(
|
194 |
+
"--n_samples_save",type=int,default=0,choices=[0,1],
|
195 |
+
help="Number of reconstructions for monitoring progress, 0 will speed up training",
|
196 |
+
)
|
197 |
+
|
198 |
+
if utils.is_interactive():
|
199 |
+
args = parser.parse_args(jupyter_args)
|
200 |
+
else:
|
201 |
+
args = parser.parse_args()
|
202 |
+
|
203 |
+
# create global variables without the args prefix
|
204 |
+
for attribute_name in vars(args).keys():
|
205 |
+
globals()[attribute_name] = getattr(args, attribute_name)
|
206 |
+
|
207 |
+
print("global batch_size", batch_size)
|
208 |
+
batch_size = int(batch_size / num_devices)
|
209 |
+
print("batch_size", batch_size)
|
210 |
+
|
211 |
+
|
212 |
+
# In[8]:
|
213 |
+
|
214 |
+
|
215 |
+
outdir = os.path.abspath(f'../train_mem_logs/{model_name}')
|
216 |
+
if not os.path.exists(outdir):
|
217 |
+
os.makedirs(outdir,exist_ok=True)
|
218 |
+
if use_image_aug:
|
219 |
+
import kornia
|
220 |
+
from kornia.augmentation.container import AugmentationSequential
|
221 |
+
img_augment = AugmentationSequential(
|
222 |
+
kornia.augmentation.RandomResizedCrop((224,224), (0.6,1), p=0.3),
|
223 |
+
kornia.augmentation.Resize((224, 224)),
|
224 |
+
kornia.augmentation.RandomHorizontalFlip(p=0.3),
|
225 |
+
kornia.augmentation.ColorJitter(brightness=0.4, contrast=0.4, saturation=0.2, hue=0.1, p=0.3),
|
226 |
+
kornia.augmentation.RandomGrayscale(p=0.3),
|
227 |
+
same_on_batch=False,
|
228 |
+
data_keys=["input"],
|
229 |
+
)
|
230 |
+
|
231 |
+
|
232 |
+
# # Prep data, models, and dataloaders
|
233 |
+
|
234 |
+
# ## Dataloader
|
235 |
+
|
236 |
+
# In[9]:
|
237 |
+
|
238 |
+
|
239 |
+
if subj==1:
|
240 |
+
num_train = 24958
|
241 |
+
num_test = 2770
|
242 |
+
test_batch_size = num_test
|
243 |
+
|
244 |
+
def my_split_by_node(urls): return urls
|
245 |
+
|
246 |
+
train_url = f"{data_path}/wds/subj0{subj}/train/" + "{0..36}.tar"
|
247 |
+
print(train_url)
|
248 |
+
|
249 |
+
train_data = wds.WebDataset(train_url,resampled=False,nodesplitter=my_split_by_node)\
|
250 |
+
.shuffle(750, initial=1500, rng=random.Random(42))\
|
251 |
+
.decode("torch")\
|
252 |
+
.rename(behav="behav.npy", past_behav="past_behav.npy", future_behav="future_behav.npy", olds_behav="olds_behav.npy")\
|
253 |
+
.to_tuple(*["behav", "past_behav", "future_behav", "olds_behav"])
|
254 |
+
train_dl = torch.utils.data.DataLoader(train_data, batch_size=batch_size, shuffle=False, drop_last=False, pin_memory=True)
|
255 |
+
|
256 |
+
test_url = f"{data_path}/wds/subj0{subj}/test/" + "0.tar"
|
257 |
+
print(test_url)
|
258 |
+
|
259 |
+
test_data = wds.WebDataset(test_url,resampled=False,nodesplitter=my_split_by_node)\
|
260 |
+
.shuffle(750, initial=1500, rng=random.Random(42))\
|
261 |
+
.decode("torch")\
|
262 |
+
.rename(behav="behav.npy", past_behav="past_behav.npy", future_behav="future_behav.npy", olds_behav="olds_behav.npy")\
|
263 |
+
.to_tuple(*["behav", "past_behav", "future_behav", "olds_behav"])
|
264 |
+
test_dl = torch.utils.data.DataLoader(test_data, batch_size=test_batch_size, shuffle=False, drop_last=False, pin_memory=True)
|
265 |
+
|
266 |
+
|
267 |
+
# ### check dataloaders are working
|
268 |
+
|
269 |
+
# In[10]:
|
270 |
+
|
271 |
+
|
272 |
+
# test_indices = []
|
273 |
+
# test_images = []
|
274 |
+
# for test_i, (behav, past_behav, future_behav, old_behav) in enumerate(test_dl):
|
275 |
+
# test_indices = np.append(test_indices, behav[:,0,5].numpy())
|
276 |
+
# test_images = np.append(test_images, behav[:,0,0].numpy())
|
277 |
+
# test_indices = test_indices.astype(np.int16)
|
278 |
+
# print(test_i, (test_i+1) * test_batch_size, len(test_indices))
|
279 |
+
# print("---\n")
|
280 |
+
|
281 |
+
# train_indices = []
|
282 |
+
# train_images = []
|
283 |
+
# for train_i, (behav, past_behav, future_behav, old_behav) in enumerate(train_dl):
|
284 |
+
# train_indices = np.append(train_indices, behav[:,0,5].long().numpy())
|
285 |
+
# train_images = np.append(train_images, behav[:,0,0].numpy())
|
286 |
+
# train_indices = train_indices.astype(np.int16)
|
287 |
+
# print(train_i, (train_i+1) * batch_size, len(train_indices))
|
288 |
+
|
289 |
+
# # train_images = np.hstack((train_images, test_images))
|
290 |
+
# # print("WARNING: ADDED TEST IMAGES TO TRAIN IMAGES")
|
291 |
+
|
292 |
+
|
293 |
+
# ## Load data and images
|
294 |
+
|
295 |
+
# In[11]:
|
296 |
+
|
297 |
+
|
298 |
+
# load betas
|
299 |
+
f = h5py.File(f'{data_path}/betas_all_subj0{subj}.hdf5', 'r')
|
300 |
+
voxels = f['betas'][:]
|
301 |
+
print(f"subj0{subj} betas loaded into memory")
|
302 |
+
voxels = torch.Tensor(voxels).to("cpu").half()
|
303 |
+
if subj==1:
|
304 |
+
voxels = torch.hstack((voxels, torch.zeros((len(voxels), 5))))
|
305 |
+
print("voxels", voxels.shape)
|
306 |
+
num_voxels = voxels.shape[-1]
|
307 |
+
|
308 |
+
# load orig images
|
309 |
+
f = h5py.File(f'{data_path}/coco_images_224_float16.hdf5', 'r')
|
310 |
+
images = f['images'][:]
|
311 |
+
images = torch.Tensor(images).to("cpu").half()
|
312 |
+
print("images", images.shape)
|
313 |
+
|
314 |
+
|
315 |
+
# ## Load models
|
316 |
+
|
317 |
+
# ### CLIP image embeddings model
|
318 |
+
|
319 |
+
# In[12]:
|
320 |
+
|
321 |
+
|
322 |
+
from models import Clipper
|
323 |
+
clip_model = Clipper("ViT-L/14", device=torch.device(f"cuda:{local_rank}"), hidden_state=True, norm_embs=True)
|
324 |
+
|
325 |
+
clip_seq_dim = 257
|
326 |
+
clip_emb_dim = 768
|
327 |
+
hidden_dim = 4096
|
328 |
+
|
329 |
+
|
330 |
+
# ### SD VAE (blurry images)
|
331 |
+
|
332 |
+
# In[13]:
|
333 |
+
|
334 |
+
|
335 |
+
from diffusers import AutoencoderKL
|
336 |
+
autoenc = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16, cache_dir="/fsx/proj-fmri/shared/cache")
|
337 |
+
# autoenc.load_state_dict(torch.load('../train_logs/sdxl_vae_normed/best.pth')["model_state_dict"])
|
338 |
+
autoenc.eval()
|
339 |
+
autoenc.requires_grad_(False)
|
340 |
+
autoenc.to(device)
|
341 |
+
utils.count_params(autoenc)
|
342 |
+
|
343 |
+
|
344 |
+
# ### MindEye modules
|
345 |
+
|
346 |
+
# In[14]:
|
347 |
+
|
348 |
+
|
349 |
+
class MindEyeModule(nn.Module):
|
350 |
+
def __init__(self):
|
351 |
+
super(MindEyeModule, self).__init__()
|
352 |
+
def forward(self, x):
|
353 |
+
return x
|
354 |
+
|
355 |
+
model = MindEyeModule()
|
356 |
+
model
|
357 |
+
|
358 |
+
|
359 |
+
# In[15]:
|
360 |
+
|
361 |
+
|
362 |
+
time_embedding_dim = 512
|
363 |
+
|
364 |
+
class RidgeRegression(torch.nn.Module):
|
365 |
+
# make sure to add weight_decay when initializing optimizer
|
366 |
+
def __init__(self, input_size, out_features):
|
367 |
+
super(RidgeRegression, self).__init__()
|
368 |
+
self.out_features = out_features
|
369 |
+
self.linear = torch.nn.Linear(input_size, out_features)
|
370 |
+
def forward(self, x):
|
371 |
+
return self.linear(x)
|
372 |
+
|
373 |
+
model.ridge = RidgeRegression(voxels.shape[1] + time_embedding_dim, out_features=hidden_dim)
|
374 |
+
utils.count_params(model.ridge)
|
375 |
+
utils.count_params(model)
|
376 |
+
|
377 |
+
b = torch.randn((2,1,voxels.shape[1]))
|
378 |
+
time_emb_test = torch.randn((2,1,time_embedding_dim))
|
379 |
+
print(b.shape, model.ridge(torch.cat((b,time_emb_test),dim=-1)).shape)
|
380 |
+
|
381 |
+
|
382 |
+
# In[16]:
|
383 |
+
|
384 |
+
|
385 |
+
from functools import partial
|
386 |
+
from diffusers.models.vae import Decoder
|
387 |
+
class BrainNetwork(nn.Module):
|
388 |
+
def __init__(self, out_dim=768, in_dim=15724, clip_size=768, h=4096, n_blocks=4, norm_type='ln', act_first=False, drop=.25, blurry_dim=16):
|
389 |
+
super().__init__()
|
390 |
+
self.blurry_dim = blurry_dim
|
391 |
+
norm_func = partial(nn.BatchNorm1d, num_features=h) if norm_type == 'bn' else partial(nn.LayerNorm, normalized_shape=h)
|
392 |
+
act_fn = partial(nn.ReLU, inplace=True) if norm_type == 'bn' else nn.GELU
|
393 |
+
act_and_norm = (act_fn, norm_func) if act_first else (norm_func, act_fn)
|
394 |
+
self.lin0 = nn.Linear(in_dim, h)
|
395 |
+
self.mlp = nn.ModuleList([
|
396 |
+
nn.Sequential(
|
397 |
+
nn.Linear(h, h),
|
398 |
+
*[item() for item in act_and_norm],
|
399 |
+
nn.Dropout(drop)
|
400 |
+
) for _ in range(n_blocks)
|
401 |
+
])
|
402 |
+
self.lin1 = nn.Linear(h, out_dim, bias=True)
|
403 |
+
self.blin1 = nn.Linear(out_dim, blurry_dim, bias=True)
|
404 |
+
self.n_blocks = n_blocks
|
405 |
+
self.clip_size = clip_size
|
406 |
+
self.clip_proj = nn.Sequential(
|
407 |
+
nn.LayerNorm(clip_size),
|
408 |
+
nn.GELU(),
|
409 |
+
nn.Linear(clip_size, 2048),
|
410 |
+
nn.LayerNorm(2048),
|
411 |
+
nn.GELU(),
|
412 |
+
nn.Linear(2048, 2048),
|
413 |
+
nn.LayerNorm(2048),
|
414 |
+
nn.GELU(),
|
415 |
+
nn.Linear(2048, clip_size)
|
416 |
+
)
|
417 |
+
self.upsampler = Decoder(
|
418 |
+
in_channels=64,
|
419 |
+
out_channels=4,
|
420 |
+
up_block_types=["UpDecoderBlock2D","UpDecoderBlock2D","UpDecoderBlock2D"],
|
421 |
+
block_out_channels=[64, 128, 256],
|
422 |
+
layers_per_block=1,
|
423 |
+
)
|
424 |
+
|
425 |
+
def forward(self, x):
|
426 |
+
x = self.lin0(x)
|
427 |
+
residual = x
|
428 |
+
for res_block in range(self.n_blocks):
|
429 |
+
x = self.mlp[res_block](x)
|
430 |
+
x += residual
|
431 |
+
residual = x
|
432 |
+
x = x.reshape(len(x), -1)
|
433 |
+
x = self.lin1(x)
|
434 |
+
b = self.blin1(x)
|
435 |
+
b = self.upsampler(b.reshape(len(b), -1, 7, 7))
|
436 |
+
c = self.clip_proj(x.reshape(len(x), -1, self.clip_size))
|
437 |
+
return c, b
|
438 |
+
|
439 |
+
model.backbone = BrainNetwork(h=2048, in_dim=hidden_dim*2, clip_size=clip_emb_dim, out_dim=clip_emb_dim*clip_seq_dim, blurry_dim=64*7*7)
|
440 |
+
utils.count_params(model.backbone)
|
441 |
+
utils.count_params(model)
|
442 |
+
|
443 |
+
b = torch.randn((2,8192))
|
444 |
+
print(b.shape)
|
445 |
+
clip_, blur_ = model.backbone(b)
|
446 |
+
print(clip_.shape, blur_.shape)
|
447 |
+
|
448 |
+
|
449 |
+
# In[17]:
|
450 |
+
|
451 |
+
|
452 |
+
# memory model
|
453 |
+
|
454 |
+
from timm.layers.mlp import Mlp
|
455 |
+
|
456 |
+
class MemoryEncoder(nn.Module):
|
457 |
+
def __init__(self, in_dim=15279, out_dim=768, h=4096, num_past_voxels=15, embedding_time_dim = 512, n_blocks=4, norm_type='ln', act_first=False, drop=.25):
|
458 |
+
super().__init__()
|
459 |
+
norm_func = partial(nn.BatchNorm1d, num_features=h) if norm_type == 'bn' else partial(nn.LayerNorm, normalized_shape=h)
|
460 |
+
act_fn = partial(nn.ReLU, inplace=True) if norm_type == 'bn' else nn.GELU
|
461 |
+
act_and_norm = (act_fn, norm_func) if act_first else (norm_func, act_fn)
|
462 |
+
self.out_dim = out_dim
|
463 |
+
self.embedding_time = nn.Embedding(num_past_voxels, embedding_time_dim)
|
464 |
+
self.final_input_dim = in_dim + embedding_time_dim
|
465 |
+
self.lin0 = nn.Linear(self.final_input_dim, h)
|
466 |
+
self.mlp = nn.ModuleList([
|
467 |
+
nn.Sequential(
|
468 |
+
nn.Linear(h, h),
|
469 |
+
*[item() for item in act_and_norm],
|
470 |
+
nn.Dropout(drop)
|
471 |
+
) for _ in range(n_blocks)
|
472 |
+
])
|
473 |
+
self.lin1 = nn.Linear(h, out_dim, bias=True)
|
474 |
+
self.n_blocks = n_blocks
|
475 |
+
self.num_past_voxels = num_past_voxels
|
476 |
+
self.embedding_time_dim = embedding_time_dim
|
477 |
+
self.memory = nn.Parameter(torch.randn((self.num_past_voxels, self.embedding_time_dim)))
|
478 |
+
|
479 |
+
|
480 |
+
def forward(self, x, time):
|
481 |
+
time = time.long()
|
482 |
+
time = self.embedding_time(time)
|
483 |
+
x = torch.cat((x, time), dim=-1)
|
484 |
+
x = self.lin0(x)
|
485 |
+
residual = x
|
486 |
+
for res_block in range(self.n_blocks):
|
487 |
+
x = self.mlp[res_block](x)
|
488 |
+
x += residual
|
489 |
+
residual = x
|
490 |
+
x = x.reshape(len(x), -1)
|
491 |
+
x = self.lin1(x)
|
492 |
+
return x
|
493 |
+
|
494 |
+
# # test the memory encoder
|
495 |
+
# memory_encoder = MemoryEncoder(in_dim=voxels.shape[1], out_dim=hidden_dim, num_past_voxels=15, embedding_time_dim=512)
|
496 |
+
|
497 |
+
# device = torch.device("cpu")
|
498 |
+
# memory_encoder.to(device)
|
499 |
+
|
500 |
+
# # count params
|
501 |
+
# total_parameters = 0
|
502 |
+
# for parameter in memory_encoder.parameters():
|
503 |
+
# total_parameters += parameter.numel()
|
504 |
+
|
505 |
+
# rand_input = torch.randn((2, 15279)).to(device)
|
506 |
+
# rand_time = torch.randint(0, 15, (2,)).to(device)
|
507 |
+
# print(rand_input.shape, rand_time.shape)
|
508 |
+
# memory_encoder(rand_input, rand_time).shape
|
509 |
+
|
510 |
+
class MemoryCompressor(nn.Module):
|
511 |
+
def __init__(self, in_dim=768, num_past = 15, output_dim=768, h=4096, n_blocks=4, norm_type='ln', act_first=False, drop=.25):
|
512 |
+
super().__init__()
|
513 |
+
self.num_past = num_past
|
514 |
+
norm_func = partial(nn.BatchNorm1d, num_features=h) if norm_type == 'bn' else partial(nn.LayerNorm, normalized_shape=h)
|
515 |
+
act_fn = partial(nn.ReLU, inplace=True) if norm_type == 'bn' else nn.GELU
|
516 |
+
act_and_norm = (act_fn, norm_func) if act_first else (norm_func, act_fn)
|
517 |
+
self.final_input_dim = in_dim * num_past
|
518 |
+
self.lin0 = nn.Linear(self.final_input_dim, h)
|
519 |
+
self.mlp = nn.ModuleList([
|
520 |
+
nn.Sequential(
|
521 |
+
nn.Linear(h, h),
|
522 |
+
*[item() for item in act_and_norm],
|
523 |
+
nn.Dropout(drop)
|
524 |
+
) for _ in range(n_blocks)
|
525 |
+
])
|
526 |
+
self.lin1 = nn.Linear(h, output_dim, bias=True)
|
527 |
+
self.n_blocks = n_blocks
|
528 |
+
self.num_past = num_past
|
529 |
+
self.output_dim = output_dim
|
530 |
+
|
531 |
+
def forward(self, x):
|
532 |
+
# x is (batch_size, num_past, in_dim)
|
533 |
+
x = x.reshape(len(x), -1)
|
534 |
+
x = self.lin0(x)
|
535 |
+
residual = x
|
536 |
+
for res_block in range(self.n_blocks):
|
537 |
+
x = self.mlp[res_block](x)
|
538 |
+
x += residual
|
539 |
+
residual = x
|
540 |
+
x = x.reshape(len(x), -1)
|
541 |
+
x = self.lin1(x)
|
542 |
+
return x
|
543 |
+
|
544 |
+
# # test the memory compressor
|
545 |
+
# memory_compressor = MemoryCompressor(in_dim=768, num_past=15, output_dim=768)
|
546 |
+
|
547 |
+
# device = torch.device("cpu")
|
548 |
+
# memory_compressor.to(device)
|
549 |
+
|
550 |
+
# # count params
|
551 |
+
# total_parameters = 0
|
552 |
+
# for parameter in memory_compressor.parameters():
|
553 |
+
# total_parameters += parameter.numel()
|
554 |
+
|
555 |
+
# rand_input = torch.randn((2, 15, 768)).to(device)
|
556 |
+
# print(rand_input.shape)
|
557 |
+
# memory_compressor(rand_input).shape
|
558 |
+
|
559 |
+
class TimeEmbedding(nn.Module):
|
560 |
+
def __init__(self, embedding_time_dim=512, num_past_voxels=15):
|
561 |
+
super().__init__()
|
562 |
+
self.embedding_time = nn.Embedding(num_past_voxels, embedding_time_dim)
|
563 |
+
self.num_past_voxels = num_past_voxels
|
564 |
+
self.embedding_time_dim = embedding_time_dim
|
565 |
+
|
566 |
+
def forward(self, time):
|
567 |
+
# time is (batch_size,)
|
568 |
+
time = time.long()
|
569 |
+
time = self.embedding_time(time)
|
570 |
+
return time # (batch_size, embedding_time_dim)
|
571 |
+
|
572 |
+
|
573 |
+
#model.memory_encoder = MemoryEncoder(in_dim=voxels.shape[1], out_dim=4096, num_past_voxels=15, embedding_time_dim=512)
|
574 |
+
model.time_embedding = TimeEmbedding(embedding_time_dim=512, num_past_voxels=15)
|
575 |
+
model.memory_compressor = MemoryCompressor(in_dim=model.ridge.out_features, num_past=15, output_dim=4096)
|
576 |
+
|
577 |
+
#utils.count_params(model.memory_encoder)
|
578 |
+
utils.count_params(model.memory_compressor)
|
579 |
+
utils.count_params(model)
|
580 |
+
|
581 |
+
|
582 |
+
|
583 |
+
# In[18]:
|
584 |
+
|
585 |
+
|
586 |
+
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
|
587 |
+
opt_grouped_parameters = [
|
588 |
+
{'params': [p for n, p in model.ridge.named_parameters()], 'weight_decay': 1e-2},
|
589 |
+
{'params': [p for n, p in model.backbone.named_parameters() if not any(nd in n for nd in no_decay)], 'weight_decay': 1e-2},
|
590 |
+
{'params': [p for n, p in model.backbone.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0},
|
591 |
+
#{'params': [p for n, p in model.memory_encoder.named_parameters()], 'weight_decay': 1e-2},
|
592 |
+
{'params': [p for n, p in model.memory_compressor.named_parameters()], 'weight_decay': 1e-2},
|
593 |
+
{'params': [p for n, p in model.time_embedding.named_parameters()], 'weight_decay': 0.0},
|
594 |
+
]
|
595 |
+
|
596 |
+
optimizer = torch.optim.AdamW(opt_grouped_parameters, lr=max_lr, betas=(0.9, 0.95))
|
597 |
+
|
598 |
+
if lr_scheduler_type == 'linear':
|
599 |
+
lr_scheduler = torch.optim.lr_scheduler.LinearLR(
|
600 |
+
optimizer,
|
601 |
+
total_iters=int(num_epochs*(num_train*num_devices//batch_size)),
|
602 |
+
last_epoch=-1
|
603 |
+
)
|
604 |
+
elif lr_scheduler_type == 'cycle':
|
605 |
+
total_steps=int(num_epochs*(num_train*num_devices//batch_size))
|
606 |
+
lr_scheduler = torch.optim.lr_scheduler.OneCycleLR(
|
607 |
+
optimizer,
|
608 |
+
max_lr=max_lr,
|
609 |
+
total_steps=total_steps,
|
610 |
+
final_div_factor=1000,
|
611 |
+
last_epoch=-1, pct_start=2/num_epochs
|
612 |
+
)
|
613 |
+
|
614 |
+
def save_ckpt(tag):
|
615 |
+
ckpt_path = outdir+f'/{tag}.pth'
|
616 |
+
print(f'saving {ckpt_path}',flush=True)
|
617 |
+
unwrapped_model = accelerator.unwrap_model(model)
|
618 |
+
try:
|
619 |
+
torch.save({
|
620 |
+
'epoch': epoch,
|
621 |
+
'model_state_dict': unwrapped_model.state_dict(),
|
622 |
+
'optimizer_state_dict': optimizer.state_dict(),
|
623 |
+
'lr_scheduler': lr_scheduler.state_dict(),
|
624 |
+
'train_losses': losses,
|
625 |
+
'test_losses': test_losses,
|
626 |
+
'lrs': lrs,
|
627 |
+
}, ckpt_path)
|
628 |
+
except:
|
629 |
+
print("Couldn't save... moving on to prevent crashing.")
|
630 |
+
del unwrapped_model
|
631 |
+
|
632 |
+
print("\nDone with model preparations!")
|
633 |
+
utils.count_params(model)
|
634 |
+
|
635 |
+
|
636 |
+
# In[ ]:
|
637 |
+
|
638 |
+
|
639 |
+
|
640 |
+
|
641 |
+
|
642 |
+
# # Weights and Biases
|
643 |
+
|
644 |
+
# In[19]:
|
645 |
+
|
646 |
+
|
647 |
+
# params for wandb
|
648 |
+
wandb_log = True
|
649 |
+
if local_rank==0 and wandb_log: # only use main process for wandb logging
|
650 |
+
import wandb
|
651 |
+
|
652 |
+
wandb_project = 'stability'
|
653 |
+
wandb_run = model_name
|
654 |
+
wandb_notes = ''
|
655 |
+
|
656 |
+
print(f"wandb {wandb_project} run {wandb_run}")
|
657 |
+
wandb.login(host='https://stability.wandb.io')#, relogin=True)
|
658 |
+
wandb_config = {
|
659 |
+
"model_name": model_name,
|
660 |
+
"batch_size": batch_size,
|
661 |
+
"num_epochs": num_epochs,
|
662 |
+
"use_image_aug": use_image_aug,
|
663 |
+
"max_lr": max_lr,
|
664 |
+
"lr_scheduler_type": lr_scheduler_type,
|
665 |
+
"mixup_pct": mixup_pct,
|
666 |
+
"num_train": num_train,
|
667 |
+
"num_test": num_test,
|
668 |
+
"seed": seed,
|
669 |
+
"distributed": distributed,
|
670 |
+
"num_devices": num_devices,
|
671 |
+
"world_size": world_size,
|
672 |
+
}
|
673 |
+
print("wandb_config:\n",wandb_config)
|
674 |
+
if False: # wandb_auto_resume
|
675 |
+
print("wandb_id:",model_name)
|
676 |
+
wandb.init(
|
677 |
+
id = model_name,
|
678 |
+
project=wandb_project,
|
679 |
+
name=wandb_run,
|
680 |
+
config=wandb_config,
|
681 |
+
notes=wandb_notes,
|
682 |
+
resume="allow",
|
683 |
+
)
|
684 |
+
else:
|
685 |
+
wandb.init(
|
686 |
+
project=wandb_project,
|
687 |
+
name=model_name,
|
688 |
+
config=wandb_config,
|
689 |
+
notes=wandb_notes,
|
690 |
+
)
|
691 |
+
else:
|
692 |
+
wandb_log = False
|
693 |
+
|
694 |
+
|
695 |
+
# # More custom functions
|
696 |
+
|
697 |
+
# In[20]:
|
698 |
+
|
699 |
+
|
700 |
+
# using the same preprocessing as was used in MindEye + BrainDiffuser
|
701 |
+
pixcorr_preprocess = transforms.Compose([
|
702 |
+
transforms.Resize(425, interpolation=transforms.InterpolationMode.BILINEAR),
|
703 |
+
])
|
704 |
+
def pixcorr(images,brains):
|
705 |
+
# Flatten images while keeping the batch dimension
|
706 |
+
all_images_flattened = pixcorr_preprocess(images).reshape(len(images), -1)
|
707 |
+
all_brain_recons_flattened = pixcorr_preprocess(brains).view(len(brains), -1)
|
708 |
+
corrmean = torch.diag(utils.batchwise_pearson_correlation(all_images_flattened, all_brain_recons_flattened)).mean()
|
709 |
+
return corrmean
|
710 |
+
|
711 |
+
|
712 |
+
# # Main
|
713 |
+
|
714 |
+
# In[21]:
|
715 |
+
|
716 |
+
|
717 |
+
epoch = 0
|
718 |
+
losses, test_losses, lrs = [], [], []
|
719 |
+
best_test_loss = 1e9
|
720 |
+
soft_loss_temps = utils.cosine_anneal(0.004, 0.0075, num_epochs - int(mixup_pct * num_epochs))
|
721 |
+
|
722 |
+
# Optionally resume from checkpoint #
|
723 |
+
if resume_from_ckpt:
|
724 |
+
print("\n---resuming from last.pth ckpt---\n")
|
725 |
+
try:
|
726 |
+
checkpoint = torch.load(outdir+'/last.pth', map_location='cpu')
|
727 |
+
except:
|
728 |
+
print('last.pth failed... trying last_backup.pth')
|
729 |
+
checkpoint = torch.load(outdir+'/last_backup.pth', map_location='cpu')
|
730 |
+
epoch = checkpoint['epoch']
|
731 |
+
print("Epoch",epoch)
|
732 |
+
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
|
733 |
+
lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
|
734 |
+
diffusion_diffuser.load_state_dict(checkpoint['model_state_dict'])
|
735 |
+
del checkpoint
|
736 |
+
elif wandb_log:
|
737 |
+
if wandb.run.resumed:
|
738 |
+
print("\n---resuming from last.pth ckpt---\n")
|
739 |
+
try:
|
740 |
+
checkpoint = torch.load(outdir+'/last.pth', map_location='cpu')
|
741 |
+
except:
|
742 |
+
print('last.pth failed... trying last_backup.pth')
|
743 |
+
checkpoint = torch.load(outdir+'/last_backup.pth', map_location='cpu')
|
744 |
+
epoch = checkpoint['epoch']
|
745 |
+
print("Epoch",epoch)
|
746 |
+
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
|
747 |
+
lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
|
748 |
+
diffusion_diffuser.load_state_dict(checkpoint['model_state_dict'])
|
749 |
+
del checkpoint
|
750 |
+
torch.cuda.empty_cache()
|
751 |
+
|
752 |
+
|
753 |
+
# In[22]:
|
754 |
+
|
755 |
+
|
756 |
+
model, optimizer, train_dl, test_dl, lr_scheduler = accelerator.prepare(
|
757 |
+
model, optimizer, train_dl, test_dl, lr_scheduler
|
758 |
+
)
|
759 |
+
|
760 |
+
|
761 |
+
# In[23]:
|
762 |
+
|
763 |
+
|
764 |
+
print(f"{model_name} starting with epoch {epoch} / {num_epochs}")
|
765 |
+
progress_bar = tqdm(range(0,num_epochs), ncols=1200, disable=(local_rank!=0))
|
766 |
+
test_image, test_voxel = None, None
|
767 |
+
mse = nn.MSELoss()
|
768 |
+
for epoch in progress_bar:
|
769 |
+
model.train()
|
770 |
+
|
771 |
+
fwd_percent_correct = 0.
|
772 |
+
bwd_percent_correct = 0.
|
773 |
+
test_fwd_percent_correct = 0.
|
774 |
+
test_bwd_percent_correct = 0.
|
775 |
+
|
776 |
+
loss_clip_total = 0.
|
777 |
+
loss_blurry_total = 0.
|
778 |
+
test_loss_clip_total = 0.
|
779 |
+
test_loss_blurry_total = 0.
|
780 |
+
|
781 |
+
blurry_pixcorr = 0.
|
782 |
+
test_blurry_pixcorr = 0. # needs >.456 to beat low-level subj01 results in mindeye v1
|
783 |
+
|
784 |
+
for train_i, (behav, past_behav, future_behav, old_behav) in enumerate(train_dl):
|
785 |
+
#if epoch == 0 or epoch == 1:
|
786 |
+
# break
|
787 |
+
with torch.cuda.amp.autocast():
|
788 |
+
optimizer.zero_grad()
|
789 |
+
|
790 |
+
voxel = voxels[behav[:,0,5].cpu().long()].to(device)
|
791 |
+
|
792 |
+
image = images[behav[:,0,0].cpu().long()].to(device).float()
|
793 |
+
|
794 |
+
past_15_voxels = voxels[past_behav[:,:,5].cpu().long()].to(device) # batch_size, 15, 15279
|
795 |
+
past_15_times = torch.Tensor([i for i in range(15)]).to(device) # 15
|
796 |
+
|
797 |
+
blurry_image_enc = autoenc.encode(image).latent_dist.mode()
|
798 |
+
|
799 |
+
if use_image_aug: image = img_augment(image)
|
800 |
+
|
801 |
+
clip_target = clip_model.embed_image(image)
|
802 |
+
assert not torch.any(torch.isnan(clip_target))
|
803 |
+
|
804 |
+
if epoch < int(mixup_pct * num_epochs):
|
805 |
+
voxel, perm, betas, select = utils.mixco(voxel)
|
806 |
+
|
807 |
+
# reshape past voxels to be (batch_size * 15, 15279)
|
808 |
+
past_15_voxels = past_15_voxels.reshape(-1, past_15_voxels.shape[-1])
|
809 |
+
past_15_times = past_15_times.repeat(voxel.shape[0], 1)
|
810 |
+
past_15_times = past_15_times.reshape(-1)
|
811 |
+
|
812 |
+
#print(past_15_voxels.shape, past_15_times.shape)
|
813 |
+
time_embeddings = model.time_embedding(past_15_times)
|
814 |
+
past_info_full = torch.cat((past_15_voxels, time_embeddings), dim=-1)
|
815 |
+
embeds_past_voxels = model.ridge(past_info_full)
|
816 |
+
#print(embeds_past_voxels.shape)
|
817 |
+
embeds_past_voxels = embeds_past_voxels.reshape(voxel.shape[0], 15, -1)
|
818 |
+
#print(embeds_past_voxels.shape)
|
819 |
+
information_past_voxels = model.memory_compressor(embeds_past_voxels)
|
820 |
+
|
821 |
+
positional_current_voxel = torch.zeros((voxel.shape[0], time_embeddings.shape[-1])).to(voxel.device)
|
822 |
+
#print(torch.cat((voxel, positional_current_voxel), dim=-1).shape, positional_current_voxel.shape, voxel.shape)
|
823 |
+
voxel_ridge = torch.cat([model.ridge(torch.cat((voxel, positional_current_voxel), dim=-1)), information_past_voxels], dim=-1)
|
824 |
+
|
825 |
+
clip_voxels, blurry_image_enc_ = model.backbone(voxel_ridge)
|
826 |
+
|
827 |
+
clip_voxels_norm = nn.functional.normalize(clip_voxels.flatten(1), dim=-1)
|
828 |
+
clip_target_norm = nn.functional.normalize(clip_target.flatten(1), dim=-1)
|
829 |
+
|
830 |
+
if epoch < int(mixup_pct * num_epochs):
|
831 |
+
loss_clip = utils.mixco_nce(
|
832 |
+
clip_voxels_norm,
|
833 |
+
clip_target_norm,
|
834 |
+
temp=.006,
|
835 |
+
perm=perm, betas=betas, select=select)
|
836 |
+
else:
|
837 |
+
epoch_temp = soft_loss_temps[epoch-int(mixup_pct*num_epochs)]
|
838 |
+
loss_clip = utils.soft_clip_loss(
|
839 |
+
clip_voxels_norm,
|
840 |
+
clip_target_norm,
|
841 |
+
temp=epoch_temp)
|
842 |
+
|
843 |
+
loss_blurry = mse(blurry_image_enc_, blurry_image_enc)
|
844 |
+
|
845 |
+
loss_clip_total += loss_clip.item()
|
846 |
+
loss_blurry_total += loss_blurry.item()
|
847 |
+
|
848 |
+
loss = loss_blurry + loss_clip
|
849 |
+
|
850 |
+
utils.check_loss(loss)
|
851 |
+
|
852 |
+
accelerator.backward(loss)
|
853 |
+
optimizer.step()
|
854 |
+
|
855 |
+
losses.append(loss.item())
|
856 |
+
lrs.append(optimizer.param_groups[0]['lr'])
|
857 |
+
|
858 |
+
# forward and backward top 1 accuracy
|
859 |
+
labels = torch.arange(len(clip_target_norm)).to(clip_voxels_norm.device)
|
860 |
+
fwd_percent_correct += utils.topk(utils.batchwise_cosine_similarity(clip_voxels_norm, clip_target_norm), labels, k=1)
|
861 |
+
bwd_percent_correct += utils.topk(utils.batchwise_cosine_similarity(clip_target_norm, clip_voxels_norm), labels, k=1)
|
862 |
+
|
863 |
+
with torch.no_grad():
|
864 |
+
# only doing pixcorr eval on a subset (8) of the samples per batch because its costly & slow to compute autoenc.decode()
|
865 |
+
random_samps = np.random.choice(np.arange(len(voxel)), size=2, replace=False)
|
866 |
+
blurry_recon_images = autoenc.decode(blurry_image_enc_[random_samps]).sample.clamp(0,1)
|
867 |
+
blurry_pixcorr += pixcorr(image[random_samps], blurry_recon_images)
|
868 |
+
|
869 |
+
if lr_scheduler_type is not None:
|
870 |
+
lr_scheduler.step()
|
871 |
+
|
872 |
+
model.eval()
|
873 |
+
for test_i, (behav, past_behav, future_behav, old_behav) in enumerate(test_dl):
|
874 |
+
print('test')
|
875 |
+
with torch.cuda.amp.autocast():
|
876 |
+
with torch.no_grad():
|
877 |
+
# all test samples should be loaded per batch such that test_i should never exceed 0
|
878 |
+
if len(behav) != num_test: print("!",len(behav),num_test)
|
879 |
+
|
880 |
+
|
881 |
+
## Average same-image repeats ##
|
882 |
+
if test_image is None:
|
883 |
+
voxel = voxels[behav[:,0,5].cpu().long()].to(device)
|
884 |
+
|
885 |
+
image = behav[:,0,0].cpu().long()
|
886 |
+
|
887 |
+
unique_image, sort_indices = torch.unique(image, return_inverse=True)
|
888 |
+
for im in unique_image:
|
889 |
+
locs = torch.where(im == image)[0]
|
890 |
+
if test_image is None:
|
891 |
+
test_image = images[im][None]
|
892 |
+
test_voxel = torch.mean(voxel[locs],axis=0)[None]
|
893 |
+
else:
|
894 |
+
test_image = torch.vstack((test_image, images[im][None]))
|
895 |
+
test_voxel = torch.vstack((test_voxel, torch.mean(voxel[locs],axis=0)[None]))
|
896 |
+
|
897 |
+
# sample of batch_size
|
898 |
+
random_indices = torch.arange(len(test_voxel))[:batch_size] #torch.randperm(len(test_voxel))[:300]
|
899 |
+
voxel = test_voxel[random_indices].to(device)
|
900 |
+
image = test_image[random_indices].to(device)
|
901 |
+
|
902 |
+
current_past_behav = past_behav[random_indices]
|
903 |
+
|
904 |
+
past_15_voxels = voxels[current_past_behav[:,:,5].cpu().long()].to(device) # batch_size, 15, 15279
|
905 |
+
past_15_times = torch.Tensor([i for i in range(15)]).to(device) # 15
|
906 |
+
|
907 |
+
assert len(image) == batch_size
|
908 |
+
|
909 |
+
blurry_image_enc = autoenc.encode(image).latent_dist.mode()
|
910 |
+
|
911 |
+
clip_target = clip_model.embed_image(image.float())
|
912 |
+
|
913 |
+
past_15_voxels = past_15_voxels.reshape(-1, past_15_voxels.shape[-1])
|
914 |
+
past_15_times = past_15_times.repeat(voxel.shape[0], 1)
|
915 |
+
past_15_times = past_15_times.reshape(-1)
|
916 |
+
|
917 |
+
print(past_15_voxels.shape, past_15_times.shape)
|
918 |
+
|
919 |
+
#print(past_15_voxels.shape, past_15_times.shape)
|
920 |
+
time_embeddings = model.time_embedding(past_15_times)
|
921 |
+
past_info_full = torch.cat((past_15_voxels, time_embeddings), dim=-1)
|
922 |
+
embeds_past_voxels = model.ridge(past_info_full)
|
923 |
+
#print(embeds_past_voxels.shape)
|
924 |
+
embeds_past_voxels = embeds_past_voxels.reshape(voxel.shape[0], 15, -1)
|
925 |
+
#print(embeds_past_voxels.shape)
|
926 |
+
information_past_voxels = model.memory_compressor(embeds_past_voxels)
|
927 |
+
positional_current_voxel = torch.zeros((voxel.shape[0], time_embeddings.shape[-1])).to(voxel.device)
|
928 |
+
|
929 |
+
voxel_ridge = torch.cat([model.ridge(torch.cat((voxel, positional_current_voxel), dim=-1)), information_past_voxels], dim=-1)
|
930 |
+
|
931 |
+
clip_voxels, blurry_image_enc_ = model.backbone(voxel_ridge)
|
932 |
+
|
933 |
+
clip_voxels_norm = nn.functional.normalize(clip_voxels.flatten(1), dim=-1)
|
934 |
+
clip_target_norm = nn.functional.normalize(clip_target.flatten(1), dim=-1)
|
935 |
+
|
936 |
+
loss_clip = utils.soft_clip_loss(
|
937 |
+
clip_voxels_norm,
|
938 |
+
clip_target_norm,
|
939 |
+
temp=.006)
|
940 |
+
|
941 |
+
loss_blurry = mse(blurry_image_enc_, blurry_image_enc)
|
942 |
+
|
943 |
+
loss = loss_blurry + loss_clip
|
944 |
+
|
945 |
+
utils.check_loss(loss)
|
946 |
+
|
947 |
+
test_losses.append(loss.item())
|
948 |
+
|
949 |
+
# forward and backward top 1 accuracy
|
950 |
+
labels = torch.arange(len(clip_target_norm)).to(clip_voxels_norm.device)
|
951 |
+
test_fwd_percent_correct += utils.topk(utils.batchwise_cosine_similarity(clip_voxels_norm, clip_target_norm), labels, k=1)
|
952 |
+
test_bwd_percent_correct += utils.topk(utils.batchwise_cosine_similarity(clip_target_norm, clip_voxels_norm), labels, k=1)
|
953 |
+
|
954 |
+
# halving the batch size because the decoder is computationally heavy
|
955 |
+
blurry_recon_images = autoenc.decode(blurry_image_enc_[:len(voxel)//2]).sample.clamp(0,1)
|
956 |
+
blurry_recon_images = torch.vstack((blurry_recon_images, autoenc.decode(blurry_image_enc_[len(voxel)//2:]).sample.clamp(0,1)))
|
957 |
+
test_blurry_pixcorr += pixcorr(image, blurry_recon_images)
|
958 |
+
|
959 |
+
# transform blurry recon latents to images and plot it
|
960 |
+
#fig, axes = plt.subplots(1, 4, figsize=(8, 4))
|
961 |
+
#axes[0].imshow(utils.torch_to_Image(image[[0]]))
|
962 |
+
#axes[1].imshow(utils.torch_to_Image(autoenc.decode(blurry_image_enc_[[0]]).sample.clamp(0,1)))
|
963 |
+
#axes[2].imshow(utils.torch_to_Image(image[[1]]))
|
964 |
+
#axes[3].imshow(utils.torch_to_Image(autoenc.decode(blurry_image_enc_[[1]]).sample.clamp(0,1)))
|
965 |
+
#axes[0].axis('off'); axes[1].axis('off'); axes[2].axis('off'); axes[3].axis('off')
|
966 |
+
#plt.show()
|
967 |
+
wandb.log({"gt": [wandb.Image(utils.torch_to_Image(image[[0]])), wandb.Image(utils.torch_to_Image(image[[1]])) ]}
|
968 |
+
wandb.log({"preds": [utils.torch_to_Image(autoenc.decode(blurry_image_enc_[[0]]).sample.clamp(0,1)), utils.torch_to_Image(autoenc.decode(blurry_image_enc_[[1]]).sample.clamp(0,1)) ]}
|
969 |
+
|
970 |
+
if local_rank==0:
|
971 |
+
# if utils.is_interactive(): clear_output(wait=True)
|
972 |
+
assert (test_i+1) == 1
|
973 |
+
logs = {"train/loss": np.mean(losses[-(train_i+1):]),
|
974 |
+
"test/loss": np.mean(test_losses[-(test_i+1):]),
|
975 |
+
"train/lr": lrs[-1],
|
976 |
+
"train/num_steps": len(losses),
|
977 |
+
"test/num_steps": len(test_losses),
|
978 |
+
"train/fwd_pct_correct": fwd_percent_correct / (train_i + 1),
|
979 |
+
"train/bwd_pct_correct": bwd_percent_correct / (train_i + 1),
|
980 |
+
"test/test_fwd_pct_correct": test_fwd_percent_correct / (test_i + 1),
|
981 |
+
"test/test_bwd_pct_correct": test_bwd_percent_correct / (test_i + 1),
|
982 |
+
"train/loss_clip_total": loss_clip_total / (train_i + 1),
|
983 |
+
"train/loss_blurry_total": loss_blurry_total / (train_i + 1),
|
984 |
+
"test/loss_clip_total": test_loss_clip_total / (test_i + 1),
|
985 |
+
"test/loss_blurry_total": test_loss_blurry_total / (test_i + 1),
|
986 |
+
"train/blurry_pixcorr": blurry_pixcorr / (train_i + 1),
|
987 |
+
"test/blurry_pixcorr": test_blurry_pixcorr / (test_i + 1),
|
988 |
+
}
|
989 |
+
progress_bar.set_postfix(**logs)
|
990 |
+
|
991 |
+
# Save model checkpoint and reconstruct
|
992 |
+
if epoch % ckpt_interval == 0:
|
993 |
+
if not utils.is_interactive():
|
994 |
+
save_ckpt(f'last')
|
995 |
+
|
996 |
+
if wandb_log: wandb.log(logs)
|
997 |
+
|
998 |
+
# wait for other GPUs to catch up if needed
|
999 |
+
accelerator.wait_for_everyone()
|
1000 |
+
torch.cuda.empty_cache()
|
1001 |
+
gc.collect()
|
1002 |
+
|
1003 |
+
print("\n===Finished!===\n")
|
1004 |
+
if ckpt_saving:
|
1005 |
+
save_ckpt(f'last')
|
1006 |
+
if not utils.is_interactive():
|
1007 |
+
sys.exit(0)
|
1008 |
+
|
1009 |
+
|
1010 |
+
|
1011 |
+
# In[ ]:
|
1012 |
+
|
1013 |
+
|
1014 |
+
plt.plot(losses)
|
1015 |
+
plt.show()
|
1016 |
+
plt.plot(test_losses)
|
1017 |
+
plt.show()
|
1018 |
+
|
src/Train-with-memory.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
src/Train-with-memory.py
ADDED
@@ -0,0 +1,978 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# coding: utf-8
|
3 |
+
|
4 |
+
# In[1]:
|
5 |
+
|
6 |
+
|
7 |
+
# # Code to convert this notebook to .py if you want to run it via command line or with Slurm
|
8 |
+
# from subprocess import call
|
9 |
+
# command = "jupyter nbconvert Train.ipynb --to python"
|
10 |
+
# call(command,shell=True)
|
11 |
+
|
12 |
+
|
13 |
+
# # Import packages & functions
|
14 |
+
|
15 |
+
# In[2]:
|
16 |
+
|
17 |
+
|
18 |
+
import os
|
19 |
+
import sys
|
20 |
+
import json
|
21 |
+
import argparse
|
22 |
+
import numpy as np
|
23 |
+
import math
|
24 |
+
#from einops import rearrange
|
25 |
+
import time
|
26 |
+
import random
|
27 |
+
import h5py
|
28 |
+
from tqdm import tqdm
|
29 |
+
|
30 |
+
import webdataset as wds
|
31 |
+
import gc
|
32 |
+
|
33 |
+
import matplotlib.pyplot as plt
|
34 |
+
import torch
|
35 |
+
import torch.nn as nn
|
36 |
+
from torchvision import transforms
|
37 |
+
|
38 |
+
from accelerate import Accelerator, DeepSpeedPlugin
|
39 |
+
|
40 |
+
# tf32 data type is faster than standard float32
|
41 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
42 |
+
|
43 |
+
# custom functions #
|
44 |
+
import utils
|
45 |
+
|
46 |
+
global_batch_size = 128 #128
|
47 |
+
|
48 |
+
|
49 |
+
# In[3]:
|
50 |
+
|
51 |
+
|
52 |
+
### Multi-GPU config ###
|
53 |
+
local_rank = os.getenv('RANK')
|
54 |
+
if local_rank is None:
|
55 |
+
local_rank = 0
|
56 |
+
else:
|
57 |
+
local_rank = int(local_rank)
|
58 |
+
print("LOCAL RANK ", local_rank)
|
59 |
+
|
60 |
+
num_devices = torch.cuda.device_count()
|
61 |
+
if num_devices==0: num_devices = 1
|
62 |
+
|
63 |
+
accelerator = Accelerator(split_batches=False)
|
64 |
+
|
65 |
+
### UNCOMMENT BELOW STUFF TO USE DEEPSPEED (also comment out the immediately above "accelerator = " line) ###
|
66 |
+
|
67 |
+
# if num_devices <= 1 and utils.is_interactive():
|
68 |
+
# # can emulate a distributed environment for deepspeed to work in jupyter notebook
|
69 |
+
# os.environ["MASTER_ADDR"] = "localhost"
|
70 |
+
# os.environ["MASTER_PORT"] = str(np.random.randint(10000)+9000)
|
71 |
+
# os.environ["RANK"] = "0"
|
72 |
+
# os.environ["LOCAL_RANK"] = "0"
|
73 |
+
# os.environ["WORLD_SIZE"] = "1"
|
74 |
+
# os.environ["GLOBAL_BATCH_SIZE"] = str(global_batch_size) # set this to your batch size!
|
75 |
+
# global_batch_size = os.environ["GLOBAL_BATCH_SIZE"]
|
76 |
+
|
77 |
+
# # alter the deepspeed config according to your global and local batch size
|
78 |
+
# if local_rank == 0:
|
79 |
+
# with open('deepspeed_config_stage2.json', 'r') as file:
|
80 |
+
# config = json.load(file)
|
81 |
+
# config['train_batch_size'] = int(os.environ["GLOBAL_BATCH_SIZE"])
|
82 |
+
# config['train_micro_batch_size_per_gpu'] = int(os.environ["GLOBAL_BATCH_SIZE"]) // num_devices
|
83 |
+
# with open('deepspeed_config_stage2.json', 'w') as file:
|
84 |
+
# json.dump(config, file)
|
85 |
+
# else:
|
86 |
+
# # give some time for the local_rank=0 gpu to prep new deepspeed config file
|
87 |
+
# time.sleep(10)
|
88 |
+
# deepspeed_plugin = DeepSpeedPlugin("deepspeed_config_stage2.json")
|
89 |
+
# accelerator = Accelerator(split_batches=False, deepspeed_plugin=deepspeed_plugin)
|
90 |
+
|
91 |
+
|
92 |
+
# In[4]:
|
93 |
+
|
94 |
+
|
95 |
+
print("PID of this process =",os.getpid())
|
96 |
+
device = accelerator.device
|
97 |
+
print("device:",device)
|
98 |
+
num_workers = num_devices
|
99 |
+
print(accelerator.state)
|
100 |
+
world_size = accelerator.state.num_processes
|
101 |
+
distributed = not accelerator.state.distributed_type == 'NO'
|
102 |
+
print("distributed =",distributed, "num_devices =", num_devices, "local rank =", local_rank, "world size =", world_size)
|
103 |
+
print = accelerator.print # only print if local_rank=0
|
104 |
+
|
105 |
+
|
106 |
+
# # Configurations
|
107 |
+
|
108 |
+
# In[5]:
|
109 |
+
|
110 |
+
|
111 |
+
# if running this interactively, can specify jupyter_args here for argparser to use
|
112 |
+
if utils.is_interactive():
|
113 |
+
# Example use
|
114 |
+
jupyter_args = f"--data_path=/fsx/proj-fmri/shared/mindeyev2_dataset \
|
115 |
+
--model_name=test \
|
116 |
+
--subj=1 --batch_size={global_batch_size} --n_samples_save=0 \
|
117 |
+
--max_lr=3e-5 --mixup_pct=.66 --num_epochs=12 --ckpt_interval=999 --no-use_image_aug"
|
118 |
+
|
119 |
+
jupyter_args = jupyter_args.split()
|
120 |
+
print(jupyter_args)
|
121 |
+
|
122 |
+
from IPython.display import clear_output # function to clear print outputs in cell
|
123 |
+
get_ipython().run_line_magic('load_ext', 'autoreload')
|
124 |
+
# this allows you to change functions in models.py or utils.py and have this notebook automatically update with your revisions
|
125 |
+
get_ipython().run_line_magic('autoreload', '2')
|
126 |
+
|
127 |
+
|
128 |
+
# In[6]:
|
129 |
+
|
130 |
+
|
131 |
+
parser = argparse.ArgumentParser(description="Model Training Configuration")
|
132 |
+
parser.add_argument(
|
133 |
+
"--model_name", type=str, default="testing",
|
134 |
+
help="name of model, used for ckpt saving and wandb logging (if enabled)",
|
135 |
+
)
|
136 |
+
parser.add_argument(
|
137 |
+
"--data_path", type=str, default="/fsx/proj-fmri/shared/natural-scenes-dataset",
|
138 |
+
help="Path to where NSD data is stored / where to download it to",
|
139 |
+
)
|
140 |
+
parser.add_argument(
|
141 |
+
"--subj",type=int, default=1, choices=[1,2,5,7],
|
142 |
+
)
|
143 |
+
parser.add_argument(
|
144 |
+
"--batch_size", type=int, default=32,
|
145 |
+
help="Batch size can be increased by 10x if only training v2c and not diffusion diffuser",
|
146 |
+
)
|
147 |
+
parser.add_argument(
|
148 |
+
"--wandb_log",action=argparse.BooleanOptionalAction,default=False,
|
149 |
+
help="whether to log to wandb",
|
150 |
+
)
|
151 |
+
parser.add_argument(
|
152 |
+
"--resume_from_ckpt",action=argparse.BooleanOptionalAction,default=False,
|
153 |
+
help="if not using wandb and want to resume from a ckpt",
|
154 |
+
)
|
155 |
+
parser.add_argument(
|
156 |
+
"--wandb_project",type=str,default="stability",
|
157 |
+
help="wandb project name",
|
158 |
+
)
|
159 |
+
parser.add_argument(
|
160 |
+
"--mixup_pct",type=float,default=.33,
|
161 |
+
help="proportion of way through training when to switch from BiMixCo to SoftCLIP",
|
162 |
+
)
|
163 |
+
parser.add_argument(
|
164 |
+
"--use_image_aug",action=argparse.BooleanOptionalAction,default=True,
|
165 |
+
help="whether to use image augmentation",
|
166 |
+
)
|
167 |
+
parser.add_argument(
|
168 |
+
"--num_epochs",type=int,default=240,
|
169 |
+
help="number of epochs of training",
|
170 |
+
)
|
171 |
+
parser.add_argument(
|
172 |
+
"--lr_scheduler_type",type=str,default='cycle',choices=['cycle','linear'],
|
173 |
+
)
|
174 |
+
parser.add_argument(
|
175 |
+
"--ckpt_saving",action=argparse.BooleanOptionalAction,default=True,
|
176 |
+
)
|
177 |
+
parser.add_argument(
|
178 |
+
"--ckpt_interval",type=int,default=5,
|
179 |
+
help="save backup ckpt and reconstruct every x epochs",
|
180 |
+
)
|
181 |
+
parser.add_argument(
|
182 |
+
"--seed",type=int,default=42,
|
183 |
+
)
|
184 |
+
parser.add_argument(
|
185 |
+
"--max_lr",type=float,default=3e-4,
|
186 |
+
)
|
187 |
+
parser.add_argument(
|
188 |
+
"--n_samples_save",type=int,default=0,choices=[0,1],
|
189 |
+
help="Number of reconstructions for monitoring progress, 0 will speed up training",
|
190 |
+
)
|
191 |
+
|
192 |
+
if utils.is_interactive():
|
193 |
+
args = parser.parse_args(jupyter_args)
|
194 |
+
else:
|
195 |
+
args = parser.parse_args()
|
196 |
+
|
197 |
+
# create global variables without the args prefix
|
198 |
+
for attribute_name in vars(args).keys():
|
199 |
+
globals()[attribute_name] = getattr(args, attribute_name)
|
200 |
+
|
201 |
+
print("global batch_size", batch_size)
|
202 |
+
batch_size = int(batch_size / num_devices)
|
203 |
+
print("batch_size", batch_size)
|
204 |
+
|
205 |
+
|
206 |
+
# In[7]:
|
207 |
+
|
208 |
+
|
209 |
+
outdir = os.path.abspath(f'../train_mem_logs/{model_name}')
|
210 |
+
if not os.path.exists(outdir):
|
211 |
+
os.makedirs(outdir,exist_ok=True)
|
212 |
+
if use_image_aug:
|
213 |
+
import kornia
|
214 |
+
from kornia.augmentation.container import AugmentationSequential
|
215 |
+
img_augment = AugmentationSequential(
|
216 |
+
kornia.augmentation.RandomResizedCrop((224,224), (0.6,1), p=0.3),
|
217 |
+
kornia.augmentation.Resize((224, 224)),
|
218 |
+
kornia.augmentation.RandomHorizontalFlip(p=0.3),
|
219 |
+
kornia.augmentation.ColorJitter(brightness=0.4, contrast=0.4, saturation=0.2, hue=0.1, p=0.3),
|
220 |
+
kornia.augmentation.RandomGrayscale(p=0.3),
|
221 |
+
same_on_batch=False,
|
222 |
+
data_keys=["input"],
|
223 |
+
)
|
224 |
+
|
225 |
+
|
226 |
+
# # Prep data, models, and dataloaders
|
227 |
+
|
228 |
+
# ## Dataloader
|
229 |
+
|
230 |
+
# In[8]:
|
231 |
+
|
232 |
+
|
233 |
+
if subj==1:
|
234 |
+
num_train = 24958
|
235 |
+
num_test = 2770
|
236 |
+
test_batch_size = num_test
|
237 |
+
|
238 |
+
def my_split_by_node(urls): return urls
|
239 |
+
|
240 |
+
train_url = f"{data_path}/wds/subj0{subj}/train/" + "{0..36}.tar"
|
241 |
+
print(train_url)
|
242 |
+
|
243 |
+
train_data = wds.WebDataset(train_url,resampled=False,nodesplitter=my_split_by_node)\
|
244 |
+
.shuffle(750, initial=1500, rng=random.Random(42))\
|
245 |
+
.decode("torch")\
|
246 |
+
.rename(behav="behav.npy", past_behav="past_behav.npy", future_behav="future_behav.npy", olds_behav="olds_behav.npy")\
|
247 |
+
.to_tuple(*["behav", "past_behav", "future_behav", "olds_behav"])
|
248 |
+
train_dl = torch.utils.data.DataLoader(train_data, batch_size=batch_size, shuffle=False, drop_last=False, pin_memory=True)
|
249 |
+
|
250 |
+
test_url = f"{data_path}/wds/subj0{subj}/test/" + "0.tar"
|
251 |
+
print(test_url)
|
252 |
+
|
253 |
+
test_data = wds.WebDataset(test_url,resampled=False,nodesplitter=my_split_by_node)\
|
254 |
+
.shuffle(750, initial=1500, rng=random.Random(42))\
|
255 |
+
.decode("torch")\
|
256 |
+
.rename(behav="behav.npy", past_behav="past_behav.npy", future_behav="future_behav.npy", olds_behav="olds_behav.npy")\
|
257 |
+
.to_tuple(*["behav", "past_behav", "future_behav", "olds_behav"])
|
258 |
+
test_dl = torch.utils.data.DataLoader(test_data, batch_size=test_batch_size, shuffle=False, drop_last=False, pin_memory=True)
|
259 |
+
|
260 |
+
|
261 |
+
# ### check dataloaders are working
|
262 |
+
|
263 |
+
# In[9]:
|
264 |
+
|
265 |
+
|
266 |
+
# test_indices = []
|
267 |
+
# test_images = []
|
268 |
+
# for test_i, (behav, past_behav, future_behav, old_behav) in enumerate(test_dl):
|
269 |
+
# test_indices = np.append(test_indices, behav[:,0,5].numpy())
|
270 |
+
# test_images = np.append(test_images, behav[:,0,0].numpy())
|
271 |
+
# test_indices = test_indices.astype(np.int16)
|
272 |
+
# print(test_i, (test_i+1) * test_batch_size, len(test_indices))
|
273 |
+
# print("---\n")
|
274 |
+
|
275 |
+
# train_indices = []
|
276 |
+
# train_images = []
|
277 |
+
# for train_i, (behav, past_behav, future_behav, old_behav) in enumerate(train_dl):
|
278 |
+
# train_indices = np.append(train_indices, behav[:,0,5].long().numpy())
|
279 |
+
# train_images = np.append(train_images, behav[:,0,0].numpy())
|
280 |
+
# train_indices = train_indices.astype(np.int16)
|
281 |
+
# print(train_i, (train_i+1) * batch_size, len(train_indices))
|
282 |
+
|
283 |
+
# # train_images = np.hstack((train_images, test_images))
|
284 |
+
# # print("WARNING: ADDED TEST IMAGES TO TRAIN IMAGES")
|
285 |
+
|
286 |
+
|
287 |
+
# ## Load data and images
|
288 |
+
|
289 |
+
# In[10]:
|
290 |
+
|
291 |
+
|
292 |
+
# load betas
|
293 |
+
f = h5py.File(f'{data_path}/betas_all_subj0{subj}.hdf5', 'r')
|
294 |
+
voxels = f['betas'][:]
|
295 |
+
print(f"subj0{subj} betas loaded into memory")
|
296 |
+
voxels = torch.Tensor(voxels).to("cpu").half()
|
297 |
+
if subj==1:
|
298 |
+
voxels = torch.hstack((voxels, torch.zeros((len(voxels), 5))))
|
299 |
+
print("voxels", voxels.shape)
|
300 |
+
num_voxels = voxels.shape[-1]
|
301 |
+
|
302 |
+
# load orig images
|
303 |
+
f = h5py.File(f'{data_path}/coco_images_224_float16.hdf5', 'r')
|
304 |
+
images = f['images'][:]
|
305 |
+
images = torch.Tensor(images).to("cpu").half()
|
306 |
+
print("images", images.shape)
|
307 |
+
|
308 |
+
|
309 |
+
# ## Load models
|
310 |
+
|
311 |
+
# ### CLIP image embeddings model
|
312 |
+
|
313 |
+
# In[11]:
|
314 |
+
|
315 |
+
|
316 |
+
from models import Clipper
|
317 |
+
clip_model = Clipper("ViT-L/14", device=torch.device(f"cuda:{local_rank}"), hidden_state=True, norm_embs=True)
|
318 |
+
|
319 |
+
clip_seq_dim = 257
|
320 |
+
clip_emb_dim = 768
|
321 |
+
hidden_dim = 4096
|
322 |
+
|
323 |
+
|
324 |
+
# ### SD VAE (blurry images)
|
325 |
+
|
326 |
+
# In[12]:
|
327 |
+
|
328 |
+
|
329 |
+
from diffusers import AutoencoderKL
|
330 |
+
autoenc = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16, cache_dir="/fsx/proj-fmri/shared/cache")
|
331 |
+
# autoenc.load_state_dict(torch.load('../train_logs/sdxl_vae_normed/best.pth')["model_state_dict"])
|
332 |
+
autoenc.eval()
|
333 |
+
autoenc.requires_grad_(False)
|
334 |
+
autoenc.to(device)
|
335 |
+
utils.count_params(autoenc)
|
336 |
+
|
337 |
+
|
338 |
+
# ### MindEye modules
|
339 |
+
|
340 |
+
# In[13]:
|
341 |
+
|
342 |
+
|
343 |
+
class MindEyeModule(nn.Module):
|
344 |
+
def __init__(self):
|
345 |
+
super(MindEyeModule, self).__init__()
|
346 |
+
def forward(self, x):
|
347 |
+
return x
|
348 |
+
|
349 |
+
model = MindEyeModule()
|
350 |
+
model
|
351 |
+
|
352 |
+
|
353 |
+
# In[14]:
|
354 |
+
|
355 |
+
|
356 |
+
class RidgeRegression(torch.nn.Module):
|
357 |
+
# make sure to add weight_decay when initializing optimizer
|
358 |
+
def __init__(self, input_size, out_features):
|
359 |
+
super(RidgeRegression, self).__init__()
|
360 |
+
self.out_features = out_features
|
361 |
+
self.linear = torch.nn.Linear(input_size, out_features)
|
362 |
+
def forward(self, x):
|
363 |
+
return self.linear(x)
|
364 |
+
|
365 |
+
model.ridge = RidgeRegression(voxels.shape[1], out_features=hidden_dim)
|
366 |
+
utils.count_params(model.ridge)
|
367 |
+
utils.count_params(model)
|
368 |
+
|
369 |
+
b = torch.randn((2,1,voxels.shape[1]))
|
370 |
+
print(b.shape, model.ridge(b).shape)
|
371 |
+
|
372 |
+
|
373 |
+
# In[15]:
|
374 |
+
|
375 |
+
|
376 |
+
from functools import partial
|
377 |
+
from diffusers.models.vae import Decoder
|
378 |
+
class BrainNetwork(nn.Module):
|
379 |
+
def __init__(self, out_dim=768, in_dim=15724, clip_size=768, h=4096, n_blocks=4, norm_type='ln', act_first=False, drop=.15, blurry_dim=16):
|
380 |
+
super().__init__()
|
381 |
+
self.blurry_dim = blurry_dim
|
382 |
+
norm_func = partial(nn.BatchNorm1d, num_features=h) if norm_type == 'bn' else partial(nn.LayerNorm, normalized_shape=h)
|
383 |
+
act_fn = partial(nn.ReLU, inplace=True) if norm_type == 'bn' else nn.GELU
|
384 |
+
act_and_norm = (act_fn, norm_func) if act_first else (norm_func, act_fn)
|
385 |
+
self.lin0 = nn.Linear(in_dim, h)
|
386 |
+
self.mlp = nn.ModuleList([
|
387 |
+
nn.Sequential(
|
388 |
+
nn.Linear(h, h),
|
389 |
+
*[item() for item in act_and_norm],
|
390 |
+
nn.Dropout(drop)
|
391 |
+
) for _ in range(n_blocks)
|
392 |
+
])
|
393 |
+
self.lin1 = nn.Linear(h, out_dim, bias=True)
|
394 |
+
self.blin1 = nn.Linear(out_dim, blurry_dim, bias=True)
|
395 |
+
self.n_blocks = n_blocks
|
396 |
+
self.clip_size = clip_size
|
397 |
+
self.clip_proj = nn.Sequential(
|
398 |
+
nn.LayerNorm(clip_size),
|
399 |
+
nn.GELU(),
|
400 |
+
nn.Linear(clip_size, 2048),
|
401 |
+
nn.LayerNorm(2048),
|
402 |
+
nn.GELU(),
|
403 |
+
nn.Linear(2048, 2048),
|
404 |
+
nn.LayerNorm(2048),
|
405 |
+
nn.GELU(),
|
406 |
+
nn.Linear(2048, clip_size)
|
407 |
+
)
|
408 |
+
self.upsampler = Decoder(
|
409 |
+
in_channels=64,
|
410 |
+
out_channels=4,
|
411 |
+
up_block_types=["UpDecoderBlock2D","UpDecoderBlock2D","UpDecoderBlock2D"],
|
412 |
+
block_out_channels=[64, 128, 256],
|
413 |
+
layers_per_block=1,
|
414 |
+
)
|
415 |
+
|
416 |
+
def forward(self, x):
|
417 |
+
x = self.lin0(x)
|
418 |
+
residual = x
|
419 |
+
for res_block in range(self.n_blocks):
|
420 |
+
x = self.mlp[res_block](x)
|
421 |
+
x += residual
|
422 |
+
residual = x
|
423 |
+
x = x.reshape(len(x), -1)
|
424 |
+
x = self.lin1(x)
|
425 |
+
b = self.blin1(x)
|
426 |
+
b = self.upsampler(b.reshape(len(b), -1, 7, 7))
|
427 |
+
c = self.clip_proj(x.reshape(len(x), -1, self.clip_size))
|
428 |
+
return c, b
|
429 |
+
|
430 |
+
model.backbone = BrainNetwork(h=2048, in_dim=hidden_dim, clip_size=clip_emb_dim, out_dim=clip_emb_dim*clip_seq_dim, blurry_dim=64*7*7)
|
431 |
+
utils.count_params(model.backbone)
|
432 |
+
utils.count_params(model)
|
433 |
+
|
434 |
+
b = torch.randn((2,hidden_dim))
|
435 |
+
print(b.shape)
|
436 |
+
clip_, blur_ = model.backbone(b)
|
437 |
+
print(clip_.shape, blur_.shape)
|
438 |
+
|
439 |
+
|
440 |
+
# In[19]:
|
441 |
+
|
442 |
+
|
443 |
+
# memory model
|
444 |
+
|
445 |
+
from timm.layers.mlp import Mlp
|
446 |
+
|
447 |
+
class MemoryEncoder(nn.Module):
|
448 |
+
def __init__(self, in_dim=15279, out_dim=768, h=4096, num_past_voxels=15, embedding_time_dim = 512, n_blocks=4, norm_type='ln', act_first=False, drop=.15):
|
449 |
+
super().__init__()
|
450 |
+
norm_func = partial(nn.BatchNorm1d, num_features=h) if norm_type == 'bn' else partial(nn.LayerNorm, normalized_shape=h)
|
451 |
+
act_fn = partial(nn.ReLU, inplace=True) if norm_type == 'bn' else nn.GELU
|
452 |
+
act_and_norm = (act_fn, norm_func) if act_first else (norm_func, act_fn)
|
453 |
+
self.out_dim = out_dim
|
454 |
+
self.embedding_time = nn.Embedding(num_past_voxels, embedding_time_dim)
|
455 |
+
self.final_input_dim = in_dim + embedding_time_dim
|
456 |
+
self.lin0 = nn.Linear(self.final_input_dim, h)
|
457 |
+
self.mlp = nn.ModuleList([
|
458 |
+
nn.Sequential(
|
459 |
+
nn.Linear(h, h),
|
460 |
+
*[item() for item in act_and_norm],
|
461 |
+
nn.Dropout(drop)
|
462 |
+
) for _ in range(n_blocks)
|
463 |
+
])
|
464 |
+
self.lin1 = nn.Linear(h, out_dim, bias=True)
|
465 |
+
self.n_blocks = n_blocks
|
466 |
+
self.num_past_voxels = num_past_voxels
|
467 |
+
self.embedding_time_dim = embedding_time_dim
|
468 |
+
self.memory = nn.Parameter(torch.randn((self.num_past_voxels, self.embedding_time_dim)))
|
469 |
+
|
470 |
+
|
471 |
+
def forward(self, x, time):
|
472 |
+
time = time.long()
|
473 |
+
time = self.embedding_time(time)
|
474 |
+
x = torch.cat((x, time), dim=-1)
|
475 |
+
x = self.lin0(x)
|
476 |
+
residual = x
|
477 |
+
for res_block in range(self.n_blocks):
|
478 |
+
x = self.mlp[res_block](x)
|
479 |
+
x += residual
|
480 |
+
residual = x
|
481 |
+
x = x.reshape(len(x), -1)
|
482 |
+
x = self.lin1(x)
|
483 |
+
return x
|
484 |
+
|
485 |
+
# # test the memory encoder
|
486 |
+
# memory_encoder = MemoryEncoder(in_dim=voxels.shape[1], out_dim=hidden_dim, num_past_voxels=15, embedding_time_dim=512)
|
487 |
+
|
488 |
+
# device = torch.device("cpu")
|
489 |
+
# memory_encoder.to(device)
|
490 |
+
|
491 |
+
# # count params
|
492 |
+
# total_parameters = 0
|
493 |
+
# for parameter in memory_encoder.parameters():
|
494 |
+
# total_parameters += parameter.numel()
|
495 |
+
|
496 |
+
# rand_input = torch.randn((2, 15279)).to(device)
|
497 |
+
# rand_time = torch.randint(0, 15, (2,)).to(device)
|
498 |
+
# print(rand_input.shape, rand_time.shape)
|
499 |
+
# memory_encoder(rand_input, rand_time).shape
|
500 |
+
|
501 |
+
class MemoryCompressor(nn.Module):
|
502 |
+
def __init__(self, in_dim=768, num_past = 15, output_dim=768, h=4096, n_blocks=4, norm_type='ln', act_first=False, drop=.15):
|
503 |
+
super().__init__()
|
504 |
+
self.num_past = num_past
|
505 |
+
norm_func = partial(nn.BatchNorm1d, num_features=h) if norm_type == 'bn' else partial(nn.LayerNorm, normalized_shape=h)
|
506 |
+
act_fn = partial(nn.ReLU, inplace=True) if norm_type == 'bn' else nn.GELU
|
507 |
+
act_and_norm = (act_fn, norm_func) if act_first else (norm_func, act_fn)
|
508 |
+
self.final_input_dim = in_dim * num_past
|
509 |
+
self.lin0 = nn.Linear(self.final_input_dim, h)
|
510 |
+
self.mlp = nn.ModuleList([
|
511 |
+
nn.Sequential(
|
512 |
+
nn.Linear(h, h),
|
513 |
+
*[item() for item in act_and_norm],
|
514 |
+
nn.Dropout(drop)
|
515 |
+
) for _ in range(n_blocks)
|
516 |
+
])
|
517 |
+
self.lin1 = nn.Linear(h, output_dim, bias=True)
|
518 |
+
self.n_blocks = n_blocks
|
519 |
+
self.num_past = num_past
|
520 |
+
self.output_dim = output_dim
|
521 |
+
|
522 |
+
def forward(self, x):
|
523 |
+
# x is (batch_size, num_past, in_dim)
|
524 |
+
x = x.reshape(len(x), -1)
|
525 |
+
x = self.lin0(x)
|
526 |
+
residual = x
|
527 |
+
for res_block in range(self.n_blocks):
|
528 |
+
x = self.mlp[res_block](x)
|
529 |
+
x += residual
|
530 |
+
residual = x
|
531 |
+
x = x.reshape(len(x), -1)
|
532 |
+
x = self.lin1(x)
|
533 |
+
return x
|
534 |
+
|
535 |
+
# # test the memory compressor
|
536 |
+
# memory_compressor = MemoryCompressor(in_dim=768, num_past=15, output_dim=768)
|
537 |
+
|
538 |
+
# device = torch.device("cpu")
|
539 |
+
# memory_compressor.to(device)
|
540 |
+
|
541 |
+
# # count params
|
542 |
+
# total_parameters = 0
|
543 |
+
# for parameter in memory_compressor.parameters():
|
544 |
+
# total_parameters += parameter.numel()
|
545 |
+
|
546 |
+
# rand_input = torch.randn((2, 15, 768)).to(device)
|
547 |
+
# print(rand_input.shape)
|
548 |
+
# memory_compressor(rand_input).shape
|
549 |
+
|
550 |
+
model.memory_encoder = MemoryEncoder(in_dim=voxels.shape[1], out_dim=4096, num_past_voxels=15, embedding_time_dim=512)
|
551 |
+
model.memory_compressor = MemoryCompressor(in_dim=model.memory_encoder.out_dim, num_past=15, output_dim=4096)
|
552 |
+
|
553 |
+
utils.count_params(model.memory_encoder)
|
554 |
+
utils.count_params(model.memory_compressor)
|
555 |
+
utils.count_params(model)
|
556 |
+
|
557 |
+
|
558 |
+
|
559 |
+
# In[17]:
|
560 |
+
|
561 |
+
|
562 |
+
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
|
563 |
+
opt_grouped_parameters = [
|
564 |
+
{'params': [p for n, p in model.ridge.named_parameters()], 'weight_decay': 1e-2},
|
565 |
+
{'params': [p for n, p in model.backbone.named_parameters() if not any(nd in n for nd in no_decay)], 'weight_decay': 1e-2},
|
566 |
+
{'params': [p for n, p in model.backbone.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0},
|
567 |
+
{'params': [p for n, p in model.memory_encoder.named_parameters()], 'weight_decay': 1e-2},
|
568 |
+
{'params': [p for n, p in model.memory_compressor.named_parameters()], 'weight_decay': 1e-2},
|
569 |
+
]
|
570 |
+
|
571 |
+
optimizer = torch.optim.AdamW(opt_grouped_parameters, lr=max_lr, betas=(0.9, 0.95))
|
572 |
+
|
573 |
+
if lr_scheduler_type == 'linear':
|
574 |
+
lr_scheduler = torch.optim.lr_scheduler.LinearLR(
|
575 |
+
optimizer,
|
576 |
+
total_iters=int(num_epochs*(num_train*num_devices//batch_size)),
|
577 |
+
last_epoch=-1
|
578 |
+
)
|
579 |
+
elif lr_scheduler_type == 'cycle':
|
580 |
+
total_steps=int(num_epochs*(num_train*num_devices//batch_size))
|
581 |
+
lr_scheduler = torch.optim.lr_scheduler.OneCycleLR(
|
582 |
+
optimizer,
|
583 |
+
max_lr=max_lr,
|
584 |
+
total_steps=total_steps,
|
585 |
+
final_div_factor=1000,
|
586 |
+
last_epoch=-1, pct_start=2/num_epochs
|
587 |
+
)
|
588 |
+
|
589 |
+
def save_ckpt(tag):
|
590 |
+
ckpt_path = outdir+f'/{tag}.pth'
|
591 |
+
print(f'saving {ckpt_path}',flush=True)
|
592 |
+
unwrapped_model = accelerator.unwrap_model(model)
|
593 |
+
try:
|
594 |
+
torch.save({
|
595 |
+
'epoch': epoch,
|
596 |
+
'model_state_dict': unwrapped_model.state_dict(),
|
597 |
+
'optimizer_state_dict': optimizer.state_dict(),
|
598 |
+
'lr_scheduler': lr_scheduler.state_dict(),
|
599 |
+
'train_losses': losses,
|
600 |
+
'test_losses': test_losses,
|
601 |
+
'lrs': lrs,
|
602 |
+
}, ckpt_path)
|
603 |
+
except:
|
604 |
+
print("Couldn't save... moving on to prevent crashing.")
|
605 |
+
del unwrapped_model
|
606 |
+
|
607 |
+
print("\nDone with model preparations!")
|
608 |
+
utils.count_params(model)
|
609 |
+
|
610 |
+
|
611 |
+
|
612 |
+
# # Weights and Biases
|
613 |
+
|
614 |
+
# In[ ]:
|
615 |
+
|
616 |
+
|
617 |
+
# params for wandb
|
618 |
+
wandb_log = True
|
619 |
+
if local_rank==0 and wandb_log: # only use main process for wandb logging
|
620 |
+
import wandb
|
621 |
+
|
622 |
+
wandb_project = 'stability'
|
623 |
+
wandb_run = model_name
|
624 |
+
wandb_notes = ''
|
625 |
+
|
626 |
+
print(f"wandb {wandb_project} run {wandb_run}")
|
627 |
+
wandb.login(host='https://stability.wandb.io')#, relogin=True)
|
628 |
+
wandb_config = {
|
629 |
+
"model_name": model_name,
|
630 |
+
"batch_size": batch_size,
|
631 |
+
"num_epochs": num_epochs,
|
632 |
+
"use_image_aug": use_image_aug,
|
633 |
+
"max_lr": max_lr,
|
634 |
+
"lr_scheduler_type": lr_scheduler_type,
|
635 |
+
"mixup_pct": mixup_pct,
|
636 |
+
"num_train": num_train,
|
637 |
+
"num_test": num_test,
|
638 |
+
"seed": seed,
|
639 |
+
"distributed": distributed,
|
640 |
+
"num_devices": num_devices,
|
641 |
+
"world_size": world_size,
|
642 |
+
}
|
643 |
+
print("wandb_config:\n",wandb_config)
|
644 |
+
if False: # wandb_auto_resume
|
645 |
+
print("wandb_id:",model_name)
|
646 |
+
wandb.init(
|
647 |
+
id = model_name,
|
648 |
+
project=wandb_project,
|
649 |
+
name=wandb_run,
|
650 |
+
config=wandb_config,
|
651 |
+
notes=wandb_notes,
|
652 |
+
resume="allow",
|
653 |
+
)
|
654 |
+
else:
|
655 |
+
wandb.init(
|
656 |
+
project=wandb_project,
|
657 |
+
name=model_name,
|
658 |
+
config=wandb_config,
|
659 |
+
notes=wandb_notes,
|
660 |
+
)
|
661 |
+
else:
|
662 |
+
wandb_log = False
|
663 |
+
|
664 |
+
|
665 |
+
# # More custom functions
|
666 |
+
|
667 |
+
# In[ ]:
|
668 |
+
|
669 |
+
|
670 |
+
# using the same preprocessing as was used in MindEye + BrainDiffuser
|
671 |
+
pixcorr_preprocess = transforms.Compose([
|
672 |
+
transforms.Resize(425, interpolation=transforms.InterpolationMode.BILINEAR),
|
673 |
+
])
|
674 |
+
def pixcorr(images,brains):
|
675 |
+
# Flatten images while keeping the batch dimension
|
676 |
+
all_images_flattened = pixcorr_preprocess(images).reshape(len(images), -1)
|
677 |
+
all_brain_recons_flattened = pixcorr_preprocess(brains).view(len(brains), -1)
|
678 |
+
corrmean = torch.diag(utils.batchwise_pearson_correlation(all_images_flattened, all_brain_recons_flattened)).mean()
|
679 |
+
return corrmean
|
680 |
+
|
681 |
+
|
682 |
+
# # Main
|
683 |
+
|
684 |
+
# In[ ]:
|
685 |
+
|
686 |
+
|
687 |
+
epoch = 0
|
688 |
+
losses, test_losses, lrs = [], [], []
|
689 |
+
best_test_loss = 1e9
|
690 |
+
soft_loss_temps = utils.cosine_anneal(0.004, 0.0075, num_epochs - int(mixup_pct * num_epochs))
|
691 |
+
|
692 |
+
# Optionally resume from checkpoint #
|
693 |
+
if resume_from_ckpt:
|
694 |
+
print("\n---resuming from last.pth ckpt---\n")
|
695 |
+
try:
|
696 |
+
checkpoint = torch.load(outdir+'/last.pth', map_location='cpu')
|
697 |
+
except:
|
698 |
+
print('last.pth failed... trying last_backup.pth')
|
699 |
+
checkpoint = torch.load(outdir+'/last_backup.pth', map_location='cpu')
|
700 |
+
epoch = checkpoint['epoch']
|
701 |
+
print("Epoch",epoch)
|
702 |
+
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
|
703 |
+
lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
|
704 |
+
diffusion_diffuser.load_state_dict(checkpoint['model_state_dict'])
|
705 |
+
del checkpoint
|
706 |
+
elif wandb_log:
|
707 |
+
if wandb.run.resumed:
|
708 |
+
print("\n---resuming from last.pth ckpt---\n")
|
709 |
+
try:
|
710 |
+
checkpoint = torch.load(outdir+'/last.pth', map_location='cpu')
|
711 |
+
except:
|
712 |
+
print('last.pth failed... trying last_backup.pth')
|
713 |
+
checkpoint = torch.load(outdir+'/last_backup.pth', map_location='cpu')
|
714 |
+
epoch = checkpoint['epoch']
|
715 |
+
print("Epoch",epoch)
|
716 |
+
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
|
717 |
+
lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
|
718 |
+
diffusion_diffuser.load_state_dict(checkpoint['model_state_dict'])
|
719 |
+
del checkpoint
|
720 |
+
torch.cuda.empty_cache()
|
721 |
+
|
722 |
+
|
723 |
+
# In[ ]:
|
724 |
+
|
725 |
+
|
726 |
+
model, optimizer, train_dl, test_dl, lr_scheduler = accelerator.prepare(
|
727 |
+
model, optimizer, train_dl, test_dl, lr_scheduler
|
728 |
+
)
|
729 |
+
|
730 |
+
|
731 |
+
# In[ ]:
|
732 |
+
|
733 |
+
|
734 |
+
print(f"{model_name} starting with epoch {epoch} / {num_epochs}")
|
735 |
+
progress_bar = tqdm(range(0,num_epochs), ncols=1200, disable=(local_rank!=0))
|
736 |
+
test_image, test_voxel = None, None
|
737 |
+
mse = nn.MSELoss()
|
738 |
+
for epoch in progress_bar:
|
739 |
+
model.train()
|
740 |
+
|
741 |
+
fwd_percent_correct = 0.
|
742 |
+
bwd_percent_correct = 0.
|
743 |
+
test_fwd_percent_correct = 0.
|
744 |
+
test_bwd_percent_correct = 0.
|
745 |
+
|
746 |
+
loss_clip_total = 0.
|
747 |
+
loss_blurry_total = 0.
|
748 |
+
test_loss_clip_total = 0.
|
749 |
+
test_loss_blurry_total = 0.
|
750 |
+
|
751 |
+
blurry_pixcorr = 0.
|
752 |
+
test_blurry_pixcorr = 0. # needs >.456 to beat low-level subj01 results in mindeye v1
|
753 |
+
|
754 |
+
for train_i, (behav, past_behav, future_behav, old_behav) in enumerate(train_dl):
|
755 |
+
#if epoch == 0 or epoch == 1:
|
756 |
+
# break
|
757 |
+
with torch.cuda.amp.autocast():
|
758 |
+
optimizer.zero_grad()
|
759 |
+
|
760 |
+
voxel = voxels[behav[:,0,5].cpu().long()].to(device)
|
761 |
+
|
762 |
+
image = images[behav[:,0,0].cpu().long()].to(device).float()
|
763 |
+
|
764 |
+
past_15_voxels = voxels[past_behav[:,:,5].cpu().long()].to(device) # batch_size, 15, 15279
|
765 |
+
past_15_times = torch.Tensor([i for i in range(15)]).to(device) # 15
|
766 |
+
|
767 |
+
blurry_image_enc = autoenc.encode(image).latent_dist.mode()
|
768 |
+
|
769 |
+
if use_image_aug: image = img_augment(image)
|
770 |
+
|
771 |
+
clip_target = clip_model.embed_image(image)
|
772 |
+
assert not torch.any(torch.isnan(clip_target))
|
773 |
+
|
774 |
+
if epoch < int(mixup_pct * num_epochs):
|
775 |
+
voxel, perm, betas, select = utils.mixco(voxel)
|
776 |
+
|
777 |
+
# reshape past voxels to be (batch_size * 15, 15279)
|
778 |
+
past_15_voxels = past_15_voxels.reshape(-1, past_15_voxels.shape[-1])
|
779 |
+
past_15_times = past_15_times.repeat(voxel.shape[0], 1)
|
780 |
+
past_15_times = past_15_times.reshape(-1)
|
781 |
+
|
782 |
+
#print(past_15_voxels.shape, past_15_times.shape)
|
783 |
+
|
784 |
+
embeds_past_voxels = model.memory_encoder(past_15_voxels, past_15_times)
|
785 |
+
#print(embeds_past_voxels.shape)
|
786 |
+
embeds_past_voxels = embeds_past_voxels.reshape(voxel.shape[0], 15, -1)
|
787 |
+
#print(embeds_past_voxels.shape)
|
788 |
+
information_past_voxels = model.memory_compressor(embeds_past_voxels)
|
789 |
+
|
790 |
+
|
791 |
+
voxel_ridge = model.ridge(voxel) + information_past_voxels
|
792 |
+
|
793 |
+
clip_voxels, blurry_image_enc_ = model.backbone(voxel_ridge)
|
794 |
+
|
795 |
+
clip_voxels_norm = nn.functional.normalize(clip_voxels.flatten(1), dim=-1)
|
796 |
+
clip_target_norm = nn.functional.normalize(clip_target.flatten(1), dim=-1)
|
797 |
+
|
798 |
+
if epoch < int(mixup_pct * num_epochs):
|
799 |
+
loss_clip = utils.mixco_nce(
|
800 |
+
clip_voxels_norm,
|
801 |
+
clip_target_norm,
|
802 |
+
temp=.006,
|
803 |
+
perm=perm, betas=betas, select=select)
|
804 |
+
else:
|
805 |
+
epoch_temp = soft_loss_temps[epoch-int(mixup_pct*num_epochs)]
|
806 |
+
loss_clip = utils.soft_clip_loss(
|
807 |
+
clip_voxels_norm,
|
808 |
+
clip_target_norm,
|
809 |
+
temp=epoch_temp)
|
810 |
+
|
811 |
+
loss_blurry = mse(blurry_image_enc_, blurry_image_enc)
|
812 |
+
|
813 |
+
loss_clip_total += loss_clip.item()
|
814 |
+
loss_blurry_total += loss_blurry.item()
|
815 |
+
|
816 |
+
loss = loss_blurry + loss_clip
|
817 |
+
|
818 |
+
utils.check_loss(loss)
|
819 |
+
|
820 |
+
accelerator.backward(loss)
|
821 |
+
optimizer.step()
|
822 |
+
|
823 |
+
losses.append(loss.item())
|
824 |
+
lrs.append(optimizer.param_groups[0]['lr'])
|
825 |
+
|
826 |
+
# forward and backward top 1 accuracy
|
827 |
+
labels = torch.arange(len(clip_target_norm)).to(clip_voxels_norm.device)
|
828 |
+
fwd_percent_correct += utils.topk(utils.batchwise_cosine_similarity(clip_voxels_norm, clip_target_norm), labels, k=1)
|
829 |
+
bwd_percent_correct += utils.topk(utils.batchwise_cosine_similarity(clip_target_norm, clip_voxels_norm), labels, k=1)
|
830 |
+
|
831 |
+
with torch.no_grad():
|
832 |
+
# only doing pixcorr eval on a subset (8) of the samples per batch because its costly & slow to compute autoenc.decode()
|
833 |
+
random_samps = np.random.choice(np.arange(len(voxel)), size=2, replace=False)
|
834 |
+
blurry_recon_images = autoenc.decode(blurry_image_enc_[random_samps]).sample.clamp(0,1)
|
835 |
+
blurry_pixcorr += pixcorr(image[random_samps], blurry_recon_images)
|
836 |
+
|
837 |
+
if lr_scheduler_type is not None:
|
838 |
+
lr_scheduler.step()
|
839 |
+
|
840 |
+
model.eval()
|
841 |
+
for test_i, (behav, past_behav, future_behav, old_behav) in enumerate(test_dl):
|
842 |
+
print('test')
|
843 |
+
with torch.cuda.amp.autocast():
|
844 |
+
with torch.no_grad():
|
845 |
+
# all test samples should be loaded per batch such that test_i should never exceed 0
|
846 |
+
if len(behav) != num_test: print("!",len(behav),num_test)
|
847 |
+
|
848 |
+
|
849 |
+
## Average same-image repeats ##
|
850 |
+
if test_image is None:
|
851 |
+
voxel = voxels[behav[:,0,5].cpu().long()].to(device)
|
852 |
+
|
853 |
+
image = behav[:,0,0].cpu().long()
|
854 |
+
|
855 |
+
unique_image, sort_indices = torch.unique(image, return_inverse=True)
|
856 |
+
for im in unique_image:
|
857 |
+
locs = torch.where(im == image)[0]
|
858 |
+
if test_image is None:
|
859 |
+
test_image = images[im][None]
|
860 |
+
test_voxel = torch.mean(voxel[locs],axis=0)[None]
|
861 |
+
else:
|
862 |
+
test_image = torch.vstack((test_image, images[im][None]))
|
863 |
+
test_voxel = torch.vstack((test_voxel, torch.mean(voxel[locs],axis=0)[None]))
|
864 |
+
|
865 |
+
# sample of batch_size
|
866 |
+
random_indices = torch.arange(len(test_voxel))[:batch_size] #torch.randperm(len(test_voxel))[:300]
|
867 |
+
voxel = test_voxel[random_indices].to(device)
|
868 |
+
image = test_image[random_indices].to(device)
|
869 |
+
|
870 |
+
current_past_behav = past_behav[random_indices]
|
871 |
+
|
872 |
+
past_15_voxels = voxels[current_past_behav[:,:,5].cpu().long()].to(device) # batch_size, 15, 15279
|
873 |
+
past_15_times = torch.Tensor([i for i in range(15)]).to(device) # 15
|
874 |
+
|
875 |
+
assert len(image) == batch_size
|
876 |
+
|
877 |
+
blurry_image_enc = autoenc.encode(image).latent_dist.mode()
|
878 |
+
|
879 |
+
clip_target = clip_model.embed_image(image.float())
|
880 |
+
|
881 |
+
past_15_voxels = past_15_voxels.reshape(-1, past_15_voxels.shape[-1])
|
882 |
+
past_15_times = past_15_times.repeat(voxel.shape[0], 1)
|
883 |
+
past_15_times = past_15_times.reshape(-1)
|
884 |
+
|
885 |
+
print(past_15_voxels.shape, past_15_times.shape)
|
886 |
+
|
887 |
+
embeds_past_voxels = model.memory_encoder(past_15_voxels, past_15_times)
|
888 |
+
embeds_past_voxels = embeds_past_voxels.reshape(batch_size, 15, -1)
|
889 |
+
information_past_voxels = model.memory_compressor(embeds_past_voxels)
|
890 |
+
|
891 |
+
|
892 |
+
voxel_ridge = model.ridge(voxel) + information_past_voxels
|
893 |
+
|
894 |
+
clip_voxels, blurry_image_enc_ = model.backbone(voxel_ridge)
|
895 |
+
|
896 |
+
clip_voxels_norm = nn.functional.normalize(clip_voxels.flatten(1), dim=-1)
|
897 |
+
clip_target_norm = nn.functional.normalize(clip_target.flatten(1), dim=-1)
|
898 |
+
|
899 |
+
loss_clip = utils.soft_clip_loss(
|
900 |
+
clip_voxels_norm,
|
901 |
+
clip_target_norm,
|
902 |
+
temp=.006)
|
903 |
+
|
904 |
+
loss_blurry = mse(blurry_image_enc_, blurry_image_enc)
|
905 |
+
|
906 |
+
loss = loss_blurry + loss_clip
|
907 |
+
|
908 |
+
utils.check_loss(loss)
|
909 |
+
|
910 |
+
test_losses.append(loss.item())
|
911 |
+
|
912 |
+
# forward and backward top 1 accuracy
|
913 |
+
labels = torch.arange(len(clip_target_norm)).to(clip_voxels_norm.device)
|
914 |
+
test_fwd_percent_correct += utils.topk(utils.batchwise_cosine_similarity(clip_voxels_norm, clip_target_norm), labels, k=1)
|
915 |
+
test_bwd_percent_correct += utils.topk(utils.batchwise_cosine_similarity(clip_target_norm, clip_voxels_norm), labels, k=1)
|
916 |
+
|
917 |
+
# halving the batch size because the decoder is computationally heavy
|
918 |
+
blurry_recon_images = autoenc.decode(blurry_image_enc_[:len(voxel)//2]).sample.clamp(0,1)
|
919 |
+
blurry_recon_images = torch.vstack((blurry_recon_images, autoenc.decode(blurry_image_enc_[len(voxel)//2:]).sample.clamp(0,1)))
|
920 |
+
test_blurry_pixcorr += pixcorr(image, blurry_recon_images)
|
921 |
+
|
922 |
+
# transform blurry recon latents to images and plot it
|
923 |
+
fig, axes = plt.subplots(1, 4, figsize=(8, 4))
|
924 |
+
axes[0].imshow(utils.torch_to_Image(image[[0]]))
|
925 |
+
axes[1].imshow(utils.torch_to_Image(autoenc.decode(blurry_image_enc_[[0]]).sample.clamp(0,1)))
|
926 |
+
axes[2].imshow(utils.torch_to_Image(image[[1]]))
|
927 |
+
axes[3].imshow(utils.torch_to_Image(autoenc.decode(blurry_image_enc_[[1]]).sample.clamp(0,1)))
|
928 |
+
axes[0].axis('off'); axes[1].axis('off'); axes[2].axis('off'); axes[3].axis('off')
|
929 |
+
plt.show()
|
930 |
+
|
931 |
+
if local_rank==0:
|
932 |
+
# if utils.is_interactive(): clear_output(wait=True)
|
933 |
+
assert (test_i+1) == 1
|
934 |
+
logs = {"train/loss": np.mean(losses[-(train_i+1):]),
|
935 |
+
"test/loss": np.mean(test_losses[-(test_i+1):]),
|
936 |
+
"train/lr": lrs[-1],
|
937 |
+
"train/num_steps": len(losses),
|
938 |
+
"test/num_steps": len(test_losses),
|
939 |
+
"train/fwd_pct_correct": fwd_percent_correct / (train_i + 1),
|
940 |
+
"train/bwd_pct_correct": bwd_percent_correct / (train_i + 1),
|
941 |
+
"test/test_fwd_pct_correct": test_fwd_percent_correct / (test_i + 1),
|
942 |
+
"test/test_bwd_pct_correct": test_bwd_percent_correct / (test_i + 1),
|
943 |
+
"train/loss_clip_total": loss_clip_total / (train_i + 1),
|
944 |
+
"train/loss_blurry_total": loss_blurry_total / (train_i + 1),
|
945 |
+
"test/loss_clip_total": test_loss_clip_total / (test_i + 1),
|
946 |
+
"test/loss_blurry_total": test_loss_blurry_total / (test_i + 1),
|
947 |
+
"train/blurry_pixcorr": blurry_pixcorr / (train_i + 1),
|
948 |
+
"test/blurry_pixcorr": test_blurry_pixcorr / (test_i + 1),
|
949 |
+
}
|
950 |
+
progress_bar.set_postfix(**logs)
|
951 |
+
|
952 |
+
# Save model checkpoint and reconstruct
|
953 |
+
if epoch % ckpt_interval == 0:
|
954 |
+
if not utils.is_interactive():
|
955 |
+
save_ckpt(f'last')
|
956 |
+
|
957 |
+
if wandb_log: wandb.log(logs)
|
958 |
+
|
959 |
+
# wait for other GPUs to catch up if needed
|
960 |
+
accelerator.wait_for_everyone()
|
961 |
+
torch.cuda.empty_cache()
|
962 |
+
gc.collect()
|
963 |
+
|
964 |
+
print("\n===Finished!===\n")
|
965 |
+
if ckpt_saving:
|
966 |
+
save_ckpt(f'last')
|
967 |
+
if not utils.is_interactive():
|
968 |
+
sys.exit(0)
|
969 |
+
|
970 |
+
|
971 |
+
# In[ ]:
|
972 |
+
|
973 |
+
|
974 |
+
plt.plot(losses)
|
975 |
+
plt.show()
|
976 |
+
plt.plot(test_losses)
|
977 |
+
plt.show()
|
978 |
+
|
src/Train.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
src/Train.py
ADDED
@@ -0,0 +1,761 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# coding: utf-8
|
3 |
+
|
4 |
+
# In[1]:
|
5 |
+
|
6 |
+
|
7 |
+
# # Code to convert this notebook to .py if you want to run it via command line or with Slurm
|
8 |
+
# from subprocess import call
|
9 |
+
# command = "jupyter nbconvert Train.ipynb --to python"
|
10 |
+
# call(command,shell=True)
|
11 |
+
|
12 |
+
|
13 |
+
# # Import packages & functions
|
14 |
+
|
15 |
+
# In[2]:
|
16 |
+
|
17 |
+
|
18 |
+
import os
|
19 |
+
import sys
|
20 |
+
import json
|
21 |
+
import argparse
|
22 |
+
import numpy as np
|
23 |
+
import math
|
24 |
+
from einops import rearrange
|
25 |
+
import time
|
26 |
+
import random
|
27 |
+
import h5py
|
28 |
+
from tqdm import tqdm
|
29 |
+
|
30 |
+
import webdataset as wds
|
31 |
+
import gc
|
32 |
+
|
33 |
+
import matplotlib.pyplot as plt
|
34 |
+
import torch
|
35 |
+
import torch.nn as nn
|
36 |
+
from torchvision import transforms
|
37 |
+
|
38 |
+
from accelerate import Accelerator, DeepSpeedPlugin
|
39 |
+
|
40 |
+
# tf32 data type is faster than standard float32
|
41 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
42 |
+
|
43 |
+
# custom functions #
|
44 |
+
import utils
|
45 |
+
|
46 |
+
global_batch_size = 128 #128
|
47 |
+
|
48 |
+
|
49 |
+
# In[ ]:
|
50 |
+
|
51 |
+
|
52 |
+
### Multi-GPU config ###
|
53 |
+
local_rank = os.getenv('RANK')
|
54 |
+
if local_rank is None:
|
55 |
+
local_rank = 0
|
56 |
+
else:
|
57 |
+
local_rank = int(local_rank)
|
58 |
+
print("LOCAL RANK ", local_rank)
|
59 |
+
|
60 |
+
num_devices = torch.cuda.device_count()
|
61 |
+
if num_devices==0: num_devices = 1
|
62 |
+
|
63 |
+
accelerator = Accelerator(split_batches=False)
|
64 |
+
|
65 |
+
### UNCOMMENT BELOW STUFF TO USE DEEPSPEED (also comment out the immediately above "accelerator = " line) ###
|
66 |
+
|
67 |
+
# if num_devices <= 1 and utils.is_interactive():
|
68 |
+
# # can emulate a distributed environment for deepspeed to work in jupyter notebook
|
69 |
+
# os.environ["MASTER_ADDR"] = "localhost"
|
70 |
+
# os.environ["MASTER_PORT"] = str(np.random.randint(10000)+9000)
|
71 |
+
# os.environ["RANK"] = "0"
|
72 |
+
# os.environ["LOCAL_RANK"] = "0"
|
73 |
+
# os.environ["WORLD_SIZE"] = "1"
|
74 |
+
# os.environ["GLOBAL_BATCH_SIZE"] = str(global_batch_size) # set this to your batch size!
|
75 |
+
# global_batch_size = os.environ["GLOBAL_BATCH_SIZE"]
|
76 |
+
|
77 |
+
# # alter the deepspeed config according to your global and local batch size
|
78 |
+
# if local_rank == 0:
|
79 |
+
# with open('deepspeed_config_stage2.json', 'r') as file:
|
80 |
+
# config = json.load(file)
|
81 |
+
# config['train_batch_size'] = int(os.environ["GLOBAL_BATCH_SIZE"])
|
82 |
+
# config['train_micro_batch_size_per_gpu'] = int(os.environ["GLOBAL_BATCH_SIZE"]) // num_devices
|
83 |
+
# with open('deepspeed_config_stage2.json', 'w') as file:
|
84 |
+
# json.dump(config, file)
|
85 |
+
# else:
|
86 |
+
# # give some time for the local_rank=0 gpu to prep new deepspeed config file
|
87 |
+
# time.sleep(10)
|
88 |
+
# deepspeed_plugin = DeepSpeedPlugin("deepspeed_config_stage2.json")
|
89 |
+
# accelerator = Accelerator(split_batches=False, deepspeed_plugin=deepspeed_plugin)
|
90 |
+
|
91 |
+
### Multi-GPU config ###
|
92 |
+
print("PID of this process =",os.getpid())
|
93 |
+
device = accelerator.device
|
94 |
+
print("device:",device)
|
95 |
+
num_workers = num_devices
|
96 |
+
print(accelerator.state)
|
97 |
+
world_size = accelerator.state.num_processes
|
98 |
+
distributed = not accelerator.state.distributed_type == 'NO'
|
99 |
+
print("distributed =",distributed, "num_devices =", num_devices, "local rank =", local_rank, "world size =", world_size)
|
100 |
+
print = accelerator.print # only print if local_rank=0
|
101 |
+
|
102 |
+
# In[ ]:
|
103 |
+
|
104 |
+
|
105 |
+
|
106 |
+
|
107 |
+
|
108 |
+
# # Configurations
|
109 |
+
|
110 |
+
# In[3]:
|
111 |
+
|
112 |
+
|
113 |
+
|
114 |
+
# In[4]:
|
115 |
+
|
116 |
+
parser = argparse.ArgumentParser(description="Model Training Configuration")
|
117 |
+
parser.add_argument(
|
118 |
+
"--model_name", type=str, default="testing",
|
119 |
+
help="name of model, used for ckpt saving and wandb logging (if enabled)",
|
120 |
+
)
|
121 |
+
parser.add_argument(
|
122 |
+
"--data_path", type=str, default="/fsx/proj-fmri/shared/natural-scenes-dataset",
|
123 |
+
help="Path to where NSD data is stored / where to download it to",
|
124 |
+
)
|
125 |
+
parser.add_argument(
|
126 |
+
"--subj",type=int, default=1, choices=[1,2,5,7],
|
127 |
+
)
|
128 |
+
parser.add_argument(
|
129 |
+
"--batch_size", type=int, default=32,
|
130 |
+
help="Batch size can be increased by 10x if only training v2c and not diffusion diffuser",
|
131 |
+
)
|
132 |
+
parser.add_argument(
|
133 |
+
"--wandb_log",action=argparse.BooleanOptionalAction,default=False,
|
134 |
+
help="whether to log to wandb",
|
135 |
+
)
|
136 |
+
parser.add_argument(
|
137 |
+
"--resume_from_ckpt",action=argparse.BooleanOptionalAction,default=False,
|
138 |
+
help="if not using wandb and want to resume from a ckpt",
|
139 |
+
)
|
140 |
+
parser.add_argument(
|
141 |
+
"--wandb_project",type=str,default="stability",
|
142 |
+
help="wandb project name",
|
143 |
+
)
|
144 |
+
parser.add_argument(
|
145 |
+
"--mixup_pct",type=float,default=.33,
|
146 |
+
help="proportion of way through training when to switch from BiMixCo to SoftCLIP",
|
147 |
+
)
|
148 |
+
parser.add_argument(
|
149 |
+
"--use_image_aug",action=argparse.BooleanOptionalAction,default=True,
|
150 |
+
help="whether to use image augmentation",
|
151 |
+
)
|
152 |
+
parser.add_argument(
|
153 |
+
"--num_epochs",type=int,default=240,
|
154 |
+
help="number of epochs of training",
|
155 |
+
)
|
156 |
+
parser.add_argument(
|
157 |
+
"--lr_scheduler_type",type=str,default='cycle',choices=['cycle','linear'],
|
158 |
+
)
|
159 |
+
parser.add_argument(
|
160 |
+
"--ckpt_saving",action=argparse.BooleanOptionalAction,default=True,
|
161 |
+
)
|
162 |
+
parser.add_argument(
|
163 |
+
"--ckpt_interval",type=int,default=5,
|
164 |
+
help="save backup ckpt and reconstruct every x epochs",
|
165 |
+
)
|
166 |
+
parser.add_argument(
|
167 |
+
"--seed",type=int,default=42,
|
168 |
+
)
|
169 |
+
parser.add_argument(
|
170 |
+
"--max_lr",type=float,default=3e-4,
|
171 |
+
)
|
172 |
+
parser.add_argument(
|
173 |
+
"--n_samples_save",type=int,default=0,choices=[0,1],
|
174 |
+
help="Number of reconstructions for monitoring progress, 0 will speed up training",
|
175 |
+
)
|
176 |
+
|
177 |
+
if utils.is_interactive():
|
178 |
+
args = parser.parse_args(jupyter_args)
|
179 |
+
else:
|
180 |
+
args = parser.parse_args()
|
181 |
+
|
182 |
+
# create global variables without the args prefix
|
183 |
+
for attribute_name in vars(args).keys():
|
184 |
+
globals()[attribute_name] = getattr(args, attribute_name)
|
185 |
+
|
186 |
+
print("global batch_size", batch_size)
|
187 |
+
batch_size = int(batch_size / num_devices)
|
188 |
+
print("batch_size", batch_size)
|
189 |
+
|
190 |
+
# In[5]:
|
191 |
+
outdir = os.path.abspath(f'../train_logs/{model_name}')
|
192 |
+
if not os.path.exists(outdir):
|
193 |
+
os.makedirs(outdir,exist_ok=True)
|
194 |
+
if use_image_aug:
|
195 |
+
import kornia
|
196 |
+
from kornia.augmentation.container import AugmentationSequential
|
197 |
+
img_augment = AugmentationSequential(
|
198 |
+
kornia.augmentation.RandomResizedCrop((224,224), (0.6,1), p=0.3),
|
199 |
+
kornia.augmentation.Resize((224, 224)),
|
200 |
+
kornia.augmentation.RandomHorizontalFlip(p=0.3),
|
201 |
+
kornia.augmentation.ColorJitter(brightness=0.4, contrast=0.4, saturation=0.2, hue=0.1, p=0.3),
|
202 |
+
kornia.augmentation.RandomGrayscale(p=0.3),
|
203 |
+
same_on_batch=False,
|
204 |
+
data_keys=["input"],
|
205 |
+
)
|
206 |
+
|
207 |
+
|
208 |
+
# # Prep data, models, and dataloaders
|
209 |
+
|
210 |
+
# ## Dataloader
|
211 |
+
|
212 |
+
# In[6]:
|
213 |
+
|
214 |
+
if subj==1:
|
215 |
+
num_train = 24958
|
216 |
+
num_test = 2770
|
217 |
+
test_batch_size = num_test
|
218 |
+
|
219 |
+
def my_split_by_node(urls): return urls
|
220 |
+
|
221 |
+
train_url = f"{data_path}/wds/subj0{subj}/train/" + "{0..36}.tar"
|
222 |
+
print(train_url)
|
223 |
+
|
224 |
+
train_data = wds.WebDataset(train_url,resampled=False,nodesplitter=my_split_by_node)\
|
225 |
+
.shuffle(750, initial=1500, rng=random.Random(42))\
|
226 |
+
.decode("torch")\
|
227 |
+
.rename(behav="behav.npy", past_behav="past_behav.npy", future_behav="future_behav.npy", olds_behav="olds_behav.npy")\
|
228 |
+
.to_tuple(*["behav", "past_behav", "future_behav", "olds_behav"])
|
229 |
+
train_dl = torch.utils.data.DataLoader(train_data, batch_size=batch_size, shuffle=False, drop_last=False, pin_memory=True)
|
230 |
+
|
231 |
+
test_url = f"{data_path}/wds/subj0{subj}/test/" + "0.tar"
|
232 |
+
print(test_url)
|
233 |
+
|
234 |
+
test_data = wds.WebDataset(test_url,resampled=False,nodesplitter=my_split_by_node)\
|
235 |
+
.shuffle(750, initial=1500, rng=random.Random(42))\
|
236 |
+
.decode("torch")\
|
237 |
+
.rename(behav="behav.npy", past_behav="past_behav.npy", future_behav="future_behav.npy", olds_behav="olds_behav.npy")\
|
238 |
+
.to_tuple(*["behav", "past_behav", "future_behav", "olds_behav"])
|
239 |
+
test_dl = torch.utils.data.DataLoader(test_data, batch_size=test_batch_size, shuffle=False, drop_last=False, pin_memory=True)
|
240 |
+
|
241 |
+
# ### check dataloaders are working
|
242 |
+
|
243 |
+
# In[7]:
|
244 |
+
|
245 |
+
|
246 |
+
# test_indices = []
|
247 |
+
# test_images = []
|
248 |
+
# for test_i, (behav, past_behav, future_behav, old_behav) in enumerate(test_dl):
|
249 |
+
# test_indices = np.append(test_indices, behav[:,0,5].numpy())
|
250 |
+
# test_images = np.append(test_images, behav[:,0,0].numpy())
|
251 |
+
# test_indices = test_indices.astype(np.int16)
|
252 |
+
# print(test_i, (test_i+1) * test_batch_size, len(test_indices))
|
253 |
+
# print("---\n")
|
254 |
+
|
255 |
+
# train_indices = []
|
256 |
+
# train_images = []
|
257 |
+
# for train_i, (behav, past_behav, future_behav, old_behav) in enumerate(train_dl):
|
258 |
+
# train_indices = np.append(train_indices, behav[:,0,5].long().numpy())
|
259 |
+
# train_images = np.append(train_images, behav[:,0,0].numpy())
|
260 |
+
# train_indices = train_indices.astype(np.int16)
|
261 |
+
# print(train_i, (train_i+1) * batch_size, len(train_indices))
|
262 |
+
|
263 |
+
|
264 |
+
# ## Load voxel betas, K-means clustering model, and images
|
265 |
+
|
266 |
+
# In[8]:
|
267 |
+
|
268 |
+
|
269 |
+
# load betas
|
270 |
+
f = h5py.File(f'{data_path}/betas_all_subj0{subj}.hdf5', 'r')
|
271 |
+
voxels = f['betas'][:]
|
272 |
+
print(f"subj0{subj} betas loaded into memory")
|
273 |
+
voxels = torch.Tensor(voxels).to("cpu").half()
|
274 |
+
if subj==1:
|
275 |
+
voxels = torch.hstack((voxels, torch.zeros((len(voxels), 5))))
|
276 |
+
print("voxels", voxels.shape)
|
277 |
+
num_voxels = voxels.shape[-1]
|
278 |
+
|
279 |
+
# load orig images
|
280 |
+
f = h5py.File(f'{data_path}/coco_images_224_float16.hdf5', 'r')
|
281 |
+
images = f['images'][:]
|
282 |
+
images = torch.Tensor(images).to("cpu").half()
|
283 |
+
print("images", images.shape)
|
284 |
+
|
285 |
+
|
286 |
+
# In[9]:
|
287 |
+
|
288 |
+
|
289 |
+
from models import Clipper
|
290 |
+
clip_model = Clipper("ViT-L/14", device=torch.device(f"cuda:{local_rank}"), hidden_state=True, norm_embs=True)
|
291 |
+
|
292 |
+
clip_seq_dim = 257
|
293 |
+
clip_emb_dim = 768
|
294 |
+
hidden_dim = 4096
|
295 |
+
|
296 |
+
from diffusers import AutoencoderKL
|
297 |
+
autoenc = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16, cache_dir="/fsx/proj-fmri/shared/cache")
|
298 |
+
# autoenc.load_state_dict(torch.load('../train_logs/sdxl_vae_normed/best.pth')["model_state_dict"])
|
299 |
+
autoenc.eval()
|
300 |
+
autoenc.requires_grad_(False)
|
301 |
+
autoenc.to(device)
|
302 |
+
utils.count_params(autoenc)
|
303 |
+
|
304 |
+
|
305 |
+
# In[10]:
|
306 |
+
|
307 |
+
|
308 |
+
class MindEyeModule(nn.Module):
|
309 |
+
def __init__(self):
|
310 |
+
super(MindEyeModule, self).__init__()
|
311 |
+
def forward(self, x):
|
312 |
+
return x
|
313 |
+
|
314 |
+
model = MindEyeModule()
|
315 |
+
model
|
316 |
+
|
317 |
+
|
318 |
+
# In[11]:
|
319 |
+
|
320 |
+
|
321 |
+
class RidgeRegression(torch.nn.Module):
|
322 |
+
# make sure to add weight_decay when initializing optimizer
|
323 |
+
def __init__(self, input_size, out_features):
|
324 |
+
super(RidgeRegression, self).__init__()
|
325 |
+
self.out_features = out_features
|
326 |
+
self.linear = torch.nn.Linear(input_size, out_features)
|
327 |
+
def forward(self, x):
|
328 |
+
return self.linear(x)
|
329 |
+
|
330 |
+
model.ridge = RidgeRegression(voxels.shape[1], out_features=hidden_dim)
|
331 |
+
utils.count_params(model.ridge)
|
332 |
+
utils.count_params(model)
|
333 |
+
|
334 |
+
b = torch.randn((2,1,voxels.shape[1]))
|
335 |
+
print(b.shape, model.ridge(b).shape)
|
336 |
+
|
337 |
+
# In[12]:
|
338 |
+
from functools import partial
|
339 |
+
from diffusers.models.vae import Decoder
|
340 |
+
class BrainNetwork(nn.Module):
|
341 |
+
def __init__(self, out_dim=768, in_dim=15724, clip_size=768, h=4096, n_blocks=4, norm_type='ln', act_first=False, drop=.15, blurry_dim=16):
|
342 |
+
super().__init__()
|
343 |
+
self.blurry_dim = blurry_dim
|
344 |
+
norm_func = partial(nn.BatchNorm1d, num_features=h) if norm_type == 'bn' else partial(nn.LayerNorm, normalized_shape=h)
|
345 |
+
act_fn = partial(nn.ReLU, inplace=True) if norm_type == 'bn' else nn.GELU
|
346 |
+
act_and_norm = (act_fn, norm_func) if act_first else (norm_func, act_fn)
|
347 |
+
self.lin0 = nn.Linear(in_dim, h)
|
348 |
+
self.mlp = nn.ModuleList([
|
349 |
+
nn.Sequential(
|
350 |
+
nn.Linear(h, h),
|
351 |
+
*[item() for item in act_and_norm],
|
352 |
+
nn.Dropout(drop)
|
353 |
+
) for _ in range(n_blocks)
|
354 |
+
])
|
355 |
+
self.lin1 = nn.Linear(h, out_dim, bias=True)
|
356 |
+
self.blin1 = nn.Linear(out_dim, blurry_dim, bias=True)
|
357 |
+
self.n_blocks = n_blocks
|
358 |
+
self.clip_size = clip_size
|
359 |
+
self.clip_proj = nn.Sequential(
|
360 |
+
nn.LayerNorm(clip_size),
|
361 |
+
nn.GELU(),
|
362 |
+
nn.Linear(clip_size, 2048),
|
363 |
+
nn.LayerNorm(2048),
|
364 |
+
nn.GELU(),
|
365 |
+
nn.Linear(2048, 2048),
|
366 |
+
nn.LayerNorm(2048),
|
367 |
+
nn.GELU(),
|
368 |
+
nn.Linear(2048, clip_size)
|
369 |
+
)
|
370 |
+
self.upsampler = Decoder(
|
371 |
+
in_channels=64,
|
372 |
+
out_channels=4,
|
373 |
+
up_block_types=["UpDecoderBlock2D","UpDecoderBlock2D","UpDecoderBlock2D"],
|
374 |
+
block_out_channels=[64, 128, 256],
|
375 |
+
layers_per_block=1,
|
376 |
+
)
|
377 |
+
|
378 |
+
def forward(self, x):
|
379 |
+
x = self.lin0(x)
|
380 |
+
residual = x
|
381 |
+
for res_block in range(self.n_blocks):
|
382 |
+
x = self.mlp[res_block](x)
|
383 |
+
x += residual
|
384 |
+
residual = x
|
385 |
+
x = x.reshape(len(x), -1)
|
386 |
+
x = self.lin1(x)
|
387 |
+
b = self.blin1(x)
|
388 |
+
b = self.upsampler(b.reshape(len(b), -1, 7, 7))
|
389 |
+
c = self.clip_proj(x.reshape(len(x), -1, self.clip_size))
|
390 |
+
return c, b
|
391 |
+
|
392 |
+
model.backbone = BrainNetwork(h=2048, in_dim=hidden_dim, clip_size=clip_emb_dim, out_dim=clip_emb_dim*clip_seq_dim, blurry_dim=64*7*7)
|
393 |
+
utils.count_params(model.backbone)
|
394 |
+
utils.count_params(model)
|
395 |
+
|
396 |
+
b = torch.randn((2,hidden_dim))
|
397 |
+
print(b.shape)
|
398 |
+
clip_, blur_ = model.backbone(b)
|
399 |
+
print(clip_.shape, blur_.shape)
|
400 |
+
|
401 |
+
|
402 |
+
# In[13]:
|
403 |
+
|
404 |
+
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
|
405 |
+
opt_grouped_parameters = [
|
406 |
+
{'params': [p for n, p in model.ridge.named_parameters()], 'weight_decay': 1e-2},
|
407 |
+
{'params': [p for n, p in model.backbone.named_parameters() if not any(nd in n for nd in no_decay)], 'weight_decay': 1e-2},
|
408 |
+
{'params': [p for n, p in model.backbone.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0},
|
409 |
+
]
|
410 |
+
|
411 |
+
optimizer = torch.optim.AdamW(opt_grouped_parameters, lr=max_lr, betas=(0.9, 0.95))
|
412 |
+
|
413 |
+
if lr_scheduler_type == 'linear':
|
414 |
+
lr_scheduler = torch.optim.lr_scheduler.LinearLR(
|
415 |
+
optimizer,
|
416 |
+
total_iters=int(num_epochs*(num_train*num_devices//batch_size)),
|
417 |
+
last_epoch=-1
|
418 |
+
)
|
419 |
+
elif lr_scheduler_type == 'cycle':
|
420 |
+
total_steps=int(num_epochs*(num_train*num_devices//batch_size))
|
421 |
+
lr_scheduler = torch.optim.lr_scheduler.OneCycleLR(
|
422 |
+
optimizer,
|
423 |
+
max_lr=max_lr,
|
424 |
+
total_steps=total_steps,
|
425 |
+
final_div_factor=1000,
|
426 |
+
last_epoch=-1, pct_start=2/num_epochs
|
427 |
+
)
|
428 |
+
|
429 |
+
def save_ckpt(tag):
|
430 |
+
ckpt_path = outdir+f'/{tag}.pth'
|
431 |
+
print(f'saving {ckpt_path}',flush=True)
|
432 |
+
unwrapped_model = accelerator.unwrap_model(model)
|
433 |
+
try:
|
434 |
+
torch.save({
|
435 |
+
'epoch': epoch,
|
436 |
+
'model_state_dict': unwrapped_model.state_dict(),
|
437 |
+
'optimizer_state_dict': optimizer.state_dict(),
|
438 |
+
'lr_scheduler': lr_scheduler.state_dict(),
|
439 |
+
'train_losses': losses,
|
440 |
+
'test_losses': test_losses,
|
441 |
+
'lrs': lrs,
|
442 |
+
}, ckpt_path)
|
443 |
+
except:
|
444 |
+
print("Couldn't save... moving on to prevent crashing.")
|
445 |
+
del unwrapped_model
|
446 |
+
|
447 |
+
print("\nDone with model preparations!")
|
448 |
+
utils.count_params(model)
|
449 |
+
|
450 |
+
# # Weights and Biases
|
451 |
+
|
452 |
+
# In[14]:
|
453 |
+
|
454 |
+
|
455 |
+
# params for wandb
|
456 |
+
# params for wandb
|
457 |
+
wandb_log = True
|
458 |
+
if local_rank==0 and wandb_log: # only use main process for wandb logging
|
459 |
+
import wandb
|
460 |
+
|
461 |
+
wandb_project = 'stability'
|
462 |
+
wandb_run = model_name
|
463 |
+
wandb_notes = ''
|
464 |
+
|
465 |
+
print(f"wandb {wandb_project} run {wandb_run}")
|
466 |
+
wandb.login(host='https://stability.wandb.io')#, relogin=True)
|
467 |
+
wandb_config = {
|
468 |
+
"model_name": model_name,
|
469 |
+
"batch_size": batch_size,
|
470 |
+
"num_epochs": num_epochs,
|
471 |
+
"use_image_aug": use_image_aug,
|
472 |
+
"max_lr": max_lr,
|
473 |
+
"lr_scheduler_type": lr_scheduler_type,
|
474 |
+
"mixup_pct": mixup_pct,
|
475 |
+
"num_train": num_train,
|
476 |
+
"num_test": num_test,
|
477 |
+
"seed": seed,
|
478 |
+
"distributed": distributed,
|
479 |
+
"num_devices": num_devices,
|
480 |
+
"world_size": world_size,
|
481 |
+
}
|
482 |
+
print("wandb_config:\n",wandb_config)
|
483 |
+
if False: # wandb_auto_resume
|
484 |
+
print("wandb_id:",model_name)
|
485 |
+
wandb.init(
|
486 |
+
id = model_name,
|
487 |
+
project=wandb_project,
|
488 |
+
name=wandb_run,
|
489 |
+
config=wandb_config,
|
490 |
+
notes=wandb_notes,
|
491 |
+
resume="allow",
|
492 |
+
)
|
493 |
+
else:
|
494 |
+
wandb.init(
|
495 |
+
project=wandb_project,
|
496 |
+
name=model_name,
|
497 |
+
config=wandb_config,
|
498 |
+
notes=wandb_notes,
|
499 |
+
)
|
500 |
+
else:
|
501 |
+
wandb_log = False
|
502 |
+
|
503 |
+
|
504 |
+
# using the same preprocessing as was used in MindEye + BrainDiffuser
|
505 |
+
pixcorr_preprocess = transforms.Compose([
|
506 |
+
transforms.Resize(425, interpolation=transforms.InterpolationMode.BILINEAR),
|
507 |
+
])
|
508 |
+
def pixcorr(images,brains):
|
509 |
+
# Flatten images while keeping the batch dimension
|
510 |
+
all_images_flattened = pixcorr_preprocess(images).reshape(len(images), -1)
|
511 |
+
all_brain_recons_flattened = pixcorr_preprocess(brains).view(len(brains), -1)
|
512 |
+
corrmean = torch.diag(utils.batchwise_pearson_correlation(all_images_flattened, all_brain_recons_flattened)).mean()
|
513 |
+
return corrmean
|
514 |
+
|
515 |
+
# # Main
|
516 |
+
|
517 |
+
# In[15]:
|
518 |
+
|
519 |
+
epoch = 0
|
520 |
+
losses, test_losses, lrs = [], [], []
|
521 |
+
best_test_loss = 1e9
|
522 |
+
soft_loss_temps = utils.cosine_anneal(0.004, 0.0075, num_epochs - int(mixup_pct * num_epochs))
|
523 |
+
|
524 |
+
# Optionally resume from checkpoint #
|
525 |
+
resume_from_ckpt = False
|
526 |
+
if resume_from_ckpt:
|
527 |
+
print("\n---resuming from last.pth ckpt---\n")
|
528 |
+
try:
|
529 |
+
checkpoint = torch.load(outdir+'/last.pth', map_location='cpu')
|
530 |
+
except:
|
531 |
+
print('last.pth failed... trying last_backup.pth')
|
532 |
+
checkpoint = torch.load(outdir+'/last_backup.pth', map_location='cpu')
|
533 |
+
epoch = checkpoint['epoch']
|
534 |
+
print("Epoch",epoch)
|
535 |
+
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
|
536 |
+
lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
|
537 |
+
diffusion_diffuser.load_state_dict(checkpoint['model_state_dict'])
|
538 |
+
del checkpoint
|
539 |
+
elif False:
|
540 |
+
if wandb.run.resumed:
|
541 |
+
print("\n---resuming from last.pth ckpt---\n")
|
542 |
+
try:
|
543 |
+
checkpoint = torch.load(outdir+'/last.pth', map_location='cpu')
|
544 |
+
except:
|
545 |
+
print('last.pth failed... trying last_backup.pth')
|
546 |
+
checkpoint = torch.load(outdir+'/last_backup.pth', map_location='cpu')
|
547 |
+
epoch = checkpoint['epoch']
|
548 |
+
print("Epoch",epoch)
|
549 |
+
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
|
550 |
+
lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
|
551 |
+
diffusion_diffuser.load_state_dict(checkpoint['model_state_dict'])
|
552 |
+
del checkpoint
|
553 |
+
torch.cuda.empty_cache()
|
554 |
+
|
555 |
+
|
556 |
+
# In[16]:
|
557 |
+
|
558 |
+
|
559 |
+
model, optimizer, train_dl, test_dl, lr_scheduler = accelerator.prepare(
|
560 |
+
model, optimizer, train_dl, test_dl, lr_scheduler
|
561 |
+
)
|
562 |
+
|
563 |
+
|
564 |
+
# In[17]:
|
565 |
+
print(f"{model_name} starting with epoch {epoch} / {num_epochs}")
|
566 |
+
progress_bar = tqdm(range(epoch,num_epochs), ncols=1200, disable=(local_rank!=0))
|
567 |
+
test_image, test_voxel = None, None
|
568 |
+
mse = nn.MSELoss()
|
569 |
+
for epoch in progress_bar:
|
570 |
+
model.train()
|
571 |
+
|
572 |
+
fwd_percent_correct = 0.
|
573 |
+
bwd_percent_correct = 0.
|
574 |
+
test_fwd_percent_correct = 0.
|
575 |
+
test_bwd_percent_correct = 0.
|
576 |
+
|
577 |
+
loss_clip_total = 0.
|
578 |
+
loss_blurry_total = 0.
|
579 |
+
test_loss_clip_total = 0.
|
580 |
+
test_loss_blurry_total = 0.
|
581 |
+
|
582 |
+
blurry_pixcorr = 0.
|
583 |
+
test_blurry_pixcorr = 0. # needs >.456 to beat low-level subj01 results in mindeye v1
|
584 |
+
|
585 |
+
for train_i, (behav, past_behav, future_behav, old_behav) in enumerate(train_dl):
|
586 |
+
with torch.cuda.amp.autocast():
|
587 |
+
optimizer.zero_grad()
|
588 |
+
|
589 |
+
voxel = voxels[behav[:,0,5].cpu().long()].to(device)
|
590 |
+
|
591 |
+
image = images[behav[:,0,0].cpu().long()].to(device).float()
|
592 |
+
|
593 |
+
blurry_image_enc = autoenc.encode(image).latent_dist.mode()
|
594 |
+
|
595 |
+
if use_image_aug: image = img_augment(image)
|
596 |
+
|
597 |
+
clip_target = clip_model.embed_image(image)
|
598 |
+
assert not torch.any(torch.isnan(clip_target))
|
599 |
+
|
600 |
+
if epoch < int(mixup_pct * num_epochs):
|
601 |
+
voxel, perm, betas, select = utils.mixco(voxel)
|
602 |
+
|
603 |
+
voxel_ridge = model.ridge(voxel)
|
604 |
+
|
605 |
+
clip_voxels, blurry_image_enc_ = model.backbone(voxel_ridge)
|
606 |
+
|
607 |
+
clip_voxels_norm = nn.functional.normalize(clip_voxels.flatten(1), dim=-1)
|
608 |
+
clip_target_norm = nn.functional.normalize(clip_target.flatten(1), dim=-1)
|
609 |
+
|
610 |
+
if epoch < int(mixup_pct * num_epochs):
|
611 |
+
loss_clip = utils.mixco_nce(
|
612 |
+
clip_voxels_norm,
|
613 |
+
clip_target_norm,
|
614 |
+
temp=.006,
|
615 |
+
perm=perm, betas=betas, select=select)
|
616 |
+
else:
|
617 |
+
epoch_temp = soft_loss_temps[epoch-int(mixup_pct*num_epochs)]
|
618 |
+
loss_clip = utils.soft_clip_loss(
|
619 |
+
clip_voxels_norm,
|
620 |
+
clip_target_norm,
|
621 |
+
temp=epoch_temp)
|
622 |
+
|
623 |
+
loss_blurry = mse(blurry_image_enc_, blurry_image_enc)
|
624 |
+
|
625 |
+
loss_clip_total += loss_clip.item()
|
626 |
+
loss_blurry_total += loss_blurry.item()
|
627 |
+
|
628 |
+
loss = loss_blurry + loss_clip
|
629 |
+
|
630 |
+
utils.check_loss(loss)
|
631 |
+
|
632 |
+
accelerator.backward(loss)
|
633 |
+
optimizer.step()
|
634 |
+
|
635 |
+
losses.append(loss.item())
|
636 |
+
lrs.append(optimizer.param_groups[0]['lr'])
|
637 |
+
|
638 |
+
# forward and backward top 1 accuracy
|
639 |
+
labels = torch.arange(len(clip_target_norm)).to(clip_voxels_norm.device)
|
640 |
+
fwd_percent_correct += utils.topk(utils.batchwise_cosine_similarity(clip_voxels_norm, clip_target_norm), labels, k=1)
|
641 |
+
bwd_percent_correct += utils.topk(utils.batchwise_cosine_similarity(clip_target_norm, clip_voxels_norm), labels, k=1)
|
642 |
+
|
643 |
+
with torch.no_grad():
|
644 |
+
# only doing pixcorr eval on a subset (8) of the samples per batch because its costly & slow to compute autoenc.decode()
|
645 |
+
random_samps = np.random.choice(np.arange(len(voxel)), size=2, replace=False)
|
646 |
+
blurry_recon_images = autoenc.decode(blurry_image_enc_[random_samps]).sample.clamp(0,1)
|
647 |
+
blurry_pixcorr += pixcorr(image[random_samps], blurry_recon_images)
|
648 |
+
|
649 |
+
if lr_scheduler_type is not None:
|
650 |
+
lr_scheduler.step()
|
651 |
+
|
652 |
+
model.eval()
|
653 |
+
for test_i, (behav, past_behav, future_behav, old_behav) in enumerate(test_dl):
|
654 |
+
with torch.cuda.amp.autocast():
|
655 |
+
with torch.no_grad():
|
656 |
+
# all test samples should be loaded per batch such that test_i should never exceed 0
|
657 |
+
if len(behav) != num_test: print("!",len(behav),num_test)
|
658 |
+
|
659 |
+
## Average same-image repeats ##
|
660 |
+
if test_image is None:
|
661 |
+
voxel = voxels[behav[:,0,5].cpu().long()].to(device)
|
662 |
+
|
663 |
+
image = behav[:,0,0].cpu().long()
|
664 |
+
|
665 |
+
unique_image, sort_indices = torch.unique(image, return_inverse=True)
|
666 |
+
for im in unique_image:
|
667 |
+
locs = torch.where(im == image)[0]
|
668 |
+
if test_image is None:
|
669 |
+
test_image = images[im][None]
|
670 |
+
test_voxel = torch.mean(voxel[locs],axis=0)[None]
|
671 |
+
else:
|
672 |
+
test_image = torch.vstack((test_image, images[im][None]))
|
673 |
+
test_voxel = torch.vstack((test_voxel, torch.mean(voxel[locs],axis=0)[None]))
|
674 |
+
|
675 |
+
# sample of batch_size
|
676 |
+
random_indices = torch.arange(len(test_voxel))[:batch_size] #torch.randperm(len(test_voxel))[:300]
|
677 |
+
voxel = test_voxel[random_indices].to(device)
|
678 |
+
image = test_image[random_indices].to(device)
|
679 |
+
assert len(image) == batch_size
|
680 |
+
|
681 |
+
blurry_image_enc = autoenc.encode(image).latent_dist.mode()
|
682 |
+
|
683 |
+
clip_target = clip_model.embed_image(image.float())
|
684 |
+
|
685 |
+
voxel_ridge = model.ridge(voxel)
|
686 |
+
|
687 |
+
clip_voxels, blurry_image_enc_ = model.backbone(voxel_ridge)
|
688 |
+
|
689 |
+
clip_voxels_norm = nn.functional.normalize(clip_voxels.flatten(1), dim=-1)
|
690 |
+
clip_target_norm = nn.functional.normalize(clip_target.flatten(1), dim=-1)
|
691 |
+
|
692 |
+
loss_clip = utils.soft_clip_loss(
|
693 |
+
clip_voxels_norm,
|
694 |
+
clip_target_norm,
|
695 |
+
temp=.006)
|
696 |
+
|
697 |
+
loss_blurry = mse(blurry_image_enc_, blurry_image_enc)
|
698 |
+
|
699 |
+
loss = loss_blurry + loss_clip
|
700 |
+
|
701 |
+
utils.check_loss(loss)
|
702 |
+
|
703 |
+
test_losses.append(loss.item())
|
704 |
+
|
705 |
+
# forward and backward top 1 accuracy
|
706 |
+
labels = torch.arange(len(clip_target_norm)).to(clip_voxels_norm.device)
|
707 |
+
test_fwd_percent_correct += utils.topk(utils.batchwise_cosine_similarity(clip_voxels_norm, clip_target_norm), labels, k=1)
|
708 |
+
test_bwd_percent_correct += utils.topk(utils.batchwise_cosine_similarity(clip_target_norm, clip_voxels_norm), labels, k=1)
|
709 |
+
|
710 |
+
# halving the batch size because the decoder is computationally heavy
|
711 |
+
blurry_recon_images = autoenc.decode(blurry_image_enc_[:len(voxel)//2]).sample.clamp(0,1)
|
712 |
+
blurry_recon_images = torch.vstack((blurry_recon_images, autoenc.decode(blurry_image_enc_[len(voxel)//2:]).sample.clamp(0,1)))
|
713 |
+
test_blurry_pixcorr += pixcorr(image, blurry_recon_images)
|
714 |
+
|
715 |
+
# transform blurry recon latents to images and plot it
|
716 |
+
fig, axes = plt.subplots(1, 4, figsize=(8, 4))
|
717 |
+
axes[0].imshow(utils.torch_to_Image(image[[0]]))
|
718 |
+
axes[1].imshow(utils.torch_to_Image(autoenc.decode(blurry_image_enc_[[0]]).sample.clamp(0,1)))
|
719 |
+
axes[2].imshow(utils.torch_to_Image(image[[1]]))
|
720 |
+
axes[3].imshow(utils.torch_to_Image(autoenc.decode(blurry_image_enc_[[1]]).sample.clamp(0,1)))
|
721 |
+
axes[0].axis('off'); axes[1].axis('off'); axes[2].axis('off'); axes[3].axis('off')
|
722 |
+
plt.show()
|
723 |
+
|
724 |
+
if local_rank==0:
|
725 |
+
# if utils.is_interactive(): clear_output(wait=True)
|
726 |
+
assert (test_i+1) == 1
|
727 |
+
logs = {"train/loss": np.mean(losses[-(train_i+1):]),
|
728 |
+
"test/loss": np.mean(test_losses[-(test_i+1):]),
|
729 |
+
"train/lr": lrs[-1],
|
730 |
+
"train/num_steps": len(losses),
|
731 |
+
"test/num_steps": len(test_losses),
|
732 |
+
"train/fwd_pct_correct": fwd_percent_correct / (train_i + 1),
|
733 |
+
"train/bwd_pct_correct": bwd_percent_correct / (train_i + 1),
|
734 |
+
"test/test_fwd_pct_correct": test_fwd_percent_correct / (test_i + 1),
|
735 |
+
"test/test_bwd_pct_correct": test_bwd_percent_correct / (test_i + 1),
|
736 |
+
"train/loss_clip_total": loss_clip_total / (train_i + 1),
|
737 |
+
"train/loss_blurry_total": loss_blurry_total / (train_i + 1),
|
738 |
+
"test/loss_clip_total": test_loss_clip_total / (test_i + 1),
|
739 |
+
"test/loss_blurry_total": test_loss_blurry_total / (test_i + 1),
|
740 |
+
"train/blurry_pixcorr": blurry_pixcorr / (train_i + 1),
|
741 |
+
"test/blurry_pixcorr": test_blurry_pixcorr / (test_i + 1),
|
742 |
+
}
|
743 |
+
progress_bar.set_postfix(**logs)
|
744 |
+
|
745 |
+
# Save model checkpoint and reconstruct
|
746 |
+
if epoch % ckpt_interval == 0:
|
747 |
+
if not utils.is_interactive():
|
748 |
+
save_ckpt(f'last')
|
749 |
+
|
750 |
+
if wandb_log: wandb.log(logs)
|
751 |
+
|
752 |
+
# wait for other GPUs to catch up if needed
|
753 |
+
accelerator.wait_for_everyone()
|
754 |
+
torch.cuda.empty_cache()
|
755 |
+
gc.collect()
|
756 |
+
|
757 |
+
print("\n===Finished!===\n")
|
758 |
+
if ckpt_saving:
|
759 |
+
save_ckpt(f'last')
|
760 |
+
if not utils.is_interactive():
|
761 |
+
sys.exit(0)
|
src/Train_MLPMixer-Copy1.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
src/Train_MLPMixer-Copy1.py
ADDED
@@ -0,0 +1,1352 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# coding: utf-8
|
3 |
+
|
4 |
+
# In[1]:
|
5 |
+
|
6 |
+
|
7 |
+
# # Code to convert this notebook to .py if you want to run it via command line or with Slurm
|
8 |
+
#from subprocess import call
|
9 |
+
#command = "jupyter nbconvert Train_MLPMixer-Copy1.ipynb --to python"
|
10 |
+
#call(command,shell=True)
|
11 |
+
|
12 |
+
|
13 |
+
# # Import packages & functions
|
14 |
+
|
15 |
+
# In[2]:
|
16 |
+
|
17 |
+
|
18 |
+
import os
|
19 |
+
import sys
|
20 |
+
import json
|
21 |
+
import argparse
|
22 |
+
import numpy as np
|
23 |
+
import math
|
24 |
+
from einops import rearrange
|
25 |
+
import time
|
26 |
+
import random
|
27 |
+
import string
|
28 |
+
import h5py
|
29 |
+
from tqdm import tqdm
|
30 |
+
|
31 |
+
import webdataset as wds
|
32 |
+
import gc
|
33 |
+
|
34 |
+
import matplotlib.pyplot as plt
|
35 |
+
import torch
|
36 |
+
import torch.nn as nn
|
37 |
+
from torchvision import transforms
|
38 |
+
|
39 |
+
from accelerate import Accelerator, DeepSpeedPlugin
|
40 |
+
|
41 |
+
# tf32 data type is faster than standard float32
|
42 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
43 |
+
|
44 |
+
# custom functions #
|
45 |
+
import utils
|
46 |
+
|
47 |
+
|
48 |
+
# In[3]:
|
49 |
+
|
50 |
+
|
51 |
+
### Multi-GPU config ###
|
52 |
+
local_rank = os.getenv('RANK')
|
53 |
+
if local_rank is None:
|
54 |
+
local_rank = 0
|
55 |
+
else:
|
56 |
+
local_rank = int(local_rank)
|
57 |
+
print("LOCAL RANK ", local_rank)
|
58 |
+
|
59 |
+
num_devices = torch.cuda.device_count()
|
60 |
+
if num_devices==0: num_devices = 1
|
61 |
+
|
62 |
+
# ## UNCOMMENT BELOW SECTION AND COMMENT OUT DEEPSPEED SECTION TO AVOID USING DEEPSPEED ###
|
63 |
+
# accelerator = Accelerator(split_batches=False, mixed_precision="fp16")
|
64 |
+
# global_batch_size = batch_size = 128
|
65 |
+
# data_type = torch.float16 # change depending on your mixed_precision
|
66 |
+
|
67 |
+
### DEEPSPEED INITIALIZATION ###
|
68 |
+
if num_devices <= 1 and utils.is_interactive():
|
69 |
+
global_batch_size = batch_size = 128
|
70 |
+
print(f"Setting batch_size to {batch_size}")
|
71 |
+
# can emulate a distributed environment for deepspeed to work in jupyter notebook
|
72 |
+
os.environ["MASTER_ADDR"] = "localhost"
|
73 |
+
os.environ["MASTER_PORT"] = str(np.random.randint(10000)+9000)
|
74 |
+
os.environ["RANK"] = "0"
|
75 |
+
os.environ["LOCAL_RANK"] = "0"
|
76 |
+
os.environ["WORLD_SIZE"] = "1"
|
77 |
+
os.environ["GLOBAL_BATCH_SIZE"] = str(global_batch_size) # set this to your batch size!
|
78 |
+
else:
|
79 |
+
global_batch_size = os.environ["GLOBAL_BATCH_SIZE"]
|
80 |
+
batch_size = int(os.environ["GLOBAL_BATCH_SIZE"]) // num_devices
|
81 |
+
|
82 |
+
# alter the deepspeed config according to your global and local batch size
|
83 |
+
if local_rank == 0:
|
84 |
+
with open('deepspeed_config_stage2.json', 'r') as file:
|
85 |
+
config = json.load(file)
|
86 |
+
config['train_batch_size'] = int(os.environ["GLOBAL_BATCH_SIZE"])
|
87 |
+
config['train_micro_batch_size_per_gpu'] = batch_size
|
88 |
+
config['bf16'] = {'enabled': False}
|
89 |
+
config['fp16'] = {'enabled': True}
|
90 |
+
with open('deepspeed_config_stage2.json', 'w') as file:
|
91 |
+
json.dump(config, file)
|
92 |
+
else:
|
93 |
+
# give some time for the local_rank=0 gpu to prep new deepspeed config file
|
94 |
+
time.sleep(10)
|
95 |
+
deepspeed_plugin = DeepSpeedPlugin("deepspeed_config_stage2_cpuoffload.json")
|
96 |
+
accelerator = Accelerator(split_batches=False, deepspeed_plugin=deepspeed_plugin)
|
97 |
+
|
98 |
+
|
99 |
+
# In[4]:
|
100 |
+
|
101 |
+
|
102 |
+
print("PID of this process =",os.getpid())
|
103 |
+
device = accelerator.device
|
104 |
+
print("device:",device)
|
105 |
+
num_workers = num_devices
|
106 |
+
print(accelerator.state)
|
107 |
+
world_size = accelerator.state.num_processes
|
108 |
+
distributed = not accelerator.state.distributed_type == 'NO'
|
109 |
+
|
110 |
+
# set data_type to match your mixed precision (automatically set based on deepspeed config)
|
111 |
+
if accelerator.mixed_precision == "bf16":
|
112 |
+
data_type = torch.bfloat16
|
113 |
+
elif accelerator.mixed_precision == "fp16":
|
114 |
+
data_type = torch.float16
|
115 |
+
else:
|
116 |
+
data_type = torch.float32
|
117 |
+
|
118 |
+
print("distributed =",distributed, "num_devices =", num_devices, "local rank =", local_rank, "world size =", world_size, "data_type =", data_type)
|
119 |
+
print = accelerator.print # only print if local_rank=0
|
120 |
+
|
121 |
+
|
122 |
+
# # Configurations
|
123 |
+
|
124 |
+
# In[5]:
|
125 |
+
|
126 |
+
|
127 |
+
# if running this interactively, can specify jupyter_args here for argparser to use
|
128 |
+
if utils.is_interactive():
|
129 |
+
# create random model_name
|
130 |
+
model_name = ''.join(random.choices(string.ascii_letters + string.digits, k=10))
|
131 |
+
model_name = model_name + "_interactive"
|
132 |
+
print("model_name:", model_name)
|
133 |
+
|
134 |
+
# global_batch_size and batch_size should already be defined in the above cells
|
135 |
+
# other variables can be specified in the following string:
|
136 |
+
jupyter_args = f"--data_path=/fsx/proj-fmri/shared/mindeyev2_dataset \
|
137 |
+
--model_name={model_name} \
|
138 |
+
--subj=1 --batch_size={batch_size} --no-blurry_recon --no-depth_recon --hidden_dim=4096 \
|
139 |
+
--clip_scale=1. --blur_scale=100. --depth_scale=100. \
|
140 |
+
--max_lr=3e-4 --mixup_pct=.66 --num_epochs=12 --ckpt_interval=999 --no-use_image_aug --no-ckpt_saving"
|
141 |
+
|
142 |
+
jupyter_args = jupyter_args.split()
|
143 |
+
print(jupyter_args)
|
144 |
+
|
145 |
+
from IPython.display import clear_output # function to clear print outputs in cell
|
146 |
+
get_ipython().run_line_magic('load_ext', 'autoreload')
|
147 |
+
# this allows you to change functions in models.py or utils.py and have this notebook automatically update with your revisions
|
148 |
+
get_ipython().run_line_magic('autoreload', '2')
|
149 |
+
|
150 |
+
|
151 |
+
# In[6]:
|
152 |
+
|
153 |
+
|
154 |
+
parser = argparse.ArgumentParser(description="Model Training Configuration")
|
155 |
+
parser.add_argument(
|
156 |
+
"--model_name", type=str, default="testing",
|
157 |
+
help="name of model, used for ckpt saving and wandb logging (if enabled)",
|
158 |
+
)
|
159 |
+
parser.add_argument(
|
160 |
+
"--data_path", type=str, default="/fsx/proj-fmri/shared/natural-scenes-dataset",
|
161 |
+
help="Path to where NSD data is stored / where to download it to",
|
162 |
+
)
|
163 |
+
parser.add_argument(
|
164 |
+
"--subj",type=int, default=1, choices=[1,2,5,7],
|
165 |
+
)
|
166 |
+
parser.add_argument(
|
167 |
+
"--batch_size", type=int, default=32,
|
168 |
+
help="Batch size can be increased by 10x if only training v2c and not diffusion diffuser",
|
169 |
+
)
|
170 |
+
parser.add_argument(
|
171 |
+
"--wandb_log",action=argparse.BooleanOptionalAction,default=False,
|
172 |
+
help="whether to log to wandb",
|
173 |
+
)
|
174 |
+
parser.add_argument(
|
175 |
+
"--resume_from_ckpt",action=argparse.BooleanOptionalAction,default=False,
|
176 |
+
help="if not using wandb and want to resume from a ckpt",
|
177 |
+
)
|
178 |
+
parser.add_argument(
|
179 |
+
"--wandb_project",type=str,default="stability",
|
180 |
+
help="wandb project name",
|
181 |
+
)
|
182 |
+
parser.add_argument(
|
183 |
+
"--mixup_pct",type=float,default=.33,
|
184 |
+
help="proportion of way through training when to switch from BiMixCo to SoftCLIP",
|
185 |
+
)
|
186 |
+
parser.add_argument(
|
187 |
+
"--blurry_recon",action=argparse.BooleanOptionalAction,default=True,
|
188 |
+
help="whether to output blurry reconstructions",
|
189 |
+
)
|
190 |
+
parser.add_argument(
|
191 |
+
"--depth_recon",action=argparse.BooleanOptionalAction,default=True,
|
192 |
+
help="whether to output depth reconstructions",
|
193 |
+
)
|
194 |
+
parser.add_argument(
|
195 |
+
"--blur_scale",type=float,default=100.,
|
196 |
+
help="multiply loss from blurry recons by this number",
|
197 |
+
)
|
198 |
+
parser.add_argument(
|
199 |
+
"--depth_scale",type=float,default=100.,
|
200 |
+
help="multiply loss from depth recons by this number",
|
201 |
+
)
|
202 |
+
parser.add_argument(
|
203 |
+
"--clip_scale",type=float,default=1.,
|
204 |
+
help="multiply contrastive loss by this number",
|
205 |
+
)
|
206 |
+
parser.add_argument(
|
207 |
+
"--use_image_aug",action=argparse.BooleanOptionalAction,default=True,
|
208 |
+
help="whether to use image augmentation",
|
209 |
+
)
|
210 |
+
parser.add_argument(
|
211 |
+
"--num_epochs",type=int,default=120,
|
212 |
+
help="number of epochs of training",
|
213 |
+
)
|
214 |
+
parser.add_argument(
|
215 |
+
"--hidden_dim",type=int,default=4096,
|
216 |
+
)
|
217 |
+
parser.add_argument(
|
218 |
+
"--lr_scheduler_type",type=str,default='cycle',choices=['cycle','linear'],
|
219 |
+
)
|
220 |
+
parser.add_argument(
|
221 |
+
"--ckpt_saving",action=argparse.BooleanOptionalAction,default=True,
|
222 |
+
)
|
223 |
+
parser.add_argument(
|
224 |
+
"--ckpt_interval",type=int,default=5,
|
225 |
+
help="save backup ckpt and reconstruct every x epochs",
|
226 |
+
)
|
227 |
+
parser.add_argument(
|
228 |
+
"--seed",type=int,default=42,
|
229 |
+
)
|
230 |
+
parser.add_argument(
|
231 |
+
"--max_lr",type=float,default=3e-4,
|
232 |
+
)
|
233 |
+
|
234 |
+
if utils.is_interactive():
|
235 |
+
args = parser.parse_args(jupyter_args)
|
236 |
+
else:
|
237 |
+
args = parser.parse_args()
|
238 |
+
|
239 |
+
# create global variables without the args prefix
|
240 |
+
for attribute_name in vars(args).keys():
|
241 |
+
globals()[attribute_name] = getattr(args, attribute_name)
|
242 |
+
|
243 |
+
|
244 |
+
# In[7]:
|
245 |
+
|
246 |
+
|
247 |
+
outdir = os.path.abspath(f'../train_logs/{model_name}')
|
248 |
+
if not os.path.exists(outdir) and ckpt_saving:
|
249 |
+
os.makedirs(outdir,exist_ok=True)
|
250 |
+
if use_image_aug:
|
251 |
+
import kornia
|
252 |
+
from kornia.augmentation.container import AugmentationSequential
|
253 |
+
img_augment = AugmentationSequential(
|
254 |
+
kornia.augmentation.RandomResizedCrop((224,224), (0.6,1), p=0.3),
|
255 |
+
kornia.augmentation.Resize((224, 224)),
|
256 |
+
kornia.augmentation.RandomHorizontalFlip(p=0.3),
|
257 |
+
kornia.augmentation.ColorJitter(brightness=0.4, contrast=0.4, saturation=0.2, hue=0.1, p=0.3),
|
258 |
+
kornia.augmentation.RandomGrayscale(p=0.3),
|
259 |
+
same_on_batch=False,
|
260 |
+
data_keys=["input"],
|
261 |
+
)
|
262 |
+
|
263 |
+
|
264 |
+
# # Prep data, models, and dataloaders
|
265 |
+
|
266 |
+
# ## Dataloader
|
267 |
+
|
268 |
+
# In[8]:
|
269 |
+
|
270 |
+
|
271 |
+
if subj==1:
|
272 |
+
num_train = 24958
|
273 |
+
num_test = 2770
|
274 |
+
test_batch_size = num_test
|
275 |
+
|
276 |
+
def my_split_by_node(urls): return urls
|
277 |
+
|
278 |
+
train_url = f"{data_path}/wds/subj0{subj}/train/" + "{0..36}.tar"
|
279 |
+
# train_url = f"{data_path}/wds/subj0{subj}/train/" + "{0..1}.tar"
|
280 |
+
print(train_url)
|
281 |
+
|
282 |
+
train_data = wds.WebDataset(train_url,resampled=False,nodesplitter=my_split_by_node)\
|
283 |
+
.shuffle(750, initial=1500, rng=random.Random(42))\
|
284 |
+
.decode("torch")\
|
285 |
+
.rename(behav="behav.npy", past_behav="past_behav.npy", future_behav="future_behav.npy", olds_behav="olds_behav.npy")\
|
286 |
+
.to_tuple(*["behav", "past_behav", "future_behav", "olds_behav"])
|
287 |
+
train_dl = torch.utils.data.DataLoader(train_data, batch_size=batch_size, shuffle=False, drop_last=True, pin_memory=True)
|
288 |
+
|
289 |
+
test_url = f"{data_path}/wds/subj0{subj}/test/" + "0.tar"
|
290 |
+
print(test_url)
|
291 |
+
|
292 |
+
test_data = wds.WebDataset(test_url,resampled=False,nodesplitter=my_split_by_node)\
|
293 |
+
.shuffle(750, initial=1500, rng=random.Random(42))\
|
294 |
+
.decode("torch")\
|
295 |
+
.rename(behav="behav.npy", past_behav="past_behav.npy", future_behav="future_behav.npy", olds_behav="olds_behav.npy")\
|
296 |
+
.to_tuple(*["behav", "past_behav", "future_behav", "olds_behav"])
|
297 |
+
test_dl = torch.utils.data.DataLoader(test_data, batch_size=test_batch_size, shuffle=False, drop_last=True, pin_memory=True)
|
298 |
+
|
299 |
+
|
300 |
+
# ### check dataloaders are working
|
301 |
+
|
302 |
+
# In[9]:
|
303 |
+
|
304 |
+
|
305 |
+
test_vox_indices = []
|
306 |
+
test_73k_images = []
|
307 |
+
for test_i, (behav, past_behav, future_behav, old_behav) in enumerate(test_dl):
|
308 |
+
test_vox_indices = np.append(test_vox_indices, behav[:,0,5].cpu().numpy())
|
309 |
+
test_73k_images = np.append(test_73k_images, behav[:,0,0].cpu().numpy())
|
310 |
+
test_vox_indices = test_vox_indices.astype(np.int16)
|
311 |
+
print(test_i, (test_i+1) * test_batch_size, len(test_vox_indices))
|
312 |
+
print("---\n")
|
313 |
+
|
314 |
+
train_vox_indices = []
|
315 |
+
train_73k_images = []
|
316 |
+
for train_i, (behav, past_behav, future_behav, old_behav) in enumerate(train_dl):
|
317 |
+
train_vox_indices = np.append(train_vox_indices, behav[:,0,5].long().cpu().numpy())
|
318 |
+
train_73k_images = np.append(train_73k_images, behav[:,0,0].cpu().numpy())
|
319 |
+
train_vox_indices = train_vox_indices.astype(np.int16)
|
320 |
+
print(train_i, (train_i+1) * batch_size, len(train_vox_indices))
|
321 |
+
|
322 |
+
|
323 |
+
# ## Load data and images
|
324 |
+
|
325 |
+
# In[10]:
|
326 |
+
|
327 |
+
|
328 |
+
# load betas
|
329 |
+
f = h5py.File(f'{data_path}/betas_all_subj0{subj}.hdf5', 'r')
|
330 |
+
# f = h5py.File(f'{data_path}/betas_subj0{subj}_thresholded_wholebrain.hdf5', 'r')
|
331 |
+
|
332 |
+
voxels = f['betas'][:]
|
333 |
+
print(f"subj0{subj} betas loaded into memory")
|
334 |
+
voxels = torch.Tensor(voxels).to("cpu").to(data_type)
|
335 |
+
print("voxels", voxels.shape)
|
336 |
+
num_voxels = voxels.shape[-1]
|
337 |
+
|
338 |
+
# load orig images
|
339 |
+
f = h5py.File(f'{data_path}/coco_images_224_float16.hdf5', 'r')
|
340 |
+
images = f['images'][:]
|
341 |
+
images = torch.Tensor(images).to("cpu").to(data_type)
|
342 |
+
print("images", images.shape)
|
343 |
+
|
344 |
+
|
345 |
+
# ## Load models
|
346 |
+
|
347 |
+
# ### CLIP image embeddings model
|
348 |
+
|
349 |
+
# In[11]:
|
350 |
+
|
351 |
+
|
352 |
+
from models import Clipper
|
353 |
+
clip_model = Clipper("ViT-L/14", device=torch.device(f"cuda:{local_rank}"), hidden_state=True, norm_embs=True)
|
354 |
+
clip_seq_dim = 257
|
355 |
+
clip_emb_dim = 768 #1024
|
356 |
+
# hidden_dim = 4096
|
357 |
+
seq_len = 1 #2 #32
|
358 |
+
|
359 |
+
|
360 |
+
# ### SD VAE
|
361 |
+
|
362 |
+
# In[12]:
|
363 |
+
|
364 |
+
|
365 |
+
# if blurry_recon:
|
366 |
+
# from diffusers import AutoencoderKL
|
367 |
+
# autoenc = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16, cache_dir="/fsx/proj-fmri/shared/cache")
|
368 |
+
# # autoenc.load_state_dict(torch.load('../train_logs/sdxl_vae_normed/best.pth')["model_state_dict"])
|
369 |
+
# autoenc.eval()
|
370 |
+
# autoenc.requires_grad_(False)
|
371 |
+
# autoenc.to(device)
|
372 |
+
# utils.count_params(autoenc)
|
373 |
+
|
374 |
+
if blurry_recon:# or depth_recon:
|
375 |
+
from diffusers import VQModel
|
376 |
+
autoenc = VQModel.from_pretrained("/fsx/proj-fmri/shared/cache/models--microsoft--vq-diffusion-ithq/snapshots/3f796fb49ee559370dc638dea1d8116af131d993/vqvae", torch_dtype=data_type)
|
377 |
+
autoenc.eval()
|
378 |
+
autoenc.requires_grad_(False)
|
379 |
+
autoenc.to(device)
|
380 |
+
utils.count_params(autoenc)
|
381 |
+
|
382 |
+
|
383 |
+
# #### downsampled images
|
384 |
+
|
385 |
+
# In[13]:
|
386 |
+
|
387 |
+
|
388 |
+
if blurry_recon:
|
389 |
+
if utils.is_interactive(): display(utils.torch_to_Image(images[[30]]))
|
390 |
+
|
391 |
+
input_batch = images[[30]].to(device)
|
392 |
+
print(input_batch.shape)
|
393 |
+
|
394 |
+
downsampled_image = nn.functional.interpolate(input_batch, size=(8, 8), mode='bilinear', align_corners=False)
|
395 |
+
re_upsampled_image = nn.functional.interpolate(downsampled_image, size=(128, 128), mode='nearest')
|
396 |
+
re_upsampled_enc = autoenc.encode(2*re_upsampled_image-1).latents * 0.18215
|
397 |
+
print(re_upsampled_enc.shape)
|
398 |
+
|
399 |
+
if utils.is_interactive(): display(utils.torch_to_Image((autoenc.decode(re_upsampled_enc/0.18215).sample / 2 + 0.5).clamp(0,1)))
|
400 |
+
|
401 |
+
|
402 |
+
# #### MiDaS depth
|
403 |
+
|
404 |
+
# In[14]:
|
405 |
+
|
406 |
+
|
407 |
+
if depth_recon:
|
408 |
+
from controlnet_aux.midas import MidasDetector
|
409 |
+
|
410 |
+
midas_depth = MidasDetector.from_pretrained(
|
411 |
+
"valhalla/t2iadapter-aux-models", filename="dpt_large_384.pt", model_type="dpt_large", cache_dir="/fsx/proj-fmri/shared/cache").to(device)
|
412 |
+
midas_depth.model.eval()
|
413 |
+
midas_depth.model.requires_grad_(False)
|
414 |
+
midas_depth.model.to(device)
|
415 |
+
pass
|
416 |
+
|
417 |
+
|
418 |
+
# In[15]:
|
419 |
+
|
420 |
+
|
421 |
+
if depth_recon:
|
422 |
+
if utils.is_interactive(): display(utils.torch_to_Image(images[[30]]))
|
423 |
+
|
424 |
+
input_batch = images[[30,31]].float().to(device)
|
425 |
+
print(input_batch.shape)
|
426 |
+
|
427 |
+
midas_emb = midas_depth.model(input_batch).unsqueeze(1)
|
428 |
+
print(midas_emb.shape)
|
429 |
+
|
430 |
+
prediction = utils.resize(midas_emb, 32) #/30).clamp(0,1).half() # 30 is roughly prediction.max()
|
431 |
+
print(prediction.shape)
|
432 |
+
|
433 |
+
prediction = (prediction / prediction.view(prediction.shape[0], -1).max(dim=1)[0].view(-1, 1, 1, 1).expand_as(prediction)).half()
|
434 |
+
midas_emb_size = prediction.flatten(1).shape[1]
|
435 |
+
print("midas_emb", prediction.shape, prediction.min(), prediction.max())
|
436 |
+
print("midas_emb_size", midas_emb_size)
|
437 |
+
|
438 |
+
if utils.is_interactive(): display(utils.torch_to_Image(utils.resize(prediction, 224)))
|
439 |
+
|
440 |
+
if blurry_recon:
|
441 |
+
prediction = utils.resize(midas_emb, 128).half().repeat(1,3,1,1)
|
442 |
+
prediction = (prediction / prediction.view(prediction.shape[0], -1).max(dim=1)[0].view(-1, 1, 1, 1).expand_as(prediction)).half()
|
443 |
+
prediction_enc = autoenc.encode(2*prediction-1).latents * 0.18215
|
444 |
+
print("vae midas_emb", prediction_enc.shape, prediction_enc.min(), prediction_enc.max())
|
445 |
+
|
446 |
+
if utils.is_interactive(): display(utils.torch_to_Image((autoenc.decode(prediction_enc/0.18215).sample / 2 + 0.5).clamp(0,1)))
|
447 |
+
|
448 |
+
|
449 |
+
# ### MindEye modules
|
450 |
+
|
451 |
+
# In[16]:
|
452 |
+
|
453 |
+
|
454 |
+
class MindEyeModule(nn.Module):
|
455 |
+
def __init__(self):
|
456 |
+
super(MindEyeModule, self).__init__()
|
457 |
+
def forward(self, x):
|
458 |
+
return x
|
459 |
+
|
460 |
+
model = MindEyeModule()
|
461 |
+
model
|
462 |
+
|
463 |
+
|
464 |
+
# In[17]:
|
465 |
+
|
466 |
+
|
467 |
+
time_embedding_dim = 512
|
468 |
+
|
469 |
+
class RidgeRegression(torch.nn.Module):
|
470 |
+
# make sure to add weight_decay when initializing optimizer
|
471 |
+
def __init__(self, input_size, out_features):
|
472 |
+
super(RidgeRegression, self).__init__()
|
473 |
+
self.out_features = out_features
|
474 |
+
self.linear = torch.nn.Linear(input_size, out_features)
|
475 |
+
def forward(self, x):
|
476 |
+
return self.linear(x)
|
477 |
+
|
478 |
+
model.ridge = RidgeRegression(voxels.shape[1] + time_embedding_dim, out_features=hidden_dim)
|
479 |
+
utils.count_params(model.ridge)
|
480 |
+
utils.count_params(model)
|
481 |
+
|
482 |
+
b = torch.randn((2,1,voxels.shape[1]))
|
483 |
+
time_emb_test = torch.randn((2,1,time_embedding_dim))
|
484 |
+
print(b.shape, model.ridge(torch.cat((b,time_emb_test),dim=-1)).shape)
|
485 |
+
|
486 |
+
|
487 |
+
# In[59]:
|
488 |
+
|
489 |
+
|
490 |
+
num_past_voxels = 15
|
491 |
+
seq_len = 1 + 1
|
492 |
+
|
493 |
+
|
494 |
+
# In[73]:
|
495 |
+
|
496 |
+
|
497 |
+
class BrainNetwork(nn.Module):
|
498 |
+
def __init__(self, out_dim=768, in_dim=15724, seq_len=2, h=4096, n_blocks=4, drop=.15, clip_size=768):
|
499 |
+
super().__init__()
|
500 |
+
self.seq_len = seq_len
|
501 |
+
self.h = h
|
502 |
+
self.clip_size = clip_size
|
503 |
+
|
504 |
+
# Initial linear layer to match the input dimensions to hidden dimensions
|
505 |
+
# self.lin0 = nn.Linear(in_dim, seq_len * h)
|
506 |
+
|
507 |
+
# Mixer Blocks
|
508 |
+
self.mixer_blocks1 = nn.ModuleList([
|
509 |
+
self.mixer_block1(h, drop) for _ in range(n_blocks)
|
510 |
+
])
|
511 |
+
self.mixer_blocks2 = nn.ModuleList([
|
512 |
+
self.mixer_block2(seq_len, drop) for _ in range(n_blocks)
|
513 |
+
])
|
514 |
+
|
515 |
+
# Output linear layer
|
516 |
+
self.clin1 = nn.Linear(h * seq_len, out_dim, bias=True)
|
517 |
+
|
518 |
+
# low-rank matrices
|
519 |
+
# self.rank = 500
|
520 |
+
# self.U = nn.Parameter(torch.randn(self.rank, out_dim))
|
521 |
+
# self.V = nn.Parameter(torch.randn(h * seq_len, self.rank))
|
522 |
+
# self.S = nn.Parameter(torch.randn(out_dim))
|
523 |
+
|
524 |
+
self.clip_proj = nn.Sequential(
|
525 |
+
nn.LayerNorm(clip_size),
|
526 |
+
nn.GELU(),
|
527 |
+
nn.Linear(clip_size, 2048),
|
528 |
+
nn.LayerNorm(2048),
|
529 |
+
nn.GELU(),
|
530 |
+
nn.Linear(2048, 2048),
|
531 |
+
nn.LayerNorm(2048),
|
532 |
+
nn.GELU(),
|
533 |
+
nn.Linear(2048, clip_size)
|
534 |
+
)
|
535 |
+
|
536 |
+
if blurry_recon:
|
537 |
+
# self.blin1 = nn.Sequential(
|
538 |
+
# nn.Linear(out_dim, 4096, bias=True),
|
539 |
+
# nn.LayerNorm(4096),
|
540 |
+
# nn.GELU(),
|
541 |
+
# nn.Linear(4096, 4096))
|
542 |
+
self.blin1 = nn.Linear(h*seq_len, 4096)
|
543 |
+
self.bgroupnorm = nn.GroupNorm(1, 256)
|
544 |
+
self.bupsampler = Decoder(
|
545 |
+
in_channels=256,
|
546 |
+
out_channels=128,
|
547 |
+
up_block_types=["UpDecoderBlock2D","UpDecoderBlock2D","UpDecoderBlock2D"],
|
548 |
+
block_out_channels=[32, 64, 128],
|
549 |
+
layers_per_block=1,
|
550 |
+
)
|
551 |
+
|
552 |
+
if depth_recon:
|
553 |
+
# self.dlin1 = nn.Sequential(
|
554 |
+
# nn.Linear(h, midas_emb_size),
|
555 |
+
# nn.Sigmoid(),
|
556 |
+
# )
|
557 |
+
self.dlin1 = nn.Linear(h*seq_len, 4096)
|
558 |
+
self.dgroupnorm = nn.GroupNorm(1, 256)
|
559 |
+
self.dupsampler = Decoder(
|
560 |
+
in_channels=256,
|
561 |
+
out_channels=1,#128,
|
562 |
+
up_block_types=["UpDecoderBlock2D","UpDecoderBlock2D","UpDecoderBlock2D","UpDecoderBlock2D"],
|
563 |
+
block_out_channels=[32, 64, 128, 256],
|
564 |
+
layers_per_block=1,
|
565 |
+
)
|
566 |
+
|
567 |
+
def mixer_block1(self, h, drop):
|
568 |
+
return nn.Sequential(
|
569 |
+
nn.LayerNorm(h),
|
570 |
+
self.mlp(h, h, drop), # Token mixing
|
571 |
+
)
|
572 |
+
|
573 |
+
def mixer_block2(self, seq_len, drop):
|
574 |
+
return nn.Sequential(
|
575 |
+
nn.LayerNorm(seq_len),
|
576 |
+
self.mlp(seq_len, seq_len, drop) # Channel mixing
|
577 |
+
)
|
578 |
+
|
579 |
+
def mlp(self, in_dim, out_dim, drop):
|
580 |
+
return nn.Sequential(
|
581 |
+
nn.Linear(in_dim, out_dim),
|
582 |
+
nn.GELU(),
|
583 |
+
nn.Dropout(drop),
|
584 |
+
nn.Linear(out_dim, out_dim),
|
585 |
+
)
|
586 |
+
|
587 |
+
def forward(self, x):
|
588 |
+
# make empty tensors for blur and depth outputs
|
589 |
+
b,d = torch.Tensor([0.]), torch.Tensor([0.])
|
590 |
+
|
591 |
+
# Initial linear layer
|
592 |
+
# x = self.lin0(x)
|
593 |
+
|
594 |
+
# Reshape to seq_len by dim
|
595 |
+
# x = x.reshape(-1, self.seq_len, self.h)
|
596 |
+
|
597 |
+
# Mixer blocks
|
598 |
+
residual1 = x
|
599 |
+
residual2 = x.permute(0,2,1)
|
600 |
+
for block1, block2 in zip(self.mixer_blocks1,self.mixer_blocks2):
|
601 |
+
x = block1(x) + residual1
|
602 |
+
residual1 = x
|
603 |
+
x = x.permute(0,2,1)
|
604 |
+
|
605 |
+
x = block2(x) + residual2
|
606 |
+
residual2 = x
|
607 |
+
x = x.permute(0,2,1)
|
608 |
+
|
609 |
+
# Flatten
|
610 |
+
x = x.reshape(x.size(0), -1)
|
611 |
+
|
612 |
+
c = self.clin1(x)
|
613 |
+
|
614 |
+
# low rank linear to out dim cuts # params by nearly half compared to full linear mapping
|
615 |
+
# c = (x @ (self.V/100) @ (self.U/100)) + self.S
|
616 |
+
|
617 |
+
c = self.clip_proj(c.reshape(len(c), -1, self.clip_size))
|
618 |
+
|
619 |
+
if blurry_recon:
|
620 |
+
b = self.blin1(x)
|
621 |
+
b = b.reshape(len(b), 256, 4, 4)
|
622 |
+
b = self.bgroupnorm(b)
|
623 |
+
b = self.bupsampler(b)
|
624 |
+
|
625 |
+
if depth_recon:
|
626 |
+
d = self.dlin1(x)#.reshape(len(x), 1, 32, 32)
|
627 |
+
d = d.reshape(len(d), 256, 4, 4)
|
628 |
+
d = self.dgroupnorm(d)
|
629 |
+
d = self.dupsampler(d)
|
630 |
+
|
631 |
+
return c, b, d
|
632 |
+
|
633 |
+
|
634 |
+
class TimeEmbedding(nn.Module):
|
635 |
+
def __init__(self, embedding_time_dim=512, num_past_voxels=15):
|
636 |
+
super().__init__()
|
637 |
+
self.embedding_time = nn.Embedding(num_past_voxels, embedding_time_dim)
|
638 |
+
self.num_past_voxels = num_past_voxels
|
639 |
+
self.embedding_time_dim = embedding_time_dim
|
640 |
+
|
641 |
+
def forward(self, time):
|
642 |
+
# time is (batch_size,)
|
643 |
+
time = time.long()
|
644 |
+
time = self.embedding_time(time)
|
645 |
+
return time # (batch_size, embedding_time_dim)
|
646 |
+
|
647 |
+
|
648 |
+
#model.memory_encoder = MemoryEncoder(in_dim=voxels.shape[1], out_dim=4096, num_past_voxels=15, embedding_time_dim=512)
|
649 |
+
model.time_embedding = TimeEmbedding(embedding_time_dim=512, num_past_voxels=15)
|
650 |
+
|
651 |
+
model.backbone = BrainNetwork(h=1024, in_dim=1024, seq_len=4, clip_size=clip_emb_dim, out_dim=clip_emb_dim*clip_seq_dim)
|
652 |
+
utils.count_params(model.backbone)
|
653 |
+
utils.count_params(model)
|
654 |
+
|
655 |
+
|
656 |
+
# test that the model works on some fake data
|
657 |
+
b = torch.randn((256,4,1024))
|
658 |
+
print("b.shape",b.shape)
|
659 |
+
with torch.no_grad():
|
660 |
+
clip_, blur_, depth_ = model.backbone(b)
|
661 |
+
print(clip_.shape, blur_.shape, depth_.shape)
|
662 |
+
|
663 |
+
|
664 |
+
# In[70]:
|
665 |
+
|
666 |
+
|
667 |
+
voxel_ridge = torch.randn(512,4096)
|
668 |
+
voxel_ridge = voxel_ridge.view(int(voxel_ridge.shape[0]/seq_len), seq_len, hidden_dim)
|
669 |
+
print("b.shape",voxel_ridge.shape)
|
670 |
+
with torch.no_grad():
|
671 |
+
clip_, blur_, depth_ = model.backbone(voxel_ridge)
|
672 |
+
print(clip_.shape, blur_.shape, depth_.shape)
|
673 |
+
|
674 |
+
|
675 |
+
# In[64]:
|
676 |
+
|
677 |
+
|
678 |
+
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
|
679 |
+
opt_grouped_parameters = [
|
680 |
+
{'params': [p for n, p in model.ridge.named_parameters()], 'weight_decay': 1e-2},
|
681 |
+
{'params': [p for n, p in model.backbone.named_parameters() if not any(nd in n for nd in no_decay)], 'weight_decay': 1e-2},
|
682 |
+
{'params': [p for n, p in model.backbone.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0},
|
683 |
+
]
|
684 |
+
|
685 |
+
optimizer = torch.optim.AdamW(opt_grouped_parameters, lr=max_lr)
|
686 |
+
|
687 |
+
if lr_scheduler_type == 'linear':
|
688 |
+
lr_scheduler = torch.optim.lr_scheduler.LinearLR(
|
689 |
+
optimizer,
|
690 |
+
total_iters=int(np.floor(num_epochs*(num_train/num_devices/batch_size))),
|
691 |
+
last_epoch=-1
|
692 |
+
)
|
693 |
+
elif lr_scheduler_type == 'cycle':
|
694 |
+
total_steps=int(np.floor(num_epochs*(num_train/num_devices/batch_size)))
|
695 |
+
print("total_steps", total_steps)
|
696 |
+
lr_scheduler = torch.optim.lr_scheduler.OneCycleLR(
|
697 |
+
optimizer,
|
698 |
+
max_lr=max_lr,
|
699 |
+
total_steps=total_steps,
|
700 |
+
final_div_factor=1000,
|
701 |
+
last_epoch=-1, pct_start=2/num_epochs
|
702 |
+
)
|
703 |
+
|
704 |
+
def save_ckpt(tag):
|
705 |
+
ckpt_path = outdir+f'/{tag}.pth'
|
706 |
+
print(f'saving {ckpt_path}',flush=True)
|
707 |
+
unwrapped_model = accelerator.unwrap_model(model)
|
708 |
+
try:
|
709 |
+
torch.save({
|
710 |
+
'epoch': epoch,
|
711 |
+
'model_state_dict': unwrapped_model.state_dict(),
|
712 |
+
'optimizer_state_dict': optimizer.state_dict(),
|
713 |
+
'lr_scheduler': lr_scheduler.state_dict(),
|
714 |
+
'train_losses': losses,
|
715 |
+
'test_losses': test_losses,
|
716 |
+
'lrs': lrs,
|
717 |
+
}, ckpt_path)
|
718 |
+
except:
|
719 |
+
print("Couldn't save... moving on to prevent crashing.")
|
720 |
+
del unwrapped_model
|
721 |
+
|
722 |
+
print("\nDone with model preparations!")
|
723 |
+
utils.count_params(model)
|
724 |
+
|
725 |
+
|
726 |
+
# In[49]:
|
727 |
+
|
728 |
+
|
729 |
+
seq_len = 4
|
730 |
+
|
731 |
+
|
732 |
+
# In[57]:
|
733 |
+
|
734 |
+
|
735 |
+
voxel_ridge = torch.randn(512,4096)
|
736 |
+
voxel_ridge = voxel_ridge.view(int(voxel_ridge.shape[0]/seq_len), seq_len, hidden_dim)
|
737 |
+
|
738 |
+
|
739 |
+
# In[58]:
|
740 |
+
|
741 |
+
|
742 |
+
voxel_ridge.shape
|
743 |
+
|
744 |
+
|
745 |
+
# In[55]:
|
746 |
+
|
747 |
+
|
748 |
+
pp = None
|
749 |
+
for train_i, (behav, past_behav, future_behav, old_behav) in enumerate(train_dl):
|
750 |
+
with torch.cuda.amp.autocast(dtype=data_type):
|
751 |
+
#optimizer.zero_grad()
|
752 |
+
|
753 |
+
voxel = voxels[behav[:,0,5].cpu().long()]#.to(device)
|
754 |
+
image = images[behav[:,0,0].cpu().long()].float()#.to(device).float()
|
755 |
+
|
756 |
+
past_15_voxels = voxels[past_behav[:,:seq_len-1,5].cpu().long()]#.to(device) # batch_size, 15, 15279
|
757 |
+
past_15_times = torch.Tensor([i for i in range(seq_len)])#.to(device) # 15
|
758 |
+
|
759 |
+
print(past_15_times)
|
760 |
+
#for past in range(1):
|
761 |
+
# past_voxel = voxels[past_behav[:,past,5].cpu().long()].to(device)
|
762 |
+
"""
|
763 |
+
#if blurry_recon:
|
764 |
+
# blurry_image_enc = autoenc.encode(2*utils.resize(image,128)-1).latent_dist.mode() * 0.18215
|
765 |
+
blurry_image_enc = autoenc.encode(2*utils.resize(add_saturation(image),128)-1).latents * 0.18215
|
766 |
+
|
767 |
+
if depth_recon:
|
768 |
+
# depth_images = utils.resize(midas_depth.model(image).unsqueeze(1).repeat(1,3,1,1), 128)
|
769 |
+
depth_images = utils.resize(midas_depth.model(image).unsqueeze(1), 32)
|
770 |
+
depth_images = (depth_images / depth_images.view(depth_images.shape[0], -1).max(dim=1)[0].view(-1, 1, 1, 1).expand_as(depth_images)).half()
|
771 |
+
depth_image_enc = depth_images # autoenc.encode(2*depth_images-1).latents * 0.18215
|
772 |
+
|
773 |
+
if use_image_aug:
|
774 |
+
image = img_augment(image)
|
775 |
+
|
776 |
+
clip_target = clip_model.embed_image(image)
|
777 |
+
assert not torch.any(torch.isnan(clip_target))
|
778 |
+
|
779 |
+
if epoch < int(mixup_pct * num_epochs):
|
780 |
+
voxel, perm, betas, select = utils.mixco(voxel)
|
781 |
+
past_voxel, _, _, _ = utils.mixco(voxel, perm=perm, betas=betas, select=select)
|
782 |
+
"""
|
783 |
+
for p in range(seq_len-1):
|
784 |
+
print(past_behav.shape) #128, 15, 17
|
785 |
+
print(past_behav[:,p,-1])
|
786 |
+
print(past_15_voxels.shape) # 128, 1, 15724
|
787 |
+
mask = past_behav[:,p,-1] == torch.ones_like(past_behav[:,p,-1])
|
788 |
+
print(mask) # 128
|
789 |
+
past_15_voxels[mask, p, :] = torch.zeros_like(past_15_voxels[0, p, :])
|
790 |
+
print(past_15_voxels)
|
791 |
+
pp = past_15_voxels
|
792 |
+
|
793 |
+
break
|
794 |
+
|
795 |
+
|
796 |
+
# In[54]:
|
797 |
+
|
798 |
+
|
799 |
+
pp[20, 0, :]
|
800 |
+
|
801 |
+
|
802 |
+
# # Weights and Biases
|
803 |
+
|
804 |
+
# In[66]:
|
805 |
+
|
806 |
+
|
807 |
+
if local_rank==0 and wandb_log: # only use main process for wandb logging
|
808 |
+
import wandb
|
809 |
+
wandb_project = 'mindeyev2'
|
810 |
+
wandb_run = model_name
|
811 |
+
wandb_notes = ''
|
812 |
+
|
813 |
+
print(f"wandb {wandb_project} run {wandb_run}")
|
814 |
+
wandb.login(host='https://stability.wandb.io')#, relogin=True)
|
815 |
+
wandb_config = {
|
816 |
+
"model_name": model_name,
|
817 |
+
"global_batch_size": global_batch_size,
|
818 |
+
"batch_size": batch_size,
|
819 |
+
"num_epochs": num_epochs,
|
820 |
+
"clip_scale": clip_scale,
|
821 |
+
"blur_scale": blur_scale,
|
822 |
+
"use_image_aug": use_image_aug,
|
823 |
+
"max_lr": max_lr,
|
824 |
+
"mixup_pct": mixup_pct,
|
825 |
+
"num_train": num_train,
|
826 |
+
"num_test": num_test,
|
827 |
+
"ckpt_interval": ckpt_interval,
|
828 |
+
"ckpt_saving": ckpt_saving,
|
829 |
+
"seed": seed,
|
830 |
+
"distributed": distributed,
|
831 |
+
"num_devices": num_devices,
|
832 |
+
"world_size": world_size,
|
833 |
+
"train_url": train_url,
|
834 |
+
"test_url": test_url,
|
835 |
+
}
|
836 |
+
print("wandb_config:\n",wandb_config)
|
837 |
+
if True: # wandb_auto_resume
|
838 |
+
print("wandb_id:",model_name)
|
839 |
+
wandb.init(
|
840 |
+
id = model_name,
|
841 |
+
project=wandb_project,
|
842 |
+
name=wandb_run,
|
843 |
+
config=wandb_config,
|
844 |
+
notes=wandb_notes,
|
845 |
+
resume="allow",
|
846 |
+
)
|
847 |
+
else:
|
848 |
+
wandb.init(
|
849 |
+
project=wandb_project,
|
850 |
+
name=wandb_run,
|
851 |
+
config=wandb_config,
|
852 |
+
notes=wandb_notes,
|
853 |
+
)
|
854 |
+
else:
|
855 |
+
wandb_log = False
|
856 |
+
|
857 |
+
|
858 |
+
# # Main
|
859 |
+
|
860 |
+
# In[67]:
|
861 |
+
|
862 |
+
|
863 |
+
epoch = 0
|
864 |
+
losses, test_losses, lrs = [], [], []
|
865 |
+
best_test_loss = 1e9
|
866 |
+
soft_loss_temps = utils.cosine_anneal(0.004, 0.0075, num_epochs - int(mixup_pct * num_epochs))
|
867 |
+
|
868 |
+
# Optionally resume from checkpoint #
|
869 |
+
if resume_from_ckpt:
|
870 |
+
print("\n---resuming from last.pth ckpt---\n")
|
871 |
+
try:
|
872 |
+
checkpoint = torch.load(outdir+'/last.pth', map_location='cpu')
|
873 |
+
except:
|
874 |
+
print('last.pth failed... trying last_backup.pth')
|
875 |
+
checkpoint = torch.load(outdir+'/last_backup.pth', map_location='cpu')
|
876 |
+
epoch = checkpoint['epoch']
|
877 |
+
print("Epoch",epoch)
|
878 |
+
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
|
879 |
+
lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
|
880 |
+
model.load_state_dict(checkpoint['model_state_dict'])
|
881 |
+
del checkpoint
|
882 |
+
elif wandb_log:
|
883 |
+
if wandb.run.resumed:
|
884 |
+
print("\n---resuming from last.pth ckpt---\n")
|
885 |
+
try:
|
886 |
+
checkpoint = torch.load(outdir+'/last.pth', map_location='cpu')
|
887 |
+
except:
|
888 |
+
print('last.pth failed... trying last_backup.pth')
|
889 |
+
checkpoint = torch.load(outdir+'/last_backup.pth', map_location='cpu')
|
890 |
+
epoch = checkpoint['epoch']
|
891 |
+
print("Epoch",epoch)
|
892 |
+
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
|
893 |
+
lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
|
894 |
+
model.load_state_dict(checkpoint['model_state_dict'])
|
895 |
+
del checkpoint
|
896 |
+
torch.cuda.empty_cache()
|
897 |
+
|
898 |
+
|
899 |
+
# In[68]:
|
900 |
+
|
901 |
+
|
902 |
+
model, optimizer, train_dl, lr_scheduler = accelerator.prepare(
|
903 |
+
model, optimizer, train_dl, lr_scheduler
|
904 |
+
)
|
905 |
+
# leaving out test_dl since we will only have local_rank 0 device do evals
|
906 |
+
|
907 |
+
|
908 |
+
# In[ ]:
|
909 |
+
|
910 |
+
|
911 |
+
def add_saturation(image, alpha=2):
|
912 |
+
gray_image = 0.2989 * image[:, 0, :, :] + 0.5870 * image[:, 1, :, :] + 0.1140 * image[:, 2, :, :]
|
913 |
+
gray_image = gray_image.unsqueeze(1).expand_as(image)
|
914 |
+
saturated_image = alpha * image + (1 - alpha) * gray_image
|
915 |
+
return torch.clamp(saturated_image, 0, 1)
|
916 |
+
|
917 |
+
|
918 |
+
# In[65]:
|
919 |
+
|
920 |
+
|
921 |
+
print(f"{model_name} starting with epoch {epoch} / {num_epochs}")
|
922 |
+
progress_bar = tqdm(range(epoch,num_epochs), ncols=1200, disable=(local_rank!=0))
|
923 |
+
test_image, test_voxel = None, None
|
924 |
+
mse = nn.MSELoss()
|
925 |
+
l1 = nn.L1Loss()
|
926 |
+
|
927 |
+
for epoch in progress_bar:
|
928 |
+
model.train()
|
929 |
+
|
930 |
+
fwd_percent_correct = 0.
|
931 |
+
bwd_percent_correct = 0.
|
932 |
+
test_fwd_percent_correct = 0.
|
933 |
+
test_bwd_percent_correct = 0.
|
934 |
+
|
935 |
+
loss_clip_total = 0.
|
936 |
+
loss_blurry_total = 0.
|
937 |
+
loss_depth_total = 0.
|
938 |
+
test_loss_clip_total = 0.
|
939 |
+
test_loss_blurry_total = 0.
|
940 |
+
test_loss_depth_total = 0.
|
941 |
+
|
942 |
+
blurry_pixcorr = 0.
|
943 |
+
test_blurry_pixcorr = 0. # needs >.456 to beat low-level subj01 results in mindeye v1
|
944 |
+
|
945 |
+
for train_i, (behav, past_behav, future_behav, old_behav) in enumerate(train_dl):
|
946 |
+
with torch.cuda.amp.autocast(dtype=data_type):
|
947 |
+
optimizer.zero_grad()
|
948 |
+
|
949 |
+
#voxel = voxels[behav[:,0,5].cpu().long()].to(device)
|
950 |
+
#image = images[behav[:,0,0].cpu().long()].to(device).float()
|
951 |
+
|
952 |
+
#past_15_voxels = voxels[past_behav[:,:,5].cpu().long()].to(device) # batch_size, 15, 15279
|
953 |
+
#past_15_times = torch.Tensor([i for i in range(seq_len - 1)]).to(device) # 15
|
954 |
+
|
955 |
+
voxel = voxels[behav[:,0,5].cpu().long()].to(device)
|
956 |
+
image = images[behav[:,0,0].cpu().long()].to(device).float()
|
957 |
+
|
958 |
+
past_15_voxels = voxels[past_behav[:,:seq_len-1,5].cpu().long()].to(device) # batch_size, 15, 15279
|
959 |
+
past_15_times = torch.Tensor([i for i in range(seq_len-1)]).to(device) # 15
|
960 |
+
#for past in range(1):
|
961 |
+
# past_voxel = voxels[past_behav[:,past,5].cpu().long()].to(device)
|
962 |
+
|
963 |
+
if blurry_recon:
|
964 |
+
# blurry_image_enc = autoenc.encode(2*utils.resize(image,128)-1).latent_dist.mode() * 0.18215
|
965 |
+
blurry_image_enc = autoenc.encode(2*utils.resize(add_saturation(image),128)-1).latents * 0.18215
|
966 |
+
|
967 |
+
if depth_recon:
|
968 |
+
# depth_images = utils.resize(midas_depth.model(image).unsqueeze(1).repeat(1,3,1,1), 128)
|
969 |
+
depth_images = utils.resize(midas_depth.model(image).unsqueeze(1), 32)
|
970 |
+
depth_images = (depth_images / depth_images.view(depth_images.shape[0], -1).max(dim=1)[0].view(-1, 1, 1, 1).expand_as(depth_images)).half()
|
971 |
+
depth_image_enc = depth_images # autoenc.encode(2*depth_images-1).latents * 0.18215
|
972 |
+
|
973 |
+
if use_image_aug:
|
974 |
+
image = img_augment(image)
|
975 |
+
|
976 |
+
clip_target = clip_model.embed_image(image)
|
977 |
+
assert not torch.any(torch.isnan(clip_target))
|
978 |
+
|
979 |
+
if epoch < int(mixup_pct * num_epochs):
|
980 |
+
voxel, perm, betas, select = utils.mixco(voxel)
|
981 |
+
past_voxel, _, _, _ = utils.mixco(voxel, perm=perm, betas=betas, select=select)
|
982 |
+
|
983 |
+
for p in range(seq_len-1):
|
984 |
+
#print(past_behav.shape) #128, 15, 17
|
985 |
+
#print(past_behav[:,p,-1])
|
986 |
+
#print(past_15_voxels.shape) # 128, 1, 15724
|
987 |
+
mask = past_behav[:,p,-1] == torch.ones_like(past_behav[:,p,-1])
|
988 |
+
#print(mask) # 128
|
989 |
+
past_15_voxels[mask, p, :] = torch.zeros_like(past_15_voxels[0, p, :])
|
990 |
+
#print(past_15_voxels)
|
991 |
+
|
992 |
+
past_15_voxels = past_15_voxels.reshape(-1, past_15_voxels.shape[-1])
|
993 |
+
past_15_times = past_15_times.repeat(voxel.shape[0], 1)
|
994 |
+
past_15_times = past_15_times.reshape(-1)
|
995 |
+
time_embeddings = model.time_embedding(past_15_times)
|
996 |
+
past_info_full = torch.cat((past_15_voxels, time_embeddings), dim=-1)
|
997 |
+
|
998 |
+
positional_current_voxel = torch.zeros((voxel.shape[0], time_embeddings.shape[-1])).to(voxel.device)
|
999 |
+
voxel = torch.cat((voxel, positional_current_voxel), dim=-1)
|
1000 |
+
voxel_ridge = model.ridge(torch.cat((voxel, past_info_full), dim=-2))
|
1001 |
+
voxel_ridge = voxel_ridge.view(int(voxel_ridge.shape[0]/seq_len), seq_len, hidden_dim)
|
1002 |
+
#unsqueeze(1) # bz * 2, 1, 4096
|
1003 |
+
|
1004 |
+
# past_voxel_ridge = model.ridge(past_voxel)
|
1005 |
+
# voxel_ridge = torch.cat((voxel_ridge.unsqueeze(1), past_voxel_ridge.unsqueeze(1)), axis=1)
|
1006 |
+
print(voxel_ridge.shape)
|
1007 |
+
|
1008 |
+
clip_voxels, blurry_image_enc_, depth_image_enc_ = model.backbone(voxel_ridge)
|
1009 |
+
|
1010 |
+
clip_voxels_norm = nn.functional.normalize(clip_voxels.flatten(1), dim=-1)
|
1011 |
+
clip_target_norm = nn.functional.normalize(clip_target.flatten(1), dim=-1)
|
1012 |
+
|
1013 |
+
if epoch < int(mixup_pct * num_epochs):
|
1014 |
+
loss_clip = utils.mixco_nce(
|
1015 |
+
clip_voxels_norm,
|
1016 |
+
clip_target_norm,
|
1017 |
+
temp=.006,
|
1018 |
+
perm=perm, betas=betas, select=select)
|
1019 |
+
else:
|
1020 |
+
epoch_temp = soft_loss_temps[epoch-int(mixup_pct*num_epochs)]
|
1021 |
+
loss_clip = utils.soft_clip_loss(
|
1022 |
+
clip_voxels_norm,
|
1023 |
+
clip_target_norm,
|
1024 |
+
temp=epoch_temp)
|
1025 |
+
|
1026 |
+
loss_clip_total += loss_clip.item()
|
1027 |
+
loss_clip *= clip_scale
|
1028 |
+
loss = loss_clip
|
1029 |
+
|
1030 |
+
if blurry_recon:
|
1031 |
+
downsampled_image = nn.functional.interpolate(image, size=(8, 8), mode='bilinear', align_corners=False)
|
1032 |
+
re_upsampled_image = add_saturation(nn.functional.interpolate(downsampled_image, size=(128, 128), mode='nearest'))
|
1033 |
+
re_upsampled_enc = autoenc.encode(2*re_upsampled_image-1).latents * 0.18215
|
1034 |
+
|
1035 |
+
loss_blurry = (l1(blurry_image_enc_, blurry_image_enc) + l1(blurry_image_enc_, re_upsampled_enc))
|
1036 |
+
loss_blurry += l1(torch.var(blurry_image_enc), torch.var(blurry_image_enc_))
|
1037 |
+
loss_blurry_total += loss_blurry.item()
|
1038 |
+
loss_blurry *= blur_scale
|
1039 |
+
loss += loss_blurry
|
1040 |
+
|
1041 |
+
if depth_recon:
|
1042 |
+
loss_depth = l1(depth_image_enc_, depth_image_enc)
|
1043 |
+
# loss_depth += l1(torch.var(depth_image_enc_), torch.var(depth_image_enc))
|
1044 |
+
loss_depth_total += loss_depth.item()
|
1045 |
+
loss_depth *= depth_scale
|
1046 |
+
loss += loss_depth
|
1047 |
+
|
1048 |
+
# forward and backward top 1 accuracy
|
1049 |
+
labels = torch.arange(len(clip_target_norm)).to(clip_voxels_norm.device)
|
1050 |
+
fwd_percent_correct += utils.topk(torch.abs(utils.batchwise_cosine_similarity(clip_voxels_norm, clip_target_norm)), labels, k=1).item()
|
1051 |
+
bwd_percent_correct += utils.topk(torch.abs(utils.batchwise_cosine_similarity(clip_target_norm, clip_voxels_norm)), labels, k=1).item()
|
1052 |
+
|
1053 |
+
if blurry_recon:
|
1054 |
+
with torch.no_grad():
|
1055 |
+
# only doing pixcorr eval on a subset of the samples per batch because its costly & slow to compute autoenc.decode()
|
1056 |
+
random_samps = np.random.choice(np.arange(len(voxel)), size=batch_size//5, replace=False)
|
1057 |
+
# random_samps = np.arange(batch_size//5)
|
1058 |
+
blurry_recon_images = (autoenc.decode(blurry_image_enc_[random_samps]/0.18215).sample/ 2 + 0.5).clamp(0,1)
|
1059 |
+
# pixcorr_origsize_nanmean is computationally less intense than utils.pixcorr and uses nanmean instead of mean
|
1060 |
+
pixcorr = utils.pixcorr_origsize_nanmean(image[random_samps], blurry_recon_images)
|
1061 |
+
# pixcorr = utils.pixcorr(image[random_samps], blurry_recon_images)
|
1062 |
+
# loss += (1 - pixcorr)
|
1063 |
+
blurry_pixcorr += pixcorr.item()
|
1064 |
+
# utils.check_loss(pixcorr)
|
1065 |
+
|
1066 |
+
utils.check_loss(loss)
|
1067 |
+
accelerator.backward(loss)
|
1068 |
+
optimizer.step()
|
1069 |
+
|
1070 |
+
losses.append(loss.item())
|
1071 |
+
lrs.append(optimizer.param_groups[0]['lr'])
|
1072 |
+
|
1073 |
+
if lr_scheduler_type is not None:
|
1074 |
+
lr_scheduler.step()
|
1075 |
+
|
1076 |
+
model.eval()
|
1077 |
+
if local_rank==0:
|
1078 |
+
with torch.no_grad(), torch.cuda.amp.autocast(dtype=data_type):
|
1079 |
+
for test_i, (behav, past_behav, future_behav, old_behav) in enumerate(test_dl):
|
1080 |
+
# all test samples should be loaded per batch such that test_i should never exceed 0
|
1081 |
+
assert len(behav) == num_test
|
1082 |
+
|
1083 |
+
## Average same-image repeats ##
|
1084 |
+
if test_image is None:
|
1085 |
+
voxel = voxels[behav[:,0,5].cpu().long()]
|
1086 |
+
image = behav[:,0,0].cpu().long()
|
1087 |
+
|
1088 |
+
unique_image, sort_indices = torch.unique(image, return_inverse=True)
|
1089 |
+
for im in unique_image:
|
1090 |
+
locs = torch.where(im == image)[0]
|
1091 |
+
if test_image is None:
|
1092 |
+
test_image = images[im][None]
|
1093 |
+
test_voxel = torch.mean(voxel[locs],axis=0)[None]
|
1094 |
+
else:
|
1095 |
+
test_image = torch.vstack((test_image, images[im][None]))
|
1096 |
+
test_voxel = torch.vstack((test_voxel, torch.mean(voxel[locs],axis=0)[None]))
|
1097 |
+
|
1098 |
+
# random sample of 300
|
1099 |
+
random_indices = torch.arange(len(test_voxel))[:300]
|
1100 |
+
voxel = test_voxel[random_indices].to(device)
|
1101 |
+
image = test_image[random_indices].to(device)
|
1102 |
+
assert len(image) == 300
|
1103 |
+
|
1104 |
+
current_past_behav = past_behav[random_indices]
|
1105 |
+
|
1106 |
+
past_15_voxels = voxels[current_past_behav[:,:seq_len-1,5].cpu().long()].to(device) # batch_size, 15, 15279
|
1107 |
+
past_15_times = torch.Tensor([i for i in range(seq_len-1)]).to(device) # 15
|
1108 |
+
|
1109 |
+
if blurry_recon:
|
1110 |
+
# blurry_image_enc = autoenc.encode(2*utils.resize(image,128)-1).latent_dist.mode() * 0.18215
|
1111 |
+
blurry_image_enc = autoenc.encode(2*utils.resize(add_saturation(image),128)-1).latents * 0.18215
|
1112 |
+
|
1113 |
+
if depth_recon:
|
1114 |
+
# depth_images = utils.resize(midas_depth.model(image).unsqueeze(1).repeat(1,3,1,1), 128)
|
1115 |
+
depth_images = utils.resize(midas_depth.model(image).unsqueeze(1), 32)
|
1116 |
+
depth_images = (depth_images / depth_images.view(depth_images.shape[0], -1).max(dim=1)[0].view(-1, 1, 1, 1).expand_as(depth_images)).half()
|
1117 |
+
depth_image_enc = depth_images # autoenc.encode(2*depth_images-1).latents * 0.18215
|
1118 |
+
|
1119 |
+
clip_target = clip_model.embed_image(image.float())
|
1120 |
+
|
1121 |
+
|
1122 |
+
past_15_voxels = past_15_voxels.reshape(-1, past_15_voxels.shape[-1])
|
1123 |
+
past_15_times = past_15_times.repeat(voxel.shape[0], 1)
|
1124 |
+
past_15_times = past_15_times.reshape(-1)
|
1125 |
+
time_embeddings = model.time_embedding(past_15_times)
|
1126 |
+
past_info_full = torch.cat((past_15_voxels, time_embeddings), dim=-1)
|
1127 |
+
|
1128 |
+
positional_current_voxel = torch.zeros((voxel.shape[0], time_embeddings.shape[-1])).to(voxel.device)
|
1129 |
+
voxel = torch.cat((voxel, positional_current_voxel), dim=-1)
|
1130 |
+
voxel_ridge = model.ridge(torch.cat((voxel, past_info_full), dim=-2)).unsqueeze(1)
|
1131 |
+
|
1132 |
+
#voxel_ridge = model.ridge(voxel).unsqueeze(1)
|
1133 |
+
|
1134 |
+
# voxel_ridge = torch.cat((voxel_ridge.unsqueeze(1),voxel_ridge.unsqueeze(1)),axis=1)
|
1135 |
+
|
1136 |
+
clip_voxels, blurry_image_enc_, depth_image_enc_ = model.backbone(voxel_ridge)
|
1137 |
+
|
1138 |
+
clip_voxels_norm = nn.functional.normalize(clip_voxels.flatten(1), dim=-1)
|
1139 |
+
clip_target_norm = nn.functional.normalize(clip_target.flatten(1), dim=-1)
|
1140 |
+
|
1141 |
+
loss_clip = utils.soft_clip_loss(
|
1142 |
+
clip_voxels_norm,
|
1143 |
+
clip_target_norm,
|
1144 |
+
temp=.006)
|
1145 |
+
test_loss_clip_total += loss_clip.item()
|
1146 |
+
loss_clip = loss_clip * clip_scale
|
1147 |
+
loss = loss_clip
|
1148 |
+
|
1149 |
+
if blurry_recon:
|
1150 |
+
downsampled_image = nn.functional.interpolate(image, size=(8, 8), mode='bilinear', align_corners=False)
|
1151 |
+
re_upsampled_image = add_saturation(nn.functional.interpolate(downsampled_image, size=(128, 128), mode='nearest'))
|
1152 |
+
re_upsampled_enc = autoenc.encode(2*re_upsampled_image-1).latents * 0.18215
|
1153 |
+
|
1154 |
+
loss_blurry = (l1(blurry_image_enc_, blurry_image_enc) + l1(blurry_image_enc_, re_upsampled_enc))
|
1155 |
+
loss_blurry += l1(torch.var(blurry_image_enc), torch.var(blurry_image_enc_))
|
1156 |
+
test_loss_blurry_total += loss_blurry.item()
|
1157 |
+
loss_blurry *= blur_scale
|
1158 |
+
loss += loss_blurry
|
1159 |
+
|
1160 |
+
# halving the batch size because the decoder is computationally heavy
|
1161 |
+
blurry_recon_images = (autoenc.decode(blurry_image_enc_[:len(voxel)//2]/0.18215).sample / 2 + 0.5).clamp(0,1)
|
1162 |
+
blurry_recon_images = torch.vstack((blurry_recon_images, (autoenc.decode(blurry_image_enc_[len(voxel)//2:]/0.18215).sample / 2 + 0.5).clamp(0,1)))
|
1163 |
+
pixcorr = utils.pixcorr(image, blurry_recon_images)
|
1164 |
+
loss += (1 - pixcorr)
|
1165 |
+
test_blurry_pixcorr += pixcorr.item()
|
1166 |
+
|
1167 |
+
if depth_recon:
|
1168 |
+
loss_depth = l1(depth_image_enc_, depth_image_enc)
|
1169 |
+
# loss_depth += l1(torch.var(depth_image_enc_), torch.var(depth_image_enc))
|
1170 |
+
test_loss_depth_total += loss_depth.item()
|
1171 |
+
loss_depth *= depth_scale
|
1172 |
+
loss += loss_depth
|
1173 |
+
|
1174 |
+
# forward and backward top 1 accuracy
|
1175 |
+
labels = torch.arange(len(clip_target_norm)).to(clip_voxels_norm.device)
|
1176 |
+
test_fwd_percent_correct += utils.topk(utils.batchwise_cosine_similarity(clip_voxels_norm, clip_target_norm), labels, k=1).item()
|
1177 |
+
test_bwd_percent_correct += utils.topk(utils.batchwise_cosine_similarity(clip_target_norm, clip_voxels_norm), labels, k=1).item()
|
1178 |
+
|
1179 |
+
utils.check_loss(loss)
|
1180 |
+
test_losses.append(loss.item())
|
1181 |
+
|
1182 |
+
# if utils.is_interactive(): clear_output(wait=True)
|
1183 |
+
print("---")
|
1184 |
+
|
1185 |
+
assert (test_i+1) == 1
|
1186 |
+
logs = {"train/loss": np.mean(losses[-(train_i+1):]),
|
1187 |
+
"test/loss": np.mean(test_losses[-(test_i+1):]),
|
1188 |
+
"train/lr": lrs[-1],
|
1189 |
+
"train/num_steps": len(losses),
|
1190 |
+
"test/num_steps": len(test_losses),
|
1191 |
+
"train/fwd_pct_correct": fwd_percent_correct / (train_i + 1),
|
1192 |
+
"train/bwd_pct_correct": bwd_percent_correct / (train_i + 1),
|
1193 |
+
"test/test_fwd_pct_correct": test_fwd_percent_correct / (test_i + 1),
|
1194 |
+
"test/test_bwd_pct_correct": test_bwd_percent_correct / (test_i + 1),
|
1195 |
+
"train/loss_clip_total": loss_clip_total / (train_i + 1),
|
1196 |
+
"train/loss_blurry_total": loss_blurry_total / (train_i + 1),
|
1197 |
+
"test/loss_clip_total": test_loss_clip_total / (test_i + 1),
|
1198 |
+
"test/loss_blurry_total": test_loss_blurry_total / (test_i + 1),
|
1199 |
+
"train/blurry_pixcorr": blurry_pixcorr / (train_i + 1),
|
1200 |
+
"test/blurry_pixcorr": test_blurry_pixcorr / (test_i + 1),
|
1201 |
+
"train/loss_depth_total": loss_depth_total / (train_i + 1),
|
1202 |
+
"test/loss_depth_total": test_loss_depth_total / (test_i + 1),
|
1203 |
+
}
|
1204 |
+
|
1205 |
+
if blurry_recon:
|
1206 |
+
# transform blurry recon latents to images and plot it
|
1207 |
+
fig, axes = plt.subplots(1, 8, figsize=(10, 4))
|
1208 |
+
jj=-1
|
1209 |
+
for j in [0,1,2,3]:
|
1210 |
+
jj+=1
|
1211 |
+
axes[jj].imshow(utils.torch_to_Image((autoenc.decode(blurry_image_enc[[j]]/0.18215).sample / 2 + 0.5).clamp(0,1)))
|
1212 |
+
axes[jj].axis('off')
|
1213 |
+
jj+=1
|
1214 |
+
axes[jj].imshow(utils.torch_to_Image((autoenc.decode(blurry_image_enc_[[j]]/0.18215).sample / 2 + 0.5).clamp(0,1)))
|
1215 |
+
axes[jj].axis('off')
|
1216 |
+
|
1217 |
+
if wandb_log:
|
1218 |
+
logs[f"test/recons"] = wandb.Image(fig, caption=f"epoch{epoch:03d}")
|
1219 |
+
plt.close()
|
1220 |
+
else:
|
1221 |
+
plt.show()
|
1222 |
+
|
1223 |
+
if depth_recon:
|
1224 |
+
# transform blurry recon latents to images and plot it
|
1225 |
+
fig, axes = plt.subplots(1, 8, figsize=(10, 4))
|
1226 |
+
# axes[0].imshow(utils.torch_to_Image((autoenc.decode(depth_image_enc[[0]]/0.18215).sample / 2 + 0.5).clamp(0,1)))
|
1227 |
+
# axes[1].imshow(utils.torch_to_Image((autoenc.decode(depth_image_enc_[[0]]/0.18215).sample / 2 + 0.5).clamp(0,1)))
|
1228 |
+
jj=-1
|
1229 |
+
for j in [0,1,2,3]:
|
1230 |
+
jj+=1
|
1231 |
+
axes[jj].imshow(utils.torch_to_Image(utils.resize(depth_image_enc[[j]].view(1,1,32,32).clamp(0,1), 224)))
|
1232 |
+
axes[jj].axis('off')
|
1233 |
+
jj+=1
|
1234 |
+
axes[jj].imshow(utils.torch_to_Image(utils.resize(depth_image_enc_[[j]].view(1,1,32,32).clamp(0,1), 224)))
|
1235 |
+
axes[jj].axis('off')
|
1236 |
+
if wandb_log:
|
1237 |
+
logs[f"test/depth_recons"] = wandb.Image(fig, caption=f"epoch{epoch:03d}")
|
1238 |
+
plt.close()
|
1239 |
+
else:
|
1240 |
+
plt.show()
|
1241 |
+
|
1242 |
+
progress_bar.set_postfix(**logs)
|
1243 |
+
|
1244 |
+
# Save model checkpoint and reconstruct
|
1245 |
+
if epoch % ckpt_interval == 0:
|
1246 |
+
if not utils.is_interactive():
|
1247 |
+
save_ckpt(f'last')
|
1248 |
+
|
1249 |
+
if wandb_log: wandb.log(logs)
|
1250 |
+
|
1251 |
+
# wait for other GPUs to catch up if needed
|
1252 |
+
accelerator.wait_for_everyone()
|
1253 |
+
torch.cuda.empty_cache()
|
1254 |
+
gc.collect()
|
1255 |
+
|
1256 |
+
print("\n===Finished!===\n")
|
1257 |
+
if ckpt_saving:
|
1258 |
+
save_ckpt(f'last')
|
1259 |
+
if not utils.is_interactive():
|
1260 |
+
sys.exit(0)
|
1261 |
+
|
1262 |
+
|
1263 |
+
# In[ ]:
|
1264 |
+
|
1265 |
+
|
1266 |
+
plt.plot(losses)
|
1267 |
+
plt.show()
|
1268 |
+
plt.plot(test_losses)
|
1269 |
+
plt.show()
|
1270 |
+
|
1271 |
+
|
1272 |
+
# # Retrieve nearest neighbor in the training set using test set data
|
1273 |
+
|
1274 |
+
# In[ ]:
|
1275 |
+
|
1276 |
+
|
1277 |
+
annots = np.load("/fsx/proj-fmri/shared/mindeyev2_dataset/COCO_73k_annots_curated.npy")
|
1278 |
+
|
1279 |
+
|
1280 |
+
# In[ ]:
|
1281 |
+
|
1282 |
+
|
1283 |
+
ii=2
|
1284 |
+
all_indices = np.unique(train_73k_images) #np.hstack((test_vox_indices[ii],train_vox_indices))
|
1285 |
+
with torch.no_grad(), torch.cuda.amp.autocast():
|
1286 |
+
for batch in tqdm(range(0,len(all_indices),512)):
|
1287 |
+
if batch==0:
|
1288 |
+
clip_target = clip_model.embed_image(images[all_indices[batch:batch+512]]).cpu()
|
1289 |
+
else:
|
1290 |
+
target = clip_model.embed_image(images[all_indices[batch:batch+512]]).cpu()
|
1291 |
+
clip_target = torch.vstack((clip_target,target))
|
1292 |
+
clip_target_norm = nn.functional.normalize(clip_target.flatten(1), dim=-1)
|
1293 |
+
|
1294 |
+
voxel = test_voxel[[ii]].to(device)
|
1295 |
+
image = test_image[[ii]].to(device)
|
1296 |
+
|
1297 |
+
print("Original Image (test set)")
|
1298 |
+
display(utils.torch_to_Image(image))
|
1299 |
+
|
1300 |
+
clip_target = clip_model.embed_image(image).cpu()
|
1301 |
+
# clip_target_norm = torch.vstack((clip_target_norm, nn.functional.normalize(clip_target.flatten(1), dim=-1)))
|
1302 |
+
|
1303 |
+
voxel_ridge = model.ridge(voxel).unsqueeze(1)
|
1304 |
+
clip_voxels, _, _ = model.backbone(voxel_ridge)
|
1305 |
+
clip_voxels_norm = nn.functional.normalize(clip_voxels.flatten(1), dim=-1)
|
1306 |
+
clip_voxels_norm = nn.functional.normalize(clip_target.flatten(1), dim=-1)
|
1307 |
+
|
1308 |
+
print("clip_voxels_norm", clip_voxels_norm.shape)
|
1309 |
+
print("clip_target_norm", clip_target_norm.shape)
|
1310 |
+
|
1311 |
+
sortt = torch.argsort(utils.batchwise_cosine_similarity(clip_voxels_norm.cpu(),
|
1312 |
+
clip_target_norm).flatten()).flip(0)
|
1313 |
+
picks = all_indices[sortt[:5]]
|
1314 |
+
|
1315 |
+
print("\nNearest neighbors in training set")
|
1316 |
+
for ip,p in enumerate(picks):
|
1317 |
+
display(utils.torch_to_Image(images[[p]]))
|
1318 |
+
# print(utils.select_annotations([annots[int(p)]]))
|
1319 |
+
if ip==0: predicted_caption = utils.select_annotations([annots[int(p)]])[0]
|
1320 |
+
|
1321 |
+
print("\n=====\npredicted_caption:\n", predicted_caption)
|
1322 |
+
|
1323 |
+
|
1324 |
+
# # Feed into Stable Diffusion XL for reconstructions
|
1325 |
+
|
1326 |
+
# In[ ]:
|
1327 |
+
|
1328 |
+
|
1329 |
+
from diffusers import StableDiffusionXLPipeline
|
1330 |
+
pipe = StableDiffusionXLPipeline.from_pretrained(
|
1331 |
+
"/fsx/proj-fmri/shared/cache/models--stabilityai--stable-diffusion-xl-base-1.0/snapshots/f898a3e026e802f68796b95e9702464bac78d76f", torch_dtype=torch.float16, variant="fp16", use_safetensors=True
|
1332 |
+
)
|
1333 |
+
pipe.to("cuda")
|
1334 |
+
pass
|
1335 |
+
|
1336 |
+
|
1337 |
+
# In[ ]:
|
1338 |
+
|
1339 |
+
|
1340 |
+
prompt = predicted_caption
|
1341 |
+
recon = pipe(prompt=prompt).images[0]
|
1342 |
+
|
1343 |
+
|
1344 |
+
# In[ ]:
|
1345 |
+
|
1346 |
+
|
1347 |
+
print("Seen image")
|
1348 |
+
display(utils.torch_to_Image(image))
|
1349 |
+
|
1350 |
+
print("Reconstruction")
|
1351 |
+
utils.torch_to_Image(utils.resize(transforms.ToTensor()(recon),224))
|
1352 |
+
|
src/Train_MLPMixer-Copy2.py
ADDED
@@ -0,0 +1,1275 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# coding: utf-8
|
3 |
+
|
4 |
+
# In[1]:
|
5 |
+
|
6 |
+
|
7 |
+
# # Code to convert this notebook to .py if you want to run it via command line or with Slurm
|
8 |
+
#from subprocess import call
|
9 |
+
#command = "jupyter nbconvert Train_MLPMixer-Copy1.ipynb --to python"
|
10 |
+
#call(command,shell=True)
|
11 |
+
|
12 |
+
|
13 |
+
# # Import packages & functions
|
14 |
+
|
15 |
+
# In[2]:
|
16 |
+
|
17 |
+
|
18 |
+
import os
|
19 |
+
import sys
|
20 |
+
import json
|
21 |
+
import argparse
|
22 |
+
import numpy as np
|
23 |
+
import math
|
24 |
+
from einops import rearrange
|
25 |
+
import time
|
26 |
+
import random
|
27 |
+
import string
|
28 |
+
import h5py
|
29 |
+
from tqdm import tqdm
|
30 |
+
|
31 |
+
import webdataset as wds
|
32 |
+
import gc
|
33 |
+
|
34 |
+
import matplotlib.pyplot as plt
|
35 |
+
import torch
|
36 |
+
import torch.nn as nn
|
37 |
+
from torchvision import transforms
|
38 |
+
|
39 |
+
from accelerate import Accelerator, DeepSpeedPlugin
|
40 |
+
|
41 |
+
# tf32 data type is faster than standard float32
|
42 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
43 |
+
|
44 |
+
# custom functions #
|
45 |
+
import utils
|
46 |
+
|
47 |
+
|
48 |
+
# In[3]:
|
49 |
+
|
50 |
+
|
51 |
+
### Multi-GPU config ###
|
52 |
+
local_rank = os.getenv('RANK')
|
53 |
+
if local_rank is None:
|
54 |
+
local_rank = 0
|
55 |
+
else:
|
56 |
+
local_rank = int(local_rank)
|
57 |
+
print("LOCAL RANK ", local_rank)
|
58 |
+
|
59 |
+
num_devices = torch.cuda.device_count()
|
60 |
+
if num_devices==0: num_devices = 1
|
61 |
+
|
62 |
+
# ## UNCOMMENT BELOW SECTION AND COMMENT OUT DEEPSPEED SECTION TO AVOID USING DEEPSPEED ###
|
63 |
+
# accelerator = Accelerator(split_batches=False, mixed_precision="fp16")
|
64 |
+
# global_batch_size = batch_size = 32
|
65 |
+
# data_type = torch.float16 # change depending on your mixed_precision
|
66 |
+
|
67 |
+
### DEEPSPEED INITIALIZATION ###
|
68 |
+
if num_devices <= 1 and utils.is_interactive():
|
69 |
+
global_batch_size = batch_size = 32
|
70 |
+
print(f"Setting batch_size to {batch_size}")
|
71 |
+
# can emulate a distributed environment for deepspeed to work in jupyter notebook
|
72 |
+
os.environ["MASTER_ADDR"] = "localhost"
|
73 |
+
os.environ["MASTER_PORT"] = str(np.random.randint(10000)+9000)
|
74 |
+
os.environ["RANK"] = "0"
|
75 |
+
os.environ["LOCAL_RANK"] = "0"
|
76 |
+
os.environ["WORLD_SIZE"] = "1"
|
77 |
+
os.environ["GLOBAL_BATCH_SIZE"] = str(global_batch_size) # set this to your batch size!
|
78 |
+
else:
|
79 |
+
global_batch_size = os.environ["GLOBAL_BATCH_SIZE"]
|
80 |
+
batch_size = int(os.environ["GLOBAL_BATCH_SIZE"]) // num_devices
|
81 |
+
|
82 |
+
# alter the deepspeed config according to your global and local batch size
|
83 |
+
if local_rank == 0:
|
84 |
+
with open('/fsx/proj-fmri/ckadirt/MindEyeV2/src/deepspeed_config_stage2.json', 'r') as file:
|
85 |
+
config = json.load(file)
|
86 |
+
config['train_batch_size'] = int(os.environ["GLOBAL_BATCH_SIZE"])
|
87 |
+
config['train_micro_batch_size_per_gpu'] = batch_size
|
88 |
+
config['bf16'] = {'enabled': False}
|
89 |
+
config['fp16'] = {'enabled': True}
|
90 |
+
with open('/fsx/proj-fmri/ckadirt/MindEyeV2/src/deepspeed_config_stage2.json', 'w') as file:
|
91 |
+
json.dump(config, file)
|
92 |
+
else:
|
93 |
+
# give some time for the local_rank=0 gpu to prep new deepspeed config file
|
94 |
+
time.sleep(10)
|
95 |
+
deepspeed_plugin = DeepSpeedPlugin("/fsx/proj-fmri/ckadirt/MindEyeV2/src/deepspeed_config_stage2.json")
|
96 |
+
accelerator = Accelerator(split_batches=False, deepspeed_plugin=deepspeed_plugin)
|
97 |
+
|
98 |
+
|
99 |
+
# In[4]:
|
100 |
+
|
101 |
+
|
102 |
+
print("PID of this process =",os.getpid())
|
103 |
+
device = accelerator.device
|
104 |
+
print("device:",device)
|
105 |
+
num_workers = num_devices
|
106 |
+
print(accelerator.state)
|
107 |
+
world_size = accelerator.state.num_processes
|
108 |
+
distributed = not accelerator.state.distributed_type == 'NO'
|
109 |
+
|
110 |
+
# set data_type to match your mixed precision (automatically set based on deepspeed config)
|
111 |
+
if accelerator.mixed_precision == "bf16":
|
112 |
+
data_type = torch.bfloat16
|
113 |
+
elif accelerator.mixed_precision == "fp16":
|
114 |
+
data_type = torch.float16
|
115 |
+
else:
|
116 |
+
data_type = torch.float32
|
117 |
+
|
118 |
+
print("distributed =",distributed, "num_devices =", num_devices, "local rank =", local_rank, "world size =", world_size, "data_type =", data_type)
|
119 |
+
print = accelerator.print # only print if local_rank=0
|
120 |
+
|
121 |
+
|
122 |
+
# # Configurations
|
123 |
+
|
124 |
+
# In[5]:
|
125 |
+
|
126 |
+
|
127 |
+
# if running this interactively, can specify jupyter_args here for argparser to use
|
128 |
+
if utils.is_interactive():
|
129 |
+
# create random model_name
|
130 |
+
model_name = ''.join(random.choices(string.ascii_letters + string.digits, k=10))
|
131 |
+
model_name = model_name + "_interactive"
|
132 |
+
print("model_name:", model_name)
|
133 |
+
|
134 |
+
# global_batch_size and batch_size should already be defined in the above cells
|
135 |
+
# other variables can be specified in the following string:
|
136 |
+
jupyter_args = f"--data_path=/fsx/proj-fmri/shared/mindeyev2_dataset \
|
137 |
+
--model_name={model_name} \
|
138 |
+
--subj=1 --batch_size={batch_size} --no-blurry_recon --no-depth_recon --hidden_dim=4096 \
|
139 |
+
--clip_scale=1. --blur_scale=100. --depth_scale=100. \
|
140 |
+
--max_lr=3e-4 --mixup_pct=.66 --num_epochs=12 --ckpt_interval=999 --no-use_image_aug --no-ckpt_saving"
|
141 |
+
|
142 |
+
jupyter_args = jupyter_args.split()
|
143 |
+
print(jupyter_args)
|
144 |
+
|
145 |
+
from IPython.display import clear_output # function to clear print outputs in cell
|
146 |
+
get_ipython().run_line_magic('load_ext', 'autoreload')
|
147 |
+
# this allows you to change functions in models.py or utils.py and have this notebook automatically update with your revisions
|
148 |
+
get_ipython().run_line_magic('autoreload', '2')
|
149 |
+
|
150 |
+
|
151 |
+
# In[6]:
|
152 |
+
|
153 |
+
|
154 |
+
parser = argparse.ArgumentParser(description="Model Training Configuration")
|
155 |
+
parser.add_argument(
|
156 |
+
"--model_name", type=str, default="testing",
|
157 |
+
help="name of model, used for ckpt saving and wandb logging (if enabled)",
|
158 |
+
)
|
159 |
+
parser.add_argument(
|
160 |
+
"--data_path", type=str, default="/fsx/proj-fmri/shared/natural-scenes-dataset",
|
161 |
+
help="Path to where NSD data is stored / where to download it to",
|
162 |
+
)
|
163 |
+
parser.add_argument(
|
164 |
+
"--subj",type=int, default=1, choices=[1,2,5,7],
|
165 |
+
)
|
166 |
+
parser.add_argument(
|
167 |
+
"--batch_size", type=int, default=32,
|
168 |
+
help="Batch size can be increased by 10x if only training v2c and not diffusion diffuser",
|
169 |
+
)
|
170 |
+
parser.add_argument(
|
171 |
+
"--wandb_log",action=argparse.BooleanOptionalAction,default=True,
|
172 |
+
help="whether to log to wandb",
|
173 |
+
)
|
174 |
+
parser.add_argument(
|
175 |
+
"--resume_from_ckpt",action=argparse.BooleanOptionalAction,default=False,
|
176 |
+
help="if not using wandb and want to resume from a ckpt",
|
177 |
+
)
|
178 |
+
parser.add_argument(
|
179 |
+
"--wandb_project",type=str,default="stability",
|
180 |
+
help="wandb project name",
|
181 |
+
)
|
182 |
+
parser.add_argument(
|
183 |
+
"--mixup_pct",type=float,default=.33,
|
184 |
+
help="proportion of way through training when to switch from BiMixCo to SoftCLIP",
|
185 |
+
)
|
186 |
+
parser.add_argument(
|
187 |
+
"--blurry_recon",action=argparse.BooleanOptionalAction,default=True,
|
188 |
+
help="whether to output blurry reconstructions",
|
189 |
+
)
|
190 |
+
parser.add_argument(
|
191 |
+
"--depth_recon",action=argparse.BooleanOptionalAction,default=True,
|
192 |
+
help="whether to output depth reconstructions",
|
193 |
+
)
|
194 |
+
parser.add_argument(
|
195 |
+
"--blur_scale",type=float,default=100.,
|
196 |
+
help="multiply loss from blurry recons by this number",
|
197 |
+
)
|
198 |
+
parser.add_argument(
|
199 |
+
"--depth_scale",type=float,default=100.,
|
200 |
+
help="multiply loss from depth recons by this number",
|
201 |
+
)
|
202 |
+
parser.add_argument(
|
203 |
+
"--clip_scale",type=float,default=1.,
|
204 |
+
help="multiply contrastive loss by this number",
|
205 |
+
)
|
206 |
+
parser.add_argument(
|
207 |
+
"--use_image_aug",action=argparse.BooleanOptionalAction,default=True,
|
208 |
+
help="whether to use image augmentation",
|
209 |
+
)
|
210 |
+
parser.add_argument(
|
211 |
+
"--num_epochs",type=int,default=120,
|
212 |
+
help="number of epochs of training",
|
213 |
+
)
|
214 |
+
parser.add_argument(
|
215 |
+
"--hidden_dim",type=int,default=4096,
|
216 |
+
)
|
217 |
+
parser.add_argument(
|
218 |
+
"--lr_scheduler_type",type=str,default='cycle',choices=['cycle','linear'],
|
219 |
+
)
|
220 |
+
parser.add_argument(
|
221 |
+
"--ckpt_saving",action=argparse.BooleanOptionalAction,default=True,
|
222 |
+
)
|
223 |
+
parser.add_argument(
|
224 |
+
"--ckpt_interval",type=int,default=5,
|
225 |
+
help="save backup ckpt and reconstruct every x epochs",
|
226 |
+
)
|
227 |
+
parser.add_argument(
|
228 |
+
"--seed",type=int,default=42,
|
229 |
+
)
|
230 |
+
parser.add_argument(
|
231 |
+
"--max_lr",type=float,default=3e-4,
|
232 |
+
)
|
233 |
+
parser.add_argument(
|
234 |
+
"--seq_len",type=int,default=2,
|
235 |
+
)
|
236 |
+
|
237 |
+
if utils.is_interactive():
|
238 |
+
args = parser.parse_args(jupyter_args)
|
239 |
+
else:
|
240 |
+
args = parser.parse_args()
|
241 |
+
|
242 |
+
# create global variables without the args prefix
|
243 |
+
for attribute_name in vars(args).keys():
|
244 |
+
globals()[attribute_name] = getattr(args, attribute_name)
|
245 |
+
|
246 |
+
|
247 |
+
# In[7]:
|
248 |
+
|
249 |
+
|
250 |
+
outdir = os.path.abspath(f'../train_logs/{model_name}')
|
251 |
+
if not os.path.exists(outdir) and ckpt_saving:
|
252 |
+
os.makedirs(outdir,exist_ok=True)
|
253 |
+
if use_image_aug:
|
254 |
+
import kornia
|
255 |
+
from kornia.augmentation.container import AugmentationSequential
|
256 |
+
img_augment = AugmentationSequential(
|
257 |
+
kornia.augmentation.RandomResizedCrop((224,224), (0.6,1), p=0.3),
|
258 |
+
kornia.augmentation.Resize((224, 224)),
|
259 |
+
kornia.augmentation.RandomHorizontalFlip(p=0.3),
|
260 |
+
kornia.augmentation.ColorJitter(brightness=0.4, contrast=0.4, saturation=0.2, hue=0.1, p=0.3),
|
261 |
+
kornia.augmentation.RandomGrayscale(p=0.3),
|
262 |
+
same_on_batch=False,
|
263 |
+
data_keys=["input"],
|
264 |
+
)
|
265 |
+
|
266 |
+
|
267 |
+
# # Prep data, models, and dataloaders
|
268 |
+
|
269 |
+
# ## Dataloader
|
270 |
+
|
271 |
+
# In[8]:
|
272 |
+
|
273 |
+
|
274 |
+
if subj==1:
|
275 |
+
num_train = 24958
|
276 |
+
num_test = 2770
|
277 |
+
test_batch_size = num_test
|
278 |
+
|
279 |
+
def my_split_by_node(urls): return urls
|
280 |
+
|
281 |
+
train_url = f"{data_path}/wds/subj0{subj}/train/" + "{0..36}.tar"
|
282 |
+
# train_url = f"{data_path}/wds/subj0{subj}/train/" + "{0..1}.tar"
|
283 |
+
print(train_url)
|
284 |
+
|
285 |
+
train_data = wds.WebDataset(train_url,resampled=False,nodesplitter=my_split_by_node)\
|
286 |
+
.shuffle(750, initial=1500, rng=random.Random(42))\
|
287 |
+
.decode("torch")\
|
288 |
+
.rename(behav="behav.npy", past_behav="past_behav.npy", future_behav="future_behav.npy", olds_behav="olds_behav.npy")\
|
289 |
+
.to_tuple(*["behav", "past_behav", "future_behav", "olds_behav"])
|
290 |
+
train_dl = torch.utils.data.DataLoader(train_data, batch_size=batch_size, shuffle=False, drop_last=True, pin_memory=True)
|
291 |
+
|
292 |
+
test_url = f"{data_path}/wds/subj0{subj}/test/" + "0.tar"
|
293 |
+
print(test_url)
|
294 |
+
|
295 |
+
test_data = wds.WebDataset(test_url,resampled=False,nodesplitter=my_split_by_node)\
|
296 |
+
.shuffle(750, initial=1500, rng=random.Random(42))\
|
297 |
+
.decode("torch")\
|
298 |
+
.rename(behav="behav.npy", past_behav="past_behav.npy", future_behav="future_behav.npy", olds_behav="olds_behav.npy")\
|
299 |
+
.to_tuple(*["behav", "past_behav", "future_behav", "olds_behav"])
|
300 |
+
test_dl = torch.utils.data.DataLoader(test_data, batch_size=test_batch_size, shuffle=False, drop_last=True, pin_memory=True)
|
301 |
+
|
302 |
+
|
303 |
+
# ### check dataloaders are working
|
304 |
+
|
305 |
+
# In[9]:
|
306 |
+
|
307 |
+
|
308 |
+
test_vox_indices = []
|
309 |
+
test_73k_images = []
|
310 |
+
for test_i, (behav, past_behav, future_behav, old_behav) in enumerate(test_dl):
|
311 |
+
test_vox_indices = np.append(test_vox_indices, behav[:,0,5].cpu().numpy())
|
312 |
+
test_73k_images = np.append(test_73k_images, behav[:,0,0].cpu().numpy())
|
313 |
+
test_vox_indices = test_vox_indices.astype(np.int16)
|
314 |
+
print(test_i, (test_i+1) * test_batch_size, len(test_vox_indices))
|
315 |
+
print("---\n")
|
316 |
+
|
317 |
+
train_vox_indices = []
|
318 |
+
train_73k_images = []
|
319 |
+
for train_i, (behav, past_behav, future_behav, old_behav) in enumerate(train_dl):
|
320 |
+
train_vox_indices = np.append(train_vox_indices, behav[:,0,5].long().cpu().numpy())
|
321 |
+
train_73k_images = np.append(train_73k_images, behav[:,0,0].cpu().numpy())
|
322 |
+
train_vox_indices = train_vox_indices.astype(np.int16)
|
323 |
+
print(train_i, (train_i+1) * batch_size, len(train_vox_indices))
|
324 |
+
|
325 |
+
|
326 |
+
# ## Load data and images
|
327 |
+
|
328 |
+
# In[10]:
|
329 |
+
|
330 |
+
|
331 |
+
# load betas
|
332 |
+
f = h5py.File(f'{data_path}/betas_all_subj0{subj}.hdf5', 'r')
|
333 |
+
# f = h5py.File(f'{data_path}/betas_subj0{subj}_thresholded_wholebrain.hdf5', 'r')
|
334 |
+
|
335 |
+
voxels = f['betas'][:]
|
336 |
+
print(f"subj0{subj} betas loaded into memory")
|
337 |
+
voxels = torch.Tensor(voxels).to("cpu").to(data_type)
|
338 |
+
print("voxels", voxels.shape)
|
339 |
+
num_voxels = voxels.shape[-1]
|
340 |
+
|
341 |
+
# load orig images
|
342 |
+
f = h5py.File(f'{data_path}/coco_images_224_float16.hdf5', 'r')
|
343 |
+
images = f['images'][:]
|
344 |
+
images = torch.Tensor(images).to("cpu").to(data_type)
|
345 |
+
print("images", images.shape)
|
346 |
+
|
347 |
+
|
348 |
+
# ## Load models
|
349 |
+
|
350 |
+
# ### CLIP image embeddings model
|
351 |
+
|
352 |
+
# In[11]:
|
353 |
+
|
354 |
+
|
355 |
+
from models import Clipper
|
356 |
+
clip_model = Clipper("ViT-L/14", device=torch.device(f"cuda:{local_rank}"), hidden_state=True, norm_embs=True)
|
357 |
+
clip_seq_dim = 257
|
358 |
+
clip_emb_dim = 768 #1024
|
359 |
+
# hidden_dim = 4096
|
360 |
+
#seq_len = 1 #2 #32
|
361 |
+
|
362 |
+
|
363 |
+
# ### SD VAE
|
364 |
+
|
365 |
+
# In[12]:
|
366 |
+
|
367 |
+
|
368 |
+
# if blurry_recon:
|
369 |
+
# from diffusers import AutoencoderKL
|
370 |
+
# autoenc = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16, cache_dir="/fsx/proj-fmri/shared/cache")
|
371 |
+
# # autoenc.load_state_dict(torch.load('../train_logs/sdxl_vae_normed/best.pth')["model_state_dict"])
|
372 |
+
# autoenc.eval()
|
373 |
+
# autoenc.requires_grad_(False)
|
374 |
+
# autoenc.to(device)
|
375 |
+
# utils.count_params(autoenc)
|
376 |
+
|
377 |
+
if blurry_recon:# or depth_recon:
|
378 |
+
from diffusers import VQModel
|
379 |
+
autoenc = VQModel.from_pretrained("/fsx/proj-fmri/shared/cache/models--microsoft--vq-diffusion-ithq/snapshots/3f796fb49ee559370dc638dea1d8116af131d993/vqvae", torch_dtype=data_type)
|
380 |
+
autoenc.eval()
|
381 |
+
autoenc.requires_grad_(False)
|
382 |
+
autoenc.to(device)
|
383 |
+
utils.count_params(autoenc)
|
384 |
+
|
385 |
+
|
386 |
+
# #### downsampled images
|
387 |
+
|
388 |
+
# In[13]:
|
389 |
+
|
390 |
+
|
391 |
+
if blurry_recon:
|
392 |
+
if utils.is_interactive(): display(utils.torch_to_Image(images[[30]]))
|
393 |
+
|
394 |
+
input_batch = images[[30]].to(device)
|
395 |
+
print(input_batch.shape)
|
396 |
+
|
397 |
+
downsampled_image = nn.functional.interpolate(input_batch, size=(8, 8), mode='bilinear', align_corners=False)
|
398 |
+
re_upsampled_image = nn.functional.interpolate(downsampled_image, size=(128, 128), mode='nearest')
|
399 |
+
re_upsampled_enc = autoenc.encode(2*re_upsampled_image-1).latents * 0.18215
|
400 |
+
print(re_upsampled_enc.shape)
|
401 |
+
|
402 |
+
if utils.is_interactive(): display(utils.torch_to_Image((autoenc.decode(re_upsampled_enc/0.18215).sample / 2 + 0.5).clamp(0,1)))
|
403 |
+
|
404 |
+
|
405 |
+
# #### MiDaS depth
|
406 |
+
|
407 |
+
# In[14]:
|
408 |
+
|
409 |
+
|
410 |
+
if depth_recon:
|
411 |
+
from controlnet_aux.midas import MidasDetector
|
412 |
+
|
413 |
+
midas_depth = MidasDetector.from_pretrained(
|
414 |
+
"valhalla/t2iadapter-aux-models", filename="dpt_large_384.pt", model_type="dpt_large", cache_dir="/fsx/proj-fmri/shared/cache").to(device)
|
415 |
+
midas_depth.model.eval()
|
416 |
+
midas_depth.model.requires_grad_(False)
|
417 |
+
midas_depth.model.to(device)
|
418 |
+
pass
|
419 |
+
|
420 |
+
|
421 |
+
# In[15]:
|
422 |
+
|
423 |
+
|
424 |
+
if depth_recon:
|
425 |
+
if utils.is_interactive(): display(utils.torch_to_Image(images[[30]]))
|
426 |
+
|
427 |
+
input_batch = images[[30,31]].float().to(device)
|
428 |
+
print(input_batch.shape)
|
429 |
+
|
430 |
+
midas_emb = midas_depth.model(input_batch).unsqueeze(1)
|
431 |
+
print(midas_emb.shape)
|
432 |
+
|
433 |
+
prediction = utils.resize(midas_emb, 32) #/30).clamp(0,1).half() # 30 is roughly prediction.max()
|
434 |
+
print(prediction.shape)
|
435 |
+
|
436 |
+
prediction = (prediction / prediction.view(prediction.shape[0], -1).max(dim=1)[0].view(-1, 1, 1, 1).expand_as(prediction)).half()
|
437 |
+
midas_emb_size = prediction.flatten(1).shape[1]
|
438 |
+
print("midas_emb", prediction.shape, prediction.min(), prediction.max())
|
439 |
+
print("midas_emb_size", midas_emb_size)
|
440 |
+
|
441 |
+
if utils.is_interactive(): display(utils.torch_to_Image(utils.resize(prediction, 224)))
|
442 |
+
|
443 |
+
if blurry_recon:
|
444 |
+
prediction = utils.resize(midas_emb, 128).half().repeat(1,3,1,1)
|
445 |
+
prediction = (prediction / prediction.view(prediction.shape[0], -1).max(dim=1)[0].view(-1, 1, 1, 1).expand_as(prediction)).half()
|
446 |
+
prediction_enc = autoenc.encode(2*prediction-1).latents * 0.18215
|
447 |
+
print("vae midas_emb", prediction_enc.shape, prediction_enc.min(), prediction_enc.max())
|
448 |
+
|
449 |
+
if utils.is_interactive(): display(utils.torch_to_Image((autoenc.decode(prediction_enc/0.18215).sample / 2 + 0.5).clamp(0,1)))
|
450 |
+
|
451 |
+
|
452 |
+
# ### MindEye modules
|
453 |
+
|
454 |
+
# In[17]:
|
455 |
+
|
456 |
+
|
457 |
+
class MindEyeModule(nn.Module):
|
458 |
+
def __init__(self):
|
459 |
+
super(MindEyeModule, self).__init__()
|
460 |
+
def forward(self, x):
|
461 |
+
return x
|
462 |
+
|
463 |
+
model = MindEyeModule()
|
464 |
+
model
|
465 |
+
|
466 |
+
|
467 |
+
# In[18]:
|
468 |
+
|
469 |
+
|
470 |
+
time_embedding_dim = 512
|
471 |
+
|
472 |
+
class RidgeRegression(torch.nn.Module):
|
473 |
+
# make sure to add weight_decay when initializing optimizer
|
474 |
+
def __init__(self, input_size, out_features):
|
475 |
+
super(RidgeRegression, self).__init__()
|
476 |
+
self.out_features = out_features
|
477 |
+
self.linear = torch.nn.Linear(input_size, out_features)
|
478 |
+
def forward(self, x):
|
479 |
+
return self.linear(x)
|
480 |
+
|
481 |
+
model.ridge = RidgeRegression(voxels.shape[1] + time_embedding_dim, out_features=hidden_dim)
|
482 |
+
utils.count_params(model.ridge)
|
483 |
+
utils.count_params(model)
|
484 |
+
|
485 |
+
b = torch.randn((2,1,voxels.shape[1]))
|
486 |
+
time_emb_test = torch.randn((2,1,time_embedding_dim))
|
487 |
+
print(b.shape, model.ridge(torch.cat((b,time_emb_test),dim=-1)).shape)
|
488 |
+
|
489 |
+
|
490 |
+
# In[24]:
|
491 |
+
|
492 |
+
|
493 |
+
num_past_voxels = 15
|
494 |
+
|
495 |
+
|
496 |
+
|
497 |
+
# In[25]:
|
498 |
+
|
499 |
+
|
500 |
+
from functools import partial
|
501 |
+
from diffusers.models.vae import Decoder
|
502 |
+
class BrainNetwork(nn.Module):
|
503 |
+
def __init__(self, out_dim=768, in_dim=15724, seq_len=2, h=4096, n_blocks=4, drop=.15, clip_size=768):
|
504 |
+
super().__init__()
|
505 |
+
self.seq_len = seq_len
|
506 |
+
self.h = h
|
507 |
+
self.clip_size = clip_size
|
508 |
+
|
509 |
+
# Initial linear layer to match the input dimensions to hidden dimensions
|
510 |
+
# self.lin0 = nn.Linear(in_dim, seq_len * h)
|
511 |
+
|
512 |
+
# Mixer Blocks
|
513 |
+
self.mixer_blocks1 = nn.ModuleList([
|
514 |
+
self.mixer_block1(h, drop) for _ in range(n_blocks)
|
515 |
+
])
|
516 |
+
self.mixer_blocks2 = nn.ModuleList([
|
517 |
+
self.mixer_block2(seq_len, drop) for _ in range(n_blocks)
|
518 |
+
])
|
519 |
+
|
520 |
+
# Output linear layer
|
521 |
+
self.clin1 = nn.Linear(h * seq_len, out_dim, bias=True)
|
522 |
+
|
523 |
+
# low-rank matrices
|
524 |
+
# self.rank = 500
|
525 |
+
# self.U = nn.Parameter(torch.randn(self.rank, out_dim))
|
526 |
+
# self.V = nn.Parameter(torch.randn(h * seq_len, self.rank))
|
527 |
+
# self.S = nn.Parameter(torch.randn(out_dim))
|
528 |
+
|
529 |
+
self.clip_proj = nn.Sequential(
|
530 |
+
nn.LayerNorm(clip_size),
|
531 |
+
nn.GELU(),
|
532 |
+
nn.Linear(clip_size, 2048),
|
533 |
+
nn.LayerNorm(2048),
|
534 |
+
nn.GELU(),
|
535 |
+
nn.Linear(2048, 2048),
|
536 |
+
nn.LayerNorm(2048),
|
537 |
+
nn.GELU(),
|
538 |
+
nn.Linear(2048, clip_size)
|
539 |
+
)
|
540 |
+
|
541 |
+
if blurry_recon:
|
542 |
+
# self.blin1 = nn.Sequential(
|
543 |
+
# nn.Linear(out_dim, 4096, bias=True),
|
544 |
+
# nn.LayerNorm(4096),
|
545 |
+
# nn.GELU(),
|
546 |
+
# nn.Linear(4096, 4096))
|
547 |
+
self.blin1 = nn.Linear(h*seq_len, 4096)
|
548 |
+
self.bgroupnorm = nn.GroupNorm(1, 256)
|
549 |
+
self.bupsampler = Decoder(
|
550 |
+
in_channels=256,
|
551 |
+
out_channels=128,
|
552 |
+
up_block_types=["UpDecoderBlock2D","UpDecoderBlock2D","UpDecoderBlock2D"],
|
553 |
+
block_out_channels=[32, 64, 128],
|
554 |
+
layers_per_block=1,
|
555 |
+
)
|
556 |
+
|
557 |
+
if depth_recon:
|
558 |
+
# self.dlin1 = nn.Sequential(
|
559 |
+
# nn.Linear(h, midas_emb_size),
|
560 |
+
# nn.Sigmoid(),
|
561 |
+
# )
|
562 |
+
self.dlin1 = nn.Linear(h*seq_len, 4096)
|
563 |
+
self.dgroupnorm = nn.GroupNorm(1, 256)
|
564 |
+
self.dupsampler = Decoder(
|
565 |
+
in_channels=256,
|
566 |
+
out_channels=1,#128,
|
567 |
+
up_block_types=["UpDecoderBlock2D","UpDecoderBlock2D","UpDecoderBlock2D","UpDecoderBlock2D"],
|
568 |
+
block_out_channels=[32, 64, 128, 256],
|
569 |
+
layers_per_block=1,
|
570 |
+
)
|
571 |
+
|
572 |
+
def mixer_block1(self, h, drop):
|
573 |
+
return nn.Sequential(
|
574 |
+
nn.LayerNorm(h),
|
575 |
+
self.mlp(h, h, drop), # Token mixing
|
576 |
+
)
|
577 |
+
|
578 |
+
def mixer_block2(self, seq_len, drop):
|
579 |
+
return nn.Sequential(
|
580 |
+
nn.LayerNorm(seq_len),
|
581 |
+
self.mlp(seq_len, seq_len, drop) # Channel mixing
|
582 |
+
)
|
583 |
+
|
584 |
+
def mlp(self, in_dim, out_dim, drop):
|
585 |
+
return nn.Sequential(
|
586 |
+
nn.Linear(in_dim, out_dim),
|
587 |
+
nn.GELU(),
|
588 |
+
nn.Dropout(drop),
|
589 |
+
nn.Linear(out_dim, out_dim),
|
590 |
+
)
|
591 |
+
|
592 |
+
def forward(self, x, idx = None):
|
593 |
+
print(idx)
|
594 |
+
# make empty tensors for blur and depth outputs
|
595 |
+
b,d = torch.Tensor([0.]), torch.Tensor([0.])
|
596 |
+
|
597 |
+
# Initial linear layer
|
598 |
+
# x = self.lin0(x)
|
599 |
+
|
600 |
+
# Reshape to seq_len by dim
|
601 |
+
# x = x.reshape(-1, self.seq_len, self.h)
|
602 |
+
|
603 |
+
# Mixer blocks
|
604 |
+
#print("x shape ", x.shape)
|
605 |
+
residual1 = x
|
606 |
+
residual2 = x.permute(0,2,1)
|
607 |
+
#print("residual 2", residual2.shape)
|
608 |
+
for block1, block2 in zip(self.mixer_blocks1,self.mixer_blocks2):
|
609 |
+
x = block1(x) + residual1
|
610 |
+
#print("xblo", x.shape)
|
611 |
+
residual1 = x
|
612 |
+
x = x.permute(0,2,1)
|
613 |
+
|
614 |
+
x = block2(x) + residual2
|
615 |
+
#print("xblo2", x.shape)
|
616 |
+
residual2 = x
|
617 |
+
x = x.permute(0,2,1)
|
618 |
+
|
619 |
+
# Flatten
|
620 |
+
x = x.reshape(x.size(0), -1)
|
621 |
+
|
622 |
+
c = self.clin1(x)
|
623 |
+
|
624 |
+
# low rank linear to out dim cuts # params by nearly half compared to full linear mapping
|
625 |
+
# c = (x @ (self.V/100) @ (self.U/100)) + self.S
|
626 |
+
|
627 |
+
c = self.clip_proj(c.reshape(len(c), -1, self.clip_size))
|
628 |
+
|
629 |
+
if blurry_recon:
|
630 |
+
b = self.blin1(x)
|
631 |
+
b = b.reshape(len(b), 256, 4, 4)
|
632 |
+
b = self.bgroupnorm(b)
|
633 |
+
b = self.bupsampler(b)
|
634 |
+
|
635 |
+
if depth_recon:
|
636 |
+
d = self.dlin1(x)#.reshape(len(x), 1, 32, 32)
|
637 |
+
d = d.reshape(len(d), 256, 4, 4)
|
638 |
+
d = self.dgroupnorm(d)
|
639 |
+
d = self.dupsampler(d)
|
640 |
+
|
641 |
+
return c, b, d
|
642 |
+
|
643 |
+
|
644 |
+
class TimeEmbedding(nn.Module):
|
645 |
+
def __init__(self, embedding_time_dim=512, num_past_voxels=15):
|
646 |
+
super().__init__()
|
647 |
+
self.embedding_time = nn.Embedding(num_past_voxels, embedding_time_dim)
|
648 |
+
self.num_past_voxels = num_past_voxels
|
649 |
+
self.embedding_time_dim = embedding_time_dim
|
650 |
+
|
651 |
+
def forward(self, time):
|
652 |
+
# time is (batch_size,)
|
653 |
+
time = time.long()
|
654 |
+
time = self.embedding_time(time)
|
655 |
+
return time # (batch_size, embedding_time_dim)
|
656 |
+
|
657 |
+
|
658 |
+
#model.memory_encoder = MemoryEncoder(in_dim=voxels.shape[1], out_dim=4096, num_past_voxels=15, embedding_time_dim=512)
|
659 |
+
model.time_embedding = TimeEmbedding(embedding_time_dim=512, num_past_voxels=15)
|
660 |
+
|
661 |
+
model.backbone = BrainNetwork(h=hidden_dim, in_dim=hidden_dim, seq_len=seq_len, clip_size=clip_emb_dim, out_dim=clip_emb_dim*clip_seq_dim)
|
662 |
+
utils.count_params(model.backbone)
|
663 |
+
utils.count_params(model)
|
664 |
+
|
665 |
+
# test that the model works on some fake data
|
666 |
+
b = torch.randn((1,seq_len,hidden_dim))
|
667 |
+
print("b.shape",b.shape)
|
668 |
+
with torch.no_grad():
|
669 |
+
clip_, blur_, depth_ = model.backbone(b)
|
670 |
+
print(clip_.shape, blur_.shape, depth_.shape)
|
671 |
+
|
672 |
+
|
673 |
+
# In[ ]:
|
674 |
+
|
675 |
+
|
676 |
+
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
|
677 |
+
opt_grouped_parameters = [
|
678 |
+
{'params': [p for n, p in model.ridge.named_parameters()], 'weight_decay': 1e-2},
|
679 |
+
{'params': [p for n, p in model.backbone.named_parameters() if not any(nd in n for nd in no_decay)], 'weight_decay': 1e-2},
|
680 |
+
{'params': [p for n, p in model.backbone.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0},
|
681 |
+
]
|
682 |
+
|
683 |
+
optimizer = torch.optim.AdamW(opt_grouped_parameters, lr=max_lr)
|
684 |
+
|
685 |
+
if lr_scheduler_type == 'linear':
|
686 |
+
lr_scheduler = torch.optim.lr_scheduler.LinearLR(
|
687 |
+
optimizer,
|
688 |
+
total_iters=int(np.floor(num_epochs*(num_train/num_devices/batch_size))),
|
689 |
+
last_epoch=-1
|
690 |
+
)
|
691 |
+
elif lr_scheduler_type == 'cycle':
|
692 |
+
total_steps=int(np.floor(num_epochs*(num_train/num_devices/batch_size)))
|
693 |
+
print("total_steps", total_steps)
|
694 |
+
lr_scheduler = torch.optim.lr_scheduler.OneCycleLR(
|
695 |
+
optimizer,
|
696 |
+
max_lr=max_lr,
|
697 |
+
total_steps=total_steps,
|
698 |
+
final_div_factor=1000,
|
699 |
+
last_epoch=-1, pct_start=2/num_epochs
|
700 |
+
)
|
701 |
+
|
702 |
+
def save_ckpt(tag):
|
703 |
+
ckpt_path = outdir+f'/{tag}.pth'
|
704 |
+
print(f'saving {ckpt_path}',flush=True)
|
705 |
+
unwrapped_model = accelerator.unwrap_model(model)
|
706 |
+
try:
|
707 |
+
torch.save({
|
708 |
+
'epoch': epoch,
|
709 |
+
'model_state_dict': unwrapped_model.state_dict(),
|
710 |
+
'optimizer_state_dict': optimizer.state_dict(),
|
711 |
+
'lr_scheduler': lr_scheduler.state_dict(),
|
712 |
+
'train_losses': losses,
|
713 |
+
'test_losses': test_losses,
|
714 |
+
'lrs': lrs,
|
715 |
+
}, ckpt_path)
|
716 |
+
except:
|
717 |
+
print("Couldn't save... moving on to prevent crashing.")
|
718 |
+
del unwrapped_model
|
719 |
+
|
720 |
+
print("\nDone with model preparations!")
|
721 |
+
utils.count_params(model)
|
722 |
+
|
723 |
+
|
724 |
+
# # Weights and Biases
|
725 |
+
|
726 |
+
# In[ ]:
|
727 |
+
|
728 |
+
|
729 |
+
if local_rank==0 and wandb_log: # only use main process for wandb logging
|
730 |
+
import wandb
|
731 |
+
wandb_project = 'mindeyev2'
|
732 |
+
wandb_run = model_name
|
733 |
+
wandb_notes = ''
|
734 |
+
|
735 |
+
print(f"wandb {wandb_project} run {wandb_run}")
|
736 |
+
wandb.login(host='https://stability.wandb.io')#, relogin=True)
|
737 |
+
wandb_config = {
|
738 |
+
"model_name": model_name,
|
739 |
+
"global_batch_size": global_batch_size,
|
740 |
+
"batch_size": batch_size,
|
741 |
+
"num_epochs": num_epochs,
|
742 |
+
"clip_scale": clip_scale,
|
743 |
+
"blur_scale": blur_scale,
|
744 |
+
"use_image_aug": use_image_aug,
|
745 |
+
"max_lr": max_lr,
|
746 |
+
"mixup_pct": mixup_pct,
|
747 |
+
"num_train": num_train,
|
748 |
+
"num_test": num_test,
|
749 |
+
"ckpt_interval": ckpt_interval,
|
750 |
+
"ckpt_saving": ckpt_saving,
|
751 |
+
"seed": seed,
|
752 |
+
"distributed": distributed,
|
753 |
+
"num_devices": num_devices,
|
754 |
+
"world_size": world_size,
|
755 |
+
"train_url": train_url,
|
756 |
+
"test_url": test_url,
|
757 |
+
}
|
758 |
+
print("wandb_config:\n",wandb_config)
|
759 |
+
if False: # wandb_auto_resume
|
760 |
+
print("wandb_id:",model_name)
|
761 |
+
wandb.init(
|
762 |
+
id = model_name,
|
763 |
+
project=wandb_project,
|
764 |
+
name=wandb_run,
|
765 |
+
config=wandb_config,
|
766 |
+
notes=wandb_notes,
|
767 |
+
resume="allow",
|
768 |
+
)
|
769 |
+
else:
|
770 |
+
wandb.init(
|
771 |
+
project=wandb_project,
|
772 |
+
name=wandb_run,
|
773 |
+
config=wandb_config,
|
774 |
+
notes=wandb_notes,
|
775 |
+
)
|
776 |
+
else:
|
777 |
+
wandb_log = False
|
778 |
+
|
779 |
+
|
780 |
+
# # Main
|
781 |
+
|
782 |
+
# In[ ]:
|
783 |
+
|
784 |
+
|
785 |
+
epoch = 0
|
786 |
+
losses, test_losses, lrs = [], [], []
|
787 |
+
best_test_loss = 1e9
|
788 |
+
soft_loss_temps = utils.cosine_anneal(0.004, 0.0075, num_epochs - int(mixup_pct * num_epochs))
|
789 |
+
|
790 |
+
# Optionally resume from checkpoint #
|
791 |
+
if resume_from_ckpt:
|
792 |
+
print("\n---resuming from last.pth ckpt---\n")
|
793 |
+
try:
|
794 |
+
checkpoint = torch.load(outdir+'/last.pth', map_location='cpu')
|
795 |
+
except:
|
796 |
+
print('last.pth failed... trying last_backup.pth')
|
797 |
+
checkpoint = torch.load(outdir+'/last_backup.pth', map_location='cpu')
|
798 |
+
epoch = checkpoint['epoch']
|
799 |
+
print("Epoch",epoch)
|
800 |
+
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
|
801 |
+
lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
|
802 |
+
model.load_state_dict(checkpoint['model_state_dict'])
|
803 |
+
del checkpoint
|
804 |
+
elif wandb_log:
|
805 |
+
if wandb.run.resumed:
|
806 |
+
print("\n---resuming from last.pth ckpt---\n")
|
807 |
+
try:
|
808 |
+
checkpoint = torch.load(outdir+'/last.pth', map_location='cpu')
|
809 |
+
except:
|
810 |
+
print('last.pth failed... trying last_backup.pth')
|
811 |
+
checkpoint = torch.load(outdir+'/last_backup.pth', map_location='cpu')
|
812 |
+
epoch = checkpoint['epoch']
|
813 |
+
print("Epoch",epoch)
|
814 |
+
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
|
815 |
+
lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
|
816 |
+
model.load_state_dict(checkpoint['model_state_dict'])
|
817 |
+
del checkpoint
|
818 |
+
torch.cuda.empty_cache()
|
819 |
+
|
820 |
+
|
821 |
+
# In[ ]:
|
822 |
+
|
823 |
+
|
824 |
+
model, optimizer, train_dl, lr_scheduler = accelerator.prepare(
|
825 |
+
model, optimizer, train_dl, lr_scheduler
|
826 |
+
)
|
827 |
+
# leaving out test_dl since we will only have local_rank 0 device do evals
|
828 |
+
|
829 |
+
|
830 |
+
# In[ ]:
|
831 |
+
|
832 |
+
|
833 |
+
def add_saturation(image, alpha=2):
|
834 |
+
gray_image = 0.2989 * image[:, 0, :, :] + 0.5870 * image[:, 1, :, :] + 0.1140 * image[:, 2, :, :]
|
835 |
+
gray_image = gray_image.unsqueeze(1).expand_as(image)
|
836 |
+
saturated_image = alpha * image + (1 - alpha) * gray_image
|
837 |
+
return torch.clamp(saturated_image, 0, 1)
|
838 |
+
|
839 |
+
|
840 |
+
# In[ ]:
|
841 |
+
|
842 |
+
|
843 |
+
print(f"{model_name} starting with epoch {epoch} / {num_epochs}")
|
844 |
+
progress_bar = tqdm(range(epoch,num_epochs), ncols=1200, disable=(local_rank!=0))
|
845 |
+
test_image, test_voxel = None, None
|
846 |
+
mse = nn.MSELoss()
|
847 |
+
l1 = nn.L1Loss()
|
848 |
+
|
849 |
+
for epoch in progress_bar:
|
850 |
+
model.train()
|
851 |
+
|
852 |
+
fwd_percent_correct = 0.
|
853 |
+
bwd_percent_correct = 0.
|
854 |
+
test_fwd_percent_correct = 0.
|
855 |
+
test_bwd_percent_correct = 0.
|
856 |
+
|
857 |
+
loss_clip_total = 0.
|
858 |
+
loss_blurry_total = 0.
|
859 |
+
loss_depth_total = 0.
|
860 |
+
test_loss_clip_total = 0.
|
861 |
+
test_loss_blurry_total = 0.
|
862 |
+
test_loss_depth_total = 0.
|
863 |
+
|
864 |
+
blurry_pixcorr = 0.
|
865 |
+
test_blurry_pixcorr = 0. # needs >.456 to beat low-level subj01 results in mindeye v1
|
866 |
+
|
867 |
+
for train_i, (behav, past_behav, future_behav, old_behav) in enumerate(train_dl):
|
868 |
+
with torch.cuda.amp.autocast(dtype=data_type):
|
869 |
+
optimizer.zero_grad()
|
870 |
+
|
871 |
+
#voxel = voxels[behav[:,0,5].cpu().long()].to(device)
|
872 |
+
#image = images[behav[:,0,0].cpu().long()].to(device).float()
|
873 |
+
|
874 |
+
#past_15_voxels = voxels[past_behav[:,:,5].cpu().long()].to(device) # batch_size, 15, 15279
|
875 |
+
#past_15_times = torch.Tensor([i for i in range(seq_len - 1)]).to(device) # 15
|
876 |
+
|
877 |
+
voxel = voxels[behav[:,0,5].cpu().long()].to(device)
|
878 |
+
image = images[behav[:,0,0].cpu().long()].to(device).float()
|
879 |
+
|
880 |
+
past_15_voxels = voxels[past_behav[:,:seq_len-1,5].cpu().long()].to(device) # batch_size, 15, 15279
|
881 |
+
past_15_times = torch.Tensor([i for i in range(seq_len-1)]).to(device) # 15
|
882 |
+
#for past in range(1):
|
883 |
+
# past_voxel = voxels[past_behav[:,past,5].cpu().long()].to(device)
|
884 |
+
|
885 |
+
if blurry_recon:
|
886 |
+
# blurry_image_enc = autoenc.encode(2*utils.resize(image,128)-1).latent_dist.mode() * 0.18215
|
887 |
+
blurry_image_enc = autoenc.encode(2*utils.resize(add_saturation(image),128)-1).latents * 0.18215
|
888 |
+
|
889 |
+
if depth_recon:
|
890 |
+
# depth_images = utils.resize(midas_depth.model(image).unsqueeze(1).repeat(1,3,1,1), 128)
|
891 |
+
depth_images = utils.resize(midas_depth.model(image).unsqueeze(1), 32)
|
892 |
+
depth_images = (depth_images / depth_images.view(depth_images.shape[0], -1).max(dim=1)[0].view(-1, 1, 1, 1).expand_as(depth_images)).half()
|
893 |
+
depth_image_enc = depth_images # autoenc.encode(2*depth_images-1).latents * 0.18215
|
894 |
+
|
895 |
+
if use_image_aug:
|
896 |
+
image = img_augment(image)
|
897 |
+
|
898 |
+
clip_target = clip_model.embed_image(image)
|
899 |
+
assert not torch.any(torch.isnan(clip_target))
|
900 |
+
|
901 |
+
if epoch < int(mixup_pct * num_epochs):
|
902 |
+
voxel, perm, betas, select = utils.mixco(voxel)
|
903 |
+
past_voxel, _, _, _ = utils.mixco(voxel, perm=perm, betas=betas, select=select)
|
904 |
+
|
905 |
+
for p in range(seq_len-1):
|
906 |
+
#print(past_behav.shape) #128, 15, 17
|
907 |
+
#print(past_behav[:,p,-1])
|
908 |
+
#print(past_15_voxels.shape) # 128, 1, 15724
|
909 |
+
mask = past_behav[:,p,-1] == torch.ones_like(past_behav[:,p,-1])
|
910 |
+
#print(mask) # 128
|
911 |
+
past_15_voxels[mask, p, :] = torch.zeros_like(past_15_voxels[0, p, :])
|
912 |
+
#print(past_15_voxels)
|
913 |
+
|
914 |
+
past_15_voxels = past_15_voxels.reshape(-1, past_15_voxels.shape[-1])
|
915 |
+
past_15_times = past_15_times.repeat(voxel.shape[0], 1)
|
916 |
+
past_15_times = past_15_times.reshape(-1)
|
917 |
+
time_embeddings = model.time_embedding(past_15_times)
|
918 |
+
past_info_full = torch.cat((past_15_voxels, time_embeddings), dim=-1)
|
919 |
+
|
920 |
+
positional_current_voxel = torch.zeros((voxel.shape[0], time_embeddings.shape[-1])).to(voxel.device)
|
921 |
+
voxel = torch.cat((voxel, positional_current_voxel), dim=-1)
|
922 |
+
voxel_ridge = model.ridge(torch.cat((voxel, past_info_full), dim=-2))
|
923 |
+
voxel_ridge = voxel_ridge.view( seq_len, int(voxel_ridge.shape[0]/seq_len), hidden_dim).permute(1,0,2)
|
924 |
+
#unsqueeze(1) # bz * 2, 1, 4096
|
925 |
+
|
926 |
+
# past_voxel_ridge = model.ridge(past_voxel)
|
927 |
+
# voxel_ridge = torch.cat((voxel_ridge.unsqueeze(1), past_voxel_ridge.unsqueeze(1)), axis=1)
|
928 |
+
#print(voxel_ridge.shape)
|
929 |
+
|
930 |
+
clip_voxels, blurry_image_enc_, depth_image_enc_ = model.backbone(voxel_ridge, idx = train_i)
|
931 |
+
|
932 |
+
clip_voxels_norm = nn.functional.normalize(clip_voxels.flatten(1), dim=-1)
|
933 |
+
clip_target_norm = nn.functional.normalize(clip_target.flatten(1), dim=-1)
|
934 |
+
|
935 |
+
if epoch < int(mixup_pct * num_epochs):
|
936 |
+
loss_clip = utils.mixco_nce(
|
937 |
+
clip_voxels_norm,
|
938 |
+
clip_target_norm,
|
939 |
+
temp=.006,
|
940 |
+
perm=perm, betas=betas, select=select)
|
941 |
+
else:
|
942 |
+
epoch_temp = soft_loss_temps[epoch-int(mixup_pct*num_epochs)]
|
943 |
+
loss_clip = utils.soft_clip_loss(
|
944 |
+
clip_voxels_norm,
|
945 |
+
clip_target_norm,
|
946 |
+
temp=epoch_temp)
|
947 |
+
|
948 |
+
loss_clip_total += loss_clip.item()
|
949 |
+
loss_clip *= clip_scale
|
950 |
+
loss = loss_clip
|
951 |
+
|
952 |
+
if blurry_recon:
|
953 |
+
downsampled_image = nn.functional.interpolate(image, size=(8, 8), mode='bilinear', align_corners=False)
|
954 |
+
re_upsampled_image = add_saturation(nn.functional.interpolate(downsampled_image, size=(128, 128), mode='nearest'))
|
955 |
+
re_upsampled_enc = autoenc.encode(2*re_upsampled_image-1).latents * 0.18215
|
956 |
+
|
957 |
+
loss_blurry = (l1(blurry_image_enc_, blurry_image_enc) + l1(blurry_image_enc_, re_upsampled_enc))
|
958 |
+
loss_blurry += l1(torch.var(blurry_image_enc), torch.var(blurry_image_enc_))
|
959 |
+
loss_blurry_total += loss_blurry.item()
|
960 |
+
loss_blurry *= blur_scale
|
961 |
+
loss += loss_blurry
|
962 |
+
|
963 |
+
if depth_recon:
|
964 |
+
loss_depth = l1(depth_image_enc_, depth_image_enc)
|
965 |
+
# loss_depth += l1(torch.var(depth_image_enc_), torch.var(depth_image_enc))
|
966 |
+
loss_depth_total += loss_depth.item()
|
967 |
+
loss_depth *= depth_scale
|
968 |
+
loss += loss_depth
|
969 |
+
|
970 |
+
# forward and backward top 1 accuracy
|
971 |
+
labels = torch.arange(len(clip_target_norm)).to(clip_voxels_norm.device)
|
972 |
+
fwd_percent_correct += utils.topk(torch.abs(utils.batchwise_cosine_similarity(clip_voxels_norm, clip_target_norm)), labels, k=1).item()
|
973 |
+
bwd_percent_correct += utils.topk(torch.abs(utils.batchwise_cosine_similarity(clip_target_norm, clip_voxels_norm)), labels, k=1).item()
|
974 |
+
|
975 |
+
if blurry_recon:
|
976 |
+
with torch.no_grad():
|
977 |
+
# only doing pixcorr eval on a subset of the samples per batch because its costly & slow to compute autoenc.decode()
|
978 |
+
random_samps = np.random.choice(np.arange(len(voxel)), size=batch_size//5, replace=False)
|
979 |
+
# random_samps = np.arange(batch_size//5)
|
980 |
+
blurry_recon_images = (autoenc.decode(blurry_image_enc_[random_samps]/0.18215).sample/ 2 + 0.5).clamp(0,1)
|
981 |
+
# pixcorr_origsize_nanmean is computationally less intense than utils.pixcorr and uses nanmean instead of mean
|
982 |
+
pixcorr = utils.pixcorr_origsize_nanmean(image[random_samps], blurry_recon_images)
|
983 |
+
# pixcorr = utils.pixcorr(image[random_samps], blurry_recon_images)
|
984 |
+
# loss += (1 - pixcorr)
|
985 |
+
blurry_pixcorr += pixcorr.item()
|
986 |
+
# utils.check_loss(pixcorr)
|
987 |
+
|
988 |
+
utils.check_loss(loss)
|
989 |
+
accelerator.backward(loss)
|
990 |
+
optimizer.step()
|
991 |
+
|
992 |
+
losses.append(loss.item())
|
993 |
+
lrs.append(optimizer.param_groups[0]['lr'])
|
994 |
+
|
995 |
+
if lr_scheduler_type is not None:
|
996 |
+
lr_scheduler.step()
|
997 |
+
|
998 |
+
model.eval()
|
999 |
+
if local_rank==0:
|
1000 |
+
with torch.no_grad(), torch.cuda.amp.autocast(dtype=data_type):
|
1001 |
+
for test_i, (behav, past_behav, future_behav, old_behav) in enumerate(test_dl):
|
1002 |
+
# all test samples should be loaded per batch such that test_i should never exceed 0
|
1003 |
+
assert len(behav) == num_test
|
1004 |
+
|
1005 |
+
## Average same-image repeats ##
|
1006 |
+
if test_image is None:
|
1007 |
+
voxel = voxels[behav[:,0,5].cpu().long()]
|
1008 |
+
image = behav[:,0,0].cpu().long()
|
1009 |
+
|
1010 |
+
unique_image, sort_indices = torch.unique(image, return_inverse=True)
|
1011 |
+
for im in unique_image:
|
1012 |
+
locs = torch.where(im == image)[0]
|
1013 |
+
if test_image is None:
|
1014 |
+
test_image = images[im][None]
|
1015 |
+
test_voxel = torch.mean(voxel[locs],axis=0)[None]
|
1016 |
+
else:
|
1017 |
+
test_image = torch.vstack((test_image, images[im][None]))
|
1018 |
+
test_voxel = torch.vstack((test_voxel, torch.mean(voxel[locs],axis=0)[None]))
|
1019 |
+
|
1020 |
+
# random sample of 300
|
1021 |
+
random_indices = torch.arange(len(test_voxel))[:300]
|
1022 |
+
voxel = test_voxel[random_indices].to(device)
|
1023 |
+
image = test_image[random_indices].to(device)
|
1024 |
+
assert len(image) == 300
|
1025 |
+
|
1026 |
+
current_past_behav = past_behav[random_indices]
|
1027 |
+
|
1028 |
+
past_15_voxels = voxels[current_past_behav[:,:seq_len-1,5].cpu().long()].to(device) # batch_size, 15, 15279
|
1029 |
+
past_15_times = torch.Tensor([i for i in range(seq_len-1)]).to(device) # 15
|
1030 |
+
|
1031 |
+
if blurry_recon:
|
1032 |
+
# blurry_image_enc = autoenc.encode(2*utils.resize(image,128)-1).latent_dist.mode() * 0.18215
|
1033 |
+
blurry_image_enc = autoenc.encode(2*utils.resize(add_saturation(image),128)-1).latents * 0.18215
|
1034 |
+
|
1035 |
+
if depth_recon:
|
1036 |
+
# depth_images = utils.resize(midas_depth.model(image).unsqueeze(1).repeat(1,3,1,1), 128)
|
1037 |
+
depth_images = utils.resize(midas_depth.model(image).unsqueeze(1), 32)
|
1038 |
+
depth_images = (depth_images / depth_images.view(depth_images.shape[0], -1).max(dim=1)[0].view(-1, 1, 1, 1).expand_as(depth_images)).half()
|
1039 |
+
depth_image_enc = depth_images # autoenc.encode(2*depth_images-1).latents * 0.18215
|
1040 |
+
|
1041 |
+
clip_target = clip_model.embed_image(image.float())
|
1042 |
+
|
1043 |
+
|
1044 |
+
past_15_voxels = past_15_voxels.reshape(-1, past_15_voxels.shape[-1])
|
1045 |
+
past_15_times = past_15_times.repeat(voxel.shape[0], 1)
|
1046 |
+
past_15_times = past_15_times.reshape(-1)
|
1047 |
+
time_embeddings = model.time_embedding(past_15_times)
|
1048 |
+
past_info_full = torch.cat((past_15_voxels, time_embeddings), dim=-1)
|
1049 |
+
|
1050 |
+
positional_current_voxel = torch.zeros((voxel.shape[0], time_embeddings.shape[-1])).to(voxel.device)
|
1051 |
+
voxel = torch.cat((voxel, positional_current_voxel), dim=-1)
|
1052 |
+
voxel_ridge = model.ridge(torch.cat((voxel, past_info_full), dim=-2))
|
1053 |
+
voxel_ridge = voxel_ridge.view(seq_len, int(voxel_ridge.shape[0]/seq_len), hidden_dim).permute(1,0,2)
|
1054 |
+
|
1055 |
+
#voxel_ridge = model.ridge(voxel).unsqueeze(1)
|
1056 |
+
|
1057 |
+
# voxel_ridge = torch.cat((voxel_ridge.unsqueeze(1),voxel_ridge.unsqueeze(1)),axis=1)
|
1058 |
+
|
1059 |
+
clip_voxels, blurry_image_enc_, depth_image_enc_ = model.backbone(voxel_ridge)
|
1060 |
+
|
1061 |
+
clip_voxels_norm = nn.functional.normalize(clip_voxels.flatten(1), dim=-1)
|
1062 |
+
clip_target_norm = nn.functional.normalize(clip_target.flatten(1), dim=-1)
|
1063 |
+
|
1064 |
+
loss_clip = utils.soft_clip_loss(
|
1065 |
+
clip_voxels_norm,
|
1066 |
+
clip_target_norm,
|
1067 |
+
temp=.006)
|
1068 |
+
test_loss_clip_total += loss_clip.item()
|
1069 |
+
loss_clip = loss_clip * clip_scale
|
1070 |
+
loss = loss_clip
|
1071 |
+
|
1072 |
+
if blurry_recon:
|
1073 |
+
downsampled_image = nn.functional.interpolate(image, size=(8, 8), mode='bilinear', align_corners=False)
|
1074 |
+
re_upsampled_image = add_saturation(nn.functional.interpolate(downsampled_image, size=(128, 128), mode='nearest'))
|
1075 |
+
re_upsampled_enc = autoenc.encode(2*re_upsampled_image-1).latents * 0.18215
|
1076 |
+
|
1077 |
+
loss_blurry = (l1(blurry_image_enc_, blurry_image_enc) + l1(blurry_image_enc_, re_upsampled_enc))
|
1078 |
+
loss_blurry += l1(torch.var(blurry_image_enc), torch.var(blurry_image_enc_))
|
1079 |
+
test_loss_blurry_total += loss_blurry.item()
|
1080 |
+
loss_blurry *= blur_scale
|
1081 |
+
loss += loss_blurry
|
1082 |
+
|
1083 |
+
# halving the batch size because the decoder is computationally heavy
|
1084 |
+
blurry_recon_images = (autoenc.decode(blurry_image_enc_[:len(voxel)//2]/0.18215).sample / 2 + 0.5).clamp(0,1)
|
1085 |
+
blurry_recon_images = torch.vstack((blurry_recon_images, (autoenc.decode(blurry_image_enc_[len(voxel)//2:]/0.18215).sample / 2 + 0.5).clamp(0,1)))
|
1086 |
+
pixcorr = utils.pixcorr(image, blurry_recon_images)
|
1087 |
+
loss += (1 - pixcorr)
|
1088 |
+
test_blurry_pixcorr += pixcorr.item()
|
1089 |
+
|
1090 |
+
if depth_recon:
|
1091 |
+
loss_depth = l1(depth_image_enc_, depth_image_enc)
|
1092 |
+
# loss_depth += l1(torch.var(depth_image_enc_), torch.var(depth_image_enc))
|
1093 |
+
test_loss_depth_total += loss_depth.item()
|
1094 |
+
loss_depth *= depth_scale
|
1095 |
+
loss += loss_depth
|
1096 |
+
|
1097 |
+
# forward and backward top 1 accuracy
|
1098 |
+
labels = torch.arange(len(clip_target_norm)).to(clip_voxels_norm.device)
|
1099 |
+
test_fwd_percent_correct += utils.topk(utils.batchwise_cosine_similarity(clip_voxels_norm, clip_target_norm), labels, k=1).item()
|
1100 |
+
test_bwd_percent_correct += utils.topk(utils.batchwise_cosine_similarity(clip_target_norm, clip_voxels_norm), labels, k=1).item()
|
1101 |
+
|
1102 |
+
utils.check_loss(loss)
|
1103 |
+
test_losses.append(loss.item())
|
1104 |
+
|
1105 |
+
# if utils.is_interactive(): clear_output(wait=True)
|
1106 |
+
print("---")
|
1107 |
+
|
1108 |
+
assert (test_i+1) == 1
|
1109 |
+
logs = {"train/loss": np.mean(losses[-(train_i+1):]),
|
1110 |
+
"test/loss": np.mean(test_losses[-(test_i+1):]),
|
1111 |
+
"train/lr": lrs[-1],
|
1112 |
+
"train/num_steps": len(losses),
|
1113 |
+
"test/num_steps": len(test_losses),
|
1114 |
+
"train/fwd_pct_correct": fwd_percent_correct / (train_i + 1),
|
1115 |
+
"train/bwd_pct_correct": bwd_percent_correct / (train_i + 1),
|
1116 |
+
"test/test_fwd_pct_correct": test_fwd_percent_correct / (test_i + 1),
|
1117 |
+
"test/test_bwd_pct_correct": test_bwd_percent_correct / (test_i + 1),
|
1118 |
+
"train/loss_clip_total": loss_clip_total / (train_i + 1),
|
1119 |
+
"train/loss_blurry_total": loss_blurry_total / (train_i + 1),
|
1120 |
+
"test/loss_clip_total": test_loss_clip_total / (test_i + 1),
|
1121 |
+
"test/loss_blurry_total": test_loss_blurry_total / (test_i + 1),
|
1122 |
+
"train/blurry_pixcorr": blurry_pixcorr / (train_i + 1),
|
1123 |
+
"test/blurry_pixcorr": test_blurry_pixcorr / (test_i + 1),
|
1124 |
+
"train/loss_depth_total": loss_depth_total / (train_i + 1),
|
1125 |
+
"test/loss_depth_total": test_loss_depth_total / (test_i + 1),
|
1126 |
+
}
|
1127 |
+
|
1128 |
+
if blurry_recon:
|
1129 |
+
# transform blurry recon latents to images and plot it
|
1130 |
+
fig, axes = plt.subplots(1, 8, figsize=(10, 4))
|
1131 |
+
jj=-1
|
1132 |
+
for j in [0,1,2,3]:
|
1133 |
+
jj+=1
|
1134 |
+
axes[jj].imshow(utils.torch_to_Image((autoenc.decode(blurry_image_enc[[j]]/0.18215).sample / 2 + 0.5).clamp(0,1)))
|
1135 |
+
axes[jj].axis('off')
|
1136 |
+
jj+=1
|
1137 |
+
axes[jj].imshow(utils.torch_to_Image((autoenc.decode(blurry_image_enc_[[j]]/0.18215).sample / 2 + 0.5).clamp(0,1)))
|
1138 |
+
axes[jj].axis('off')
|
1139 |
+
|
1140 |
+
if wandb_log:
|
1141 |
+
logs[f"test/recons"] = wandb.Image(fig, caption=f"epoch{epoch:03d}")
|
1142 |
+
plt.close()
|
1143 |
+
else:
|
1144 |
+
plt.show()
|
1145 |
+
|
1146 |
+
if depth_recon:
|
1147 |
+
# transform blurry recon latents to images and plot it
|
1148 |
+
fig, axes = plt.subplots(1, 8, figsize=(10, 4))
|
1149 |
+
# axes[0].imshow(utils.torch_to_Image((autoenc.decode(depth_image_enc[[0]]/0.18215).sample / 2 + 0.5).clamp(0,1)))
|
1150 |
+
# axes[1].imshow(utils.torch_to_Image((autoenc.decode(depth_image_enc_[[0]]/0.18215).sample / 2 + 0.5).clamp(0,1)))
|
1151 |
+
jj=-1
|
1152 |
+
for j in [0,1,2,3]:
|
1153 |
+
jj+=1
|
1154 |
+
axes[jj].imshow(utils.torch_to_Image(utils.resize(depth_image_enc[[j]].view(1,1,32,32).clamp(0,1), 224)))
|
1155 |
+
axes[jj].axis('off')
|
1156 |
+
jj+=1
|
1157 |
+
axes[jj].imshow(utils.torch_to_Image(utils.resize(depth_image_enc_[[j]].view(1,1,32,32).clamp(0,1), 224)))
|
1158 |
+
axes[jj].axis('off')
|
1159 |
+
if wandb_log:
|
1160 |
+
logs[f"test/depth_recons"] = wandb.Image(fig, caption=f"epoch{epoch:03d}")
|
1161 |
+
plt.close()
|
1162 |
+
else:
|
1163 |
+
plt.show()
|
1164 |
+
|
1165 |
+
progress_bar.set_postfix(**logs)
|
1166 |
+
|
1167 |
+
# Save model checkpoint and reconstruct
|
1168 |
+
if epoch % ckpt_interval == 0:
|
1169 |
+
if not utils.is_interactive():
|
1170 |
+
save_ckpt(f'last')
|
1171 |
+
|
1172 |
+
if wandb_log: wandb.log(logs)
|
1173 |
+
|
1174 |
+
# wait for other GPUs to catch up if needed
|
1175 |
+
accelerator.wait_for_everyone()
|
1176 |
+
torch.cuda.empty_cache()
|
1177 |
+
gc.collect()
|
1178 |
+
|
1179 |
+
print("\n===Finished!===\n")
|
1180 |
+
if ckpt_saving:
|
1181 |
+
save_ckpt(f'last')
|
1182 |
+
if not utils.is_interactive():
|
1183 |
+
sys.exit(0)
|
1184 |
+
|
1185 |
+
|
1186 |
+
# In[ ]:
|
1187 |
+
|
1188 |
+
|
1189 |
+
plt.plot(losses)
|
1190 |
+
plt.show()
|
1191 |
+
plt.plot(test_losses)
|
1192 |
+
plt.show()
|
1193 |
+
|
1194 |
+
|
1195 |
+
# # Retrieve nearest neighbor in the training set using test set data
|
1196 |
+
|
1197 |
+
# In[ ]:
|
1198 |
+
|
1199 |
+
|
1200 |
+
annots = np.load("/fsx/proj-fmri/shared/mindeyev2_dataset/COCO_73k_annots_curated.npy")
|
1201 |
+
|
1202 |
+
|
1203 |
+
# In[ ]:
|
1204 |
+
|
1205 |
+
|
1206 |
+
ii=2
|
1207 |
+
all_indices = np.unique(train_73k_images) #np.hstack((test_vox_indices[ii],train_vox_indices))
|
1208 |
+
with torch.no_grad(), torch.cuda.amp.autocast():
|
1209 |
+
for batch in tqdm(range(0,len(all_indices),512)):
|
1210 |
+
if batch==0:
|
1211 |
+
clip_target = clip_model.embed_image(images[all_indices[batch:batch+512]]).cpu()
|
1212 |
+
else:
|
1213 |
+
target = clip_model.embed_image(images[all_indices[batch:batch+512]]).cpu()
|
1214 |
+
clip_target = torch.vstack((clip_target,target))
|
1215 |
+
clip_target_norm = nn.functional.normalize(clip_target.flatten(1), dim=-1)
|
1216 |
+
|
1217 |
+
voxel = test_voxel[[ii]].to(device)
|
1218 |
+
image = test_image[[ii]].to(device)
|
1219 |
+
|
1220 |
+
print("Original Image (test set)")
|
1221 |
+
display(utils.torch_to_Image(image))
|
1222 |
+
|
1223 |
+
clip_target = clip_model.embed_image(image).cpu()
|
1224 |
+
# clip_target_norm = torch.vstack((clip_target_norm, nn.functional.normalize(clip_target.flatten(1), dim=-1)))
|
1225 |
+
|
1226 |
+
voxel_ridge = model.ridge(voxel).unsqueeze(1)
|
1227 |
+
clip_voxels, _, _ = model.backbone(voxel_ridge)
|
1228 |
+
clip_voxels_norm = nn.functional.normalize(clip_voxels.flatten(1), dim=-1)
|
1229 |
+
clip_voxels_norm = nn.functional.normalize(clip_target.flatten(1), dim=-1)
|
1230 |
+
|
1231 |
+
print("clip_voxels_norm", clip_voxels_norm.shape)
|
1232 |
+
print("clip_target_norm", clip_target_norm.shape)
|
1233 |
+
|
1234 |
+
sortt = torch.argsort(utils.batchwise_cosine_similarity(clip_voxels_norm.cpu(),
|
1235 |
+
clip_target_norm).flatten()).flip(0)
|
1236 |
+
picks = all_indices[sortt[:5]]
|
1237 |
+
|
1238 |
+
print("\nNearest neighbors in training set")
|
1239 |
+
for ip,p in enumerate(picks):
|
1240 |
+
display(utils.torch_to_Image(images[[p]]))
|
1241 |
+
# print(utils.select_annotations([annots[int(p)]]))
|
1242 |
+
if ip==0: predicted_caption = utils.select_annotations([annots[int(p)]])[0]
|
1243 |
+
|
1244 |
+
print("\n=====\npredicted_caption:\n", predicted_caption)
|
1245 |
+
|
1246 |
+
|
1247 |
+
# # Feed into Stable Diffusion XL for reconstructions
|
1248 |
+
|
1249 |
+
# In[ ]:
|
1250 |
+
|
1251 |
+
|
1252 |
+
from diffusers import StableDiffusionXLPipeline
|
1253 |
+
pipe = StableDiffusionXLPipeline.from_pretrained(
|
1254 |
+
"/fsx/proj-fmri/shared/cache/models--stabilityai--stable-diffusion-xl-base-1.0/snapshots/f898a3e026e802f68796b95e9702464bac78d76f", torch_dtype=torch.float16, variant="fp16", use_safetensors=True
|
1255 |
+
)
|
1256 |
+
pipe.to("cuda")
|
1257 |
+
pass
|
1258 |
+
|
1259 |
+
|
1260 |
+
# In[ ]:
|
1261 |
+
|
1262 |
+
|
1263 |
+
prompt = predicted_caption
|
1264 |
+
recon = pipe(prompt=prompt).images[0]
|
1265 |
+
|
1266 |
+
|
1267 |
+
# In[ ]:
|
1268 |
+
|
1269 |
+
|
1270 |
+
print("Seen image")
|
1271 |
+
display(utils.torch_to_Image(image))
|
1272 |
+
|
1273 |
+
print("Reconstruction")
|
1274 |
+
utils.torch_to_Image(utils.resize(transforms.ToTensor()(recon),224))
|
1275 |
+
|
src/Train_MLPMixer-img.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
src/Train_MLPMixer-img.py
ADDED
@@ -0,0 +1,1444 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# coding: utf-8
|
3 |
+
|
4 |
+
# In[1]:
|
5 |
+
|
6 |
+
|
7 |
+
# # Code to convert this notebook to .py if you want to run it via command line or with Slurm
|
8 |
+
#from subprocess import call
|
9 |
+
#command = "jupyter nbconvert Train_MLPMixer-Copy1.ipynb --to python"
|
10 |
+
#call(command,shell=True)
|
11 |
+
|
12 |
+
|
13 |
+
# # Import packages & functions
|
14 |
+
|
15 |
+
# In[2]:
|
16 |
+
|
17 |
+
|
18 |
+
import os
|
19 |
+
import sys
|
20 |
+
import json
|
21 |
+
import argparse
|
22 |
+
import numpy as np
|
23 |
+
import math
|
24 |
+
from einops import rearrange
|
25 |
+
import time
|
26 |
+
import random
|
27 |
+
import string
|
28 |
+
import h5py
|
29 |
+
from tqdm import tqdm
|
30 |
+
|
31 |
+
import webdataset as wds
|
32 |
+
import gc
|
33 |
+
|
34 |
+
import matplotlib.pyplot as plt
|
35 |
+
import torch
|
36 |
+
import torch.nn as nn
|
37 |
+
from torchvision import transforms
|
38 |
+
|
39 |
+
from accelerate import Accelerator, DeepSpeedPlugin
|
40 |
+
|
41 |
+
# tf32 data type is faster than standard float32
|
42 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
43 |
+
|
44 |
+
# custom functions #
|
45 |
+
import utils
|
46 |
+
|
47 |
+
global_batch_size = 16 #128
|
48 |
+
|
49 |
+
import os
|
50 |
+
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
|
51 |
+
|
52 |
+
|
53 |
+
# In[3]:
|
54 |
+
|
55 |
+
|
56 |
+
### Multi-GPU config ###
|
57 |
+
local_rank = os.getenv('RANK')
|
58 |
+
if local_rank is None:
|
59 |
+
local_rank = 0
|
60 |
+
else:
|
61 |
+
local_rank = int(local_rank)
|
62 |
+
print("LOCAL RANK ", local_rank)
|
63 |
+
|
64 |
+
num_devices = torch.cuda.device_count()
|
65 |
+
if num_devices==0: num_devices = 1
|
66 |
+
|
67 |
+
#accelerator = Accelerator(split_batches=False)
|
68 |
+
|
69 |
+
### UNCOMMENT BELOW STUFF TO USE DEEPSPEED (also comment out the immediately above "accelerator = " line) ###
|
70 |
+
|
71 |
+
if num_devices <= 1 and utils.is_interactive():
|
72 |
+
# can emulate a distributed environment for deepspeed to work in jupyter notebook
|
73 |
+
os.environ["MASTER_ADDR"] = "localhost"
|
74 |
+
os.environ["MASTER_PORT"] = str(np.random.randint(10000)+9000)
|
75 |
+
os.environ["RANK"] = "0"
|
76 |
+
os.environ["LOCAL_RANK"] = "0"
|
77 |
+
os.environ["WORLD_SIZE"] = "1"
|
78 |
+
os.environ["GLOBAL_BATCH_SIZE"] = str(global_batch_size) # set this to your batch size!
|
79 |
+
global_batch_size = os.environ["GLOBAL_BATCH_SIZE"]
|
80 |
+
|
81 |
+
# alter the deepspeed config according to your global and local batch size
|
82 |
+
if local_rank == 0:
|
83 |
+
with open('/fsx/proj-fmri/ckadirt/MindEyeV2/src/deepspeed_config_stage2_cpuoffload.json', 'r') as file:
|
84 |
+
config = json.load(file)
|
85 |
+
config['train_batch_size'] = int(os.environ["GLOBAL_BATCH_SIZE"])
|
86 |
+
config['train_micro_batch_size_per_gpu'] = int(os.environ["GLOBAL_BATCH_SIZE"]) // num_devices
|
87 |
+
with open('deepspeed_config_stage2.json', 'w') as file:
|
88 |
+
json.dump(config, file)
|
89 |
+
else:
|
90 |
+
# give some time for the local_rank=0 gpu to prep new deepspeed config file
|
91 |
+
time.sleep(10)
|
92 |
+
deepspeed_plugin = DeepSpeedPlugin("/fsx/proj-fmri/ckadirt/MindEyeV2/src/deepspeed_config_stage2_cpuoffload.json")
|
93 |
+
accelerator = Accelerator(split_batches=False, deepspeed_plugin=deepspeed_plugin)
|
94 |
+
|
95 |
+
|
96 |
+
# In[4]:
|
97 |
+
|
98 |
+
|
99 |
+
print("PID of this process =",os.getpid())
|
100 |
+
device = accelerator.device
|
101 |
+
print("device:",device)
|
102 |
+
num_workers = num_devices
|
103 |
+
print(accelerator.state)
|
104 |
+
world_size = accelerator.state.num_processes
|
105 |
+
distributed = not accelerator.state.distributed_type == 'NO'
|
106 |
+
|
107 |
+
# set data_type to match your mixed precision (automatically set based on deepspeed config)
|
108 |
+
if accelerator.mixed_precision == "bf16":
|
109 |
+
data_type = torch.bfloat16
|
110 |
+
elif accelerator.mixed_precision == "fp16":
|
111 |
+
data_type = torch.float16
|
112 |
+
else:
|
113 |
+
data_type = torch.float32
|
114 |
+
|
115 |
+
print("distributed =",distributed, "num_devices =", num_devices, "local rank =", local_rank, "world size =", world_size, "data_type =", data_type)
|
116 |
+
print = accelerator.print # only print if local_rank=0
|
117 |
+
|
118 |
+
|
119 |
+
# In[5]:
|
120 |
+
|
121 |
+
|
122 |
+
accelerator.state.distributed_type
|
123 |
+
|
124 |
+
|
125 |
+
# # Configurations
|
126 |
+
|
127 |
+
# In[6]:
|
128 |
+
|
129 |
+
|
130 |
+
# if running this interactively, can specify jupyter_args here for argparser to use
|
131 |
+
if utils.is_interactive():
|
132 |
+
# create random model_name
|
133 |
+
model_name = ''.join(random.choices(string.ascii_letters + string.digits, k=10))
|
134 |
+
model_name = model_name + "_interactive"
|
135 |
+
print("model_name:", model_name)
|
136 |
+
|
137 |
+
# global_batch_size and batch_size should already be defined in the above cells
|
138 |
+
# other variables can be specified in the following string:
|
139 |
+
jupyter_args = f"--data_path=/fsx/proj-fmri/shared/mindeyev2_dataset \
|
140 |
+
--model_name={model_name} \
|
141 |
+
--subj=1 --batch_size={global_batch_size} --no-blurry_recon --no-depth_recon --hidden_dim=1024 \
|
142 |
+
--clip_scale=1. --blur_scale=100. --depth_scale=100. \
|
143 |
+
--max_lr=3e-4 --mixup_pct=.66 --num_epochs=12 --ckpt_interval=999 --no-use_image_aug --no-ckpt_saving"
|
144 |
+
|
145 |
+
jupyter_args = jupyter_args.split()
|
146 |
+
print(jupyter_args)
|
147 |
+
|
148 |
+
from IPython.display import clear_output # function to clear print outputs in cell
|
149 |
+
get_ipython().run_line_magic('load_ext', 'autoreload')
|
150 |
+
# this allows you to change functions in models.py or utils.py and have this notebook automatically update with your revisions
|
151 |
+
get_ipython().run_line_magic('autoreload', '2')
|
152 |
+
|
153 |
+
|
154 |
+
# In[7]:
|
155 |
+
|
156 |
+
|
157 |
+
parser = argparse.ArgumentParser(description="Model Training Configuration")
|
158 |
+
parser.add_argument(
|
159 |
+
"--model_name", type=str, default="testing",
|
160 |
+
help="name of model, used for ckpt saving and wandb logging (if enabled)",
|
161 |
+
)
|
162 |
+
parser.add_argument(
|
163 |
+
"--data_path", type=str, default="/fsx/proj-fmri/shared/natural-scenes-dataset",
|
164 |
+
help="Path to where NSD data is stored / where to download it to",
|
165 |
+
)
|
166 |
+
parser.add_argument(
|
167 |
+
"--subj",type=int, default=1, choices=[1,2,5,7],
|
168 |
+
)
|
169 |
+
parser.add_argument(
|
170 |
+
"--batch_size", type=int, default=32,
|
171 |
+
help="Batch size can be increased by 10x if only training v2c and not diffusion diffuser",
|
172 |
+
)
|
173 |
+
parser.add_argument(
|
174 |
+
"--wandb_log",action=argparse.BooleanOptionalAction,default=True,
|
175 |
+
help="whether to log to wandb",
|
176 |
+
)
|
177 |
+
parser.add_argument(
|
178 |
+
"--resume_from_ckpt",action=argparse.BooleanOptionalAction,default=False,
|
179 |
+
help="if not using wandb and want to resume from a ckpt",
|
180 |
+
)
|
181 |
+
parser.add_argument(
|
182 |
+
"--wandb_project",type=str,default="stability",
|
183 |
+
help="wandb project name",
|
184 |
+
)
|
185 |
+
parser.add_argument(
|
186 |
+
"--mixup_pct",type=float,default=.33,
|
187 |
+
help="proportion of way through training when to switch from BiMixCo to SoftCLIP",
|
188 |
+
)
|
189 |
+
parser.add_argument(
|
190 |
+
"--blurry_recon",action=argparse.BooleanOptionalAction,default=True,
|
191 |
+
help="whether to output blurry reconstructions",
|
192 |
+
)
|
193 |
+
parser.add_argument(
|
194 |
+
"--depth_recon",action=argparse.BooleanOptionalAction,default=True,
|
195 |
+
help="whether to output depth reconstructions",
|
196 |
+
)
|
197 |
+
parser.add_argument(
|
198 |
+
"--blur_scale",type=float,default=100.,
|
199 |
+
help="multiply loss from blurry recons by this number",
|
200 |
+
)
|
201 |
+
parser.add_argument(
|
202 |
+
"--depth_scale",type=float,default=100.,
|
203 |
+
help="multiply loss from depth recons by this number",
|
204 |
+
)
|
205 |
+
parser.add_argument(
|
206 |
+
"--clip_scale",type=float,default=1.,
|
207 |
+
help="multiply contrastive loss by this number",
|
208 |
+
)
|
209 |
+
parser.add_argument(
|
210 |
+
"--use_image_aug",action=argparse.BooleanOptionalAction,default=True,
|
211 |
+
help="whether to use image augmentation",
|
212 |
+
)
|
213 |
+
parser.add_argument(
|
214 |
+
"--num_epochs",type=int,default=120,
|
215 |
+
help="number of epochs of training",
|
216 |
+
)
|
217 |
+
parser.add_argument(
|
218 |
+
"--hidden_dim",type=int,default=4096,
|
219 |
+
)
|
220 |
+
parser.add_argument(
|
221 |
+
"--lr_scheduler_type",type=str,default='cycle',choices=['cycle','linear'],
|
222 |
+
)
|
223 |
+
parser.add_argument(
|
224 |
+
"--ckpt_saving",action=argparse.BooleanOptionalAction,default=True,
|
225 |
+
)
|
226 |
+
parser.add_argument(
|
227 |
+
"--ckpt_interval",type=int,default=5,
|
228 |
+
help="save backup ckpt and reconstruct every x epochs",
|
229 |
+
)
|
230 |
+
parser.add_argument(
|
231 |
+
"--seed",type=int,default=42,
|
232 |
+
)
|
233 |
+
parser.add_argument(
|
234 |
+
"--max_lr",type=float,default=3e-4,
|
235 |
+
)
|
236 |
+
parser.add_argument(
|
237 |
+
"--seq_len",type=int,default=2,
|
238 |
+
)
|
239 |
+
|
240 |
+
if utils.is_interactive():
|
241 |
+
args = parser.parse_args(jupyter_args)
|
242 |
+
else:
|
243 |
+
args = parser.parse_args()
|
244 |
+
|
245 |
+
# create global variables without the args prefix
|
246 |
+
for attribute_name in vars(args).keys():
|
247 |
+
globals()[attribute_name] = getattr(args, attribute_name)
|
248 |
+
|
249 |
+
|
250 |
+
# In[8]:
|
251 |
+
|
252 |
+
|
253 |
+
outdir = os.path.abspath(f'../train_logs/{model_name}')
|
254 |
+
if not os.path.exists(outdir) and ckpt_saving:
|
255 |
+
os.makedirs(outdir,exist_ok=True)
|
256 |
+
if use_image_aug:
|
257 |
+
import kornia
|
258 |
+
from kornia.augmentation.container import AugmentationSequential
|
259 |
+
img_augment = AugmentationSequential(
|
260 |
+
kornia.augmentation.RandomResizedCrop((224,224), (0.6,1), p=0.3),
|
261 |
+
kornia.augmentation.Resize((224, 224)),
|
262 |
+
kornia.augmentation.RandomHorizontalFlip(p=0.3),
|
263 |
+
kornia.augmentation.ColorJitter(brightness=0.4, contrast=0.4, saturation=0.2, hue=0.1, p=0.3),
|
264 |
+
kornia.augmentation.RandomGrayscale(p=0.3),
|
265 |
+
same_on_batch=False,
|
266 |
+
data_keys=["input"],
|
267 |
+
)
|
268 |
+
|
269 |
+
|
270 |
+
# # Prep data, models, and dataloaders
|
271 |
+
|
272 |
+
# ## Dataloader
|
273 |
+
|
274 |
+
# In[9]:
|
275 |
+
|
276 |
+
|
277 |
+
if subj==1:
|
278 |
+
num_train = 24958
|
279 |
+
num_test = 2770
|
280 |
+
test_batch_size = num_test
|
281 |
+
|
282 |
+
def my_split_by_node(urls): return urls
|
283 |
+
|
284 |
+
train_url = f"{data_path}/wds/subj0{subj}/train/" + "{0..36}.tar"
|
285 |
+
# train_url = f"{data_path}/wds/subj0{subj}/train/" + "{0..1}.tar"
|
286 |
+
print(train_url)
|
287 |
+
|
288 |
+
train_data = wds.WebDataset(train_url,resampled=False,nodesplitter=my_split_by_node)\
|
289 |
+
.shuffle(750, initial=1500, rng=random.Random(42))\
|
290 |
+
.decode("torch")\
|
291 |
+
.rename(behav="behav.npy", past_behav="past_behav.npy", future_behav="future_behav.npy", olds_behav="olds_behav.npy")\
|
292 |
+
.to_tuple(*["behav", "past_behav", "future_behav", "olds_behav"])
|
293 |
+
train_dl = torch.utils.data.DataLoader(train_data, batch_size=batch_size, shuffle=False, drop_last=True, pin_memory=True)
|
294 |
+
|
295 |
+
test_url = f"{data_path}/wds/subj0{subj}/test/" + "0.tar"
|
296 |
+
print(test_url)
|
297 |
+
|
298 |
+
test_data = wds.WebDataset(test_url,resampled=False,nodesplitter=my_split_by_node)\
|
299 |
+
.shuffle(750, initial=1500, rng=random.Random(42))\
|
300 |
+
.decode("torch")\
|
301 |
+
.rename(behav="behav.npy", past_behav="past_behav.npy", future_behav="future_behav.npy", olds_behav="olds_behav.npy")\
|
302 |
+
.to_tuple(*["behav", "past_behav", "future_behav", "olds_behav"])
|
303 |
+
test_dl = torch.utils.data.DataLoader(test_data, batch_size=test_batch_size, shuffle=False, drop_last=True, pin_memory=True)
|
304 |
+
|
305 |
+
|
306 |
+
# ### check dataloaders are working
|
307 |
+
|
308 |
+
# In[10]:
|
309 |
+
|
310 |
+
|
311 |
+
test_vox_indices = []
|
312 |
+
test_73k_images = []
|
313 |
+
for test_i, (behav, past_behav, future_behav, old_behav) in enumerate(test_dl):
|
314 |
+
test_vox_indices = np.append(test_vox_indices, behav[:,0,5].cpu().numpy())
|
315 |
+
test_73k_images = np.append(test_73k_images, behav[:,0,0].cpu().numpy())
|
316 |
+
test_vox_indices = test_vox_indices.astype(np.int16)
|
317 |
+
print(test_i, (test_i+1) * test_batch_size, len(test_vox_indices))
|
318 |
+
print("---\n")
|
319 |
+
|
320 |
+
train_vox_indices = []
|
321 |
+
train_73k_images = []
|
322 |
+
for train_i, (behav, past_behav, future_behav, old_behav) in enumerate(train_dl):
|
323 |
+
train_vox_indices = np.append(train_vox_indices, behav[:,0,5].long().cpu().numpy())
|
324 |
+
train_73k_images = np.append(train_73k_images, behav[:,0,0].cpu().numpy())
|
325 |
+
train_vox_indices = train_vox_indices.astype(np.int16)
|
326 |
+
print(train_i, (train_i+1) * batch_size, len(train_vox_indices))
|
327 |
+
|
328 |
+
|
329 |
+
# ## Load data and images
|
330 |
+
|
331 |
+
# In[11]:
|
332 |
+
|
333 |
+
|
334 |
+
# load betas
|
335 |
+
f = h5py.File(f'{data_path}/betas_all_subj0{subj}.hdf5', 'r')
|
336 |
+
# f = h5py.File(f'{data_path}/betas_subj0{subj}_thresholded_wholebrain.hdf5', 'r')
|
337 |
+
|
338 |
+
voxels = f['betas'][:]
|
339 |
+
print(f"subj0{subj} betas loaded into memory")
|
340 |
+
voxels = torch.Tensor(voxels).to("cpu").to(data_type)
|
341 |
+
print("voxels", voxels.shape)
|
342 |
+
num_voxels = voxels.shape[-1]
|
343 |
+
|
344 |
+
# load orig images
|
345 |
+
f = h5py.File(f'{data_path}/coco_images_224_float16.hdf5', 'r')
|
346 |
+
images = f['images'][:]
|
347 |
+
images = torch.Tensor(images).to("cpu").to(data_type)
|
348 |
+
print("images", images.shape)
|
349 |
+
|
350 |
+
|
351 |
+
# ## Load models
|
352 |
+
|
353 |
+
# ### CLIP image embeddings model
|
354 |
+
|
355 |
+
# In[12]:
|
356 |
+
|
357 |
+
|
358 |
+
from models import Clipper
|
359 |
+
clip_model = Clipper("ViT-L/14", device=torch.device(f"cuda:{local_rank}"), hidden_state=True, norm_embs=True)
|
360 |
+
clip_seq_dim = 257
|
361 |
+
clip_emb_dim = 768 #1024
|
362 |
+
# hidden_dim = 4096
|
363 |
+
#seq_len = 1 #2 #32
|
364 |
+
|
365 |
+
|
366 |
+
# In[13]:
|
367 |
+
|
368 |
+
|
369 |
+
clip_model2 = Clipper("ViT-L/14", device=torch.device(f"cuda:{local_rank}"), hidden_state=False, norm_embs=True)
|
370 |
+
|
371 |
+
|
372 |
+
# In[14]:
|
373 |
+
|
374 |
+
|
375 |
+
#out2t = clip_model2.embed_image(torch.randn(32,3,224,224))
|
376 |
+
|
377 |
+
|
378 |
+
# In[15]:
|
379 |
+
|
380 |
+
|
381 |
+
#out2t.shape
|
382 |
+
|
383 |
+
|
384 |
+
# ### SD VAE
|
385 |
+
|
386 |
+
# In[16]:
|
387 |
+
|
388 |
+
|
389 |
+
# if blurry_recon:
|
390 |
+
# from diffusers import AutoencoderKL
|
391 |
+
# autoenc = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16, cache_dir="/fsx/proj-fmri/shared/cache")
|
392 |
+
# # autoenc.load_state_dict(torch.load('../train_logs/sdxl_vae_normed/best.pth')["model_state_dict"])
|
393 |
+
# autoenc.eval()
|
394 |
+
# autoenc.requires_grad_(False)
|
395 |
+
# autoenc.to(device)
|
396 |
+
# utils.count_params(autoenc)
|
397 |
+
|
398 |
+
if blurry_recon:# or depth_recon:
|
399 |
+
from diffusers import VQModel
|
400 |
+
autoenc = VQModel.from_pretrained("/fsx/proj-fmri/shared/cache/models--microsoft--vq-diffusion-ithq/snapshots/3f796fb49ee559370dc638dea1d8116af131d993/vqvae", torch_dtype=data_type)
|
401 |
+
autoenc.eval()
|
402 |
+
autoenc.requires_grad_(False)
|
403 |
+
autoenc.to(device)
|
404 |
+
utils.count_params(autoenc)
|
405 |
+
|
406 |
+
|
407 |
+
# #### downsampled images
|
408 |
+
|
409 |
+
# In[17]:
|
410 |
+
|
411 |
+
|
412 |
+
if blurry_recon:
|
413 |
+
if utils.is_interactive(): display(utils.torch_to_Image(images[[30]]))
|
414 |
+
|
415 |
+
input_batch = images[[30]].to(device)
|
416 |
+
print(input_batch.shape)
|
417 |
+
|
418 |
+
downsampled_image = nn.functional.interpolate(input_batch, size=(8, 8), mode='bilinear', align_corners=False)
|
419 |
+
re_upsampled_image = nn.functional.interpolate(downsampled_image, size=(128, 128), mode='nearest')
|
420 |
+
re_upsampled_enc = autoenc.encode(2*re_upsampled_image-1).latents * 0.18215
|
421 |
+
print(re_upsampled_enc.shape)
|
422 |
+
|
423 |
+
if utils.is_interactive(): display(utils.torch_to_Image((autoenc.decode(re_upsampled_enc/0.18215).sample / 2 + 0.5).clamp(0,1)))
|
424 |
+
|
425 |
+
|
426 |
+
# #### MiDaS depth
|
427 |
+
|
428 |
+
# In[18]:
|
429 |
+
|
430 |
+
|
431 |
+
if depth_recon:
|
432 |
+
from controlnet_aux.midas import MidasDetector
|
433 |
+
|
434 |
+
midas_depth = MidasDetector.from_pretrained(
|
435 |
+
"valhalla/t2iadapter-aux-models", filename="dpt_large_384.pt", model_type="dpt_large", cache_dir="/fsx/proj-fmri/shared/cache").to(device)
|
436 |
+
midas_depth.model.eval()
|
437 |
+
midas_depth.model.requires_grad_(False)
|
438 |
+
midas_depth.model.to(device)
|
439 |
+
pass
|
440 |
+
|
441 |
+
|
442 |
+
# In[19]:
|
443 |
+
|
444 |
+
|
445 |
+
if depth_recon:
|
446 |
+
if utils.is_interactive(): display(utils.torch_to_Image(images[[30]]))
|
447 |
+
|
448 |
+
input_batch = images[[30,31]].float().to(device)
|
449 |
+
print(input_batch.shape)
|
450 |
+
|
451 |
+
midas_emb = midas_depth.model(input_batch).unsqueeze(1)
|
452 |
+
print(midas_emb.shape)
|
453 |
+
|
454 |
+
prediction = utils.resize(midas_emb, 32) #/30).clamp(0,1).half() # 30 is roughly prediction.max()
|
455 |
+
print(prediction.shape)
|
456 |
+
|
457 |
+
prediction = (prediction / prediction.view(prediction.shape[0], -1).max(dim=1)[0].view(-1, 1, 1, 1).expand_as(prediction)).half()
|
458 |
+
midas_emb_size = prediction.flatten(1).shape[1]
|
459 |
+
print("midas_emb", prediction.shape, prediction.min(), prediction.max())
|
460 |
+
print("midas_emb_size", midas_emb_size)
|
461 |
+
|
462 |
+
if utils.is_interactive(): display(utils.torch_to_Image(utils.resize(prediction, 224)))
|
463 |
+
|
464 |
+
if blurry_recon:
|
465 |
+
prediction = utils.resize(midas_emb, 128).half().repeat(1,3,1,1)
|
466 |
+
prediction = (prediction / prediction.view(prediction.shape[0], -1).max(dim=1)[0].view(-1, 1, 1, 1).expand_as(prediction)).half()
|
467 |
+
prediction_enc = autoenc.encode(2*prediction-1).latents * 0.18215
|
468 |
+
print("vae midas_emb", prediction_enc.shape, prediction_enc.min(), prediction_enc.max())
|
469 |
+
|
470 |
+
if utils.is_interactive(): display(utils.torch_to_Image((autoenc.decode(prediction_enc/0.18215).sample / 2 + 0.5).clamp(0,1)))
|
471 |
+
|
472 |
+
|
473 |
+
# ### MindEye modules
|
474 |
+
|
475 |
+
# In[20]:
|
476 |
+
|
477 |
+
|
478 |
+
class MindEyeModule(nn.Module):
|
479 |
+
def __init__(self):
|
480 |
+
super(MindEyeModule, self).__init__()
|
481 |
+
def forward(self, x):
|
482 |
+
return x
|
483 |
+
|
484 |
+
model = MindEyeModule()
|
485 |
+
model
|
486 |
+
|
487 |
+
|
488 |
+
# In[21]:
|
489 |
+
|
490 |
+
|
491 |
+
time_embedding_dim = 512
|
492 |
+
|
493 |
+
class RidgeRegression(torch.nn.Module):
|
494 |
+
# make sure to add weight_decay when initializing optimizer
|
495 |
+
def __init__(self, input_size, out_features):
|
496 |
+
super(RidgeRegression, self).__init__()
|
497 |
+
self.out_features = out_features
|
498 |
+
self.linear = torch.nn.Linear(input_size, out_features)
|
499 |
+
def forward(self, x):
|
500 |
+
return self.linear(x)
|
501 |
+
|
502 |
+
model.ridge = RidgeRegression(voxels.shape[1] + time_embedding_dim, out_features=hidden_dim)
|
503 |
+
utils.count_params(model.ridge)
|
504 |
+
utils.count_params(model)
|
505 |
+
|
506 |
+
b = torch.randn((2,1,voxels.shape[1]))
|
507 |
+
time_emb_test = torch.randn((2,1,time_embedding_dim))
|
508 |
+
print(b.shape, model.ridge(torch.cat((b,time_emb_test),dim=-1)).shape)
|
509 |
+
|
510 |
+
|
511 |
+
# In[22]:
|
512 |
+
|
513 |
+
|
514 |
+
num_past_voxels = 15
|
515 |
+
#seq_len = 1 + 1
|
516 |
+
|
517 |
+
|
518 |
+
# In[23]:
|
519 |
+
|
520 |
+
|
521 |
+
from functools import partial
|
522 |
+
from diffusers.models.vae import Decoder
|
523 |
+
class BrainNetwork(nn.Module):
|
524 |
+
def __init__(self, out_dim=768, in_dim=15724, seq_len=2, h=4096, n_blocks=4, drop=.15, clip_size=768):
|
525 |
+
super().__init__()
|
526 |
+
self.seq_len = seq_len
|
527 |
+
self.h = h
|
528 |
+
self.clip_size = clip_size
|
529 |
+
|
530 |
+
# Initial linear layer to match the input dimensions to hidden dimensions
|
531 |
+
# self.lin0 = nn.Linear(in_dim, seq_len * h)
|
532 |
+
|
533 |
+
# Mixer Blocks
|
534 |
+
self.mixer_blocks1 = nn.ModuleList([
|
535 |
+
self.mixer_block1(h, drop) for _ in range(n_blocks)
|
536 |
+
])
|
537 |
+
self.mixer_blocks2 = nn.ModuleList([
|
538 |
+
self.mixer_block2(seq_len, drop) for _ in range(n_blocks)
|
539 |
+
])
|
540 |
+
|
541 |
+
# Output linear layer
|
542 |
+
self.clin1 = nn.Linear(h * seq_len, out_dim, bias=True)
|
543 |
+
|
544 |
+
# low-rank matrices
|
545 |
+
# self.rank = 500
|
546 |
+
# self.U = nn.Parameter(torch.randn(self.rank, out_dim))
|
547 |
+
# self.V = nn.Parameter(torch.randn(h * seq_len, self.rank))
|
548 |
+
# self.S = nn.Parameter(torch.randn(out_dim))
|
549 |
+
|
550 |
+
self.clip_proj = nn.Sequential(
|
551 |
+
nn.LayerNorm(clip_size),
|
552 |
+
nn.GELU(),
|
553 |
+
nn.Linear(clip_size, 2048),
|
554 |
+
nn.LayerNorm(2048),
|
555 |
+
nn.GELU(),
|
556 |
+
nn.Linear(2048, 2048),
|
557 |
+
nn.LayerNorm(2048),
|
558 |
+
nn.GELU(),
|
559 |
+
nn.Linear(2048, clip_size)
|
560 |
+
)
|
561 |
+
|
562 |
+
if blurry_recon:
|
563 |
+
# self.blin1 = nn.Sequential(
|
564 |
+
# nn.Linear(out_dim, 4096, bias=True),
|
565 |
+
# nn.LayerNorm(4096),
|
566 |
+
# nn.GELU(),
|
567 |
+
# nn.Linear(4096, 4096))
|
568 |
+
self.blin1 = nn.Linear(h*seq_len, 4096)
|
569 |
+
self.bgroupnorm = nn.GroupNorm(1, 256)
|
570 |
+
self.bupsampler = Decoder(
|
571 |
+
in_channels=256,
|
572 |
+
out_channels=128,
|
573 |
+
up_block_types=["UpDecoderBlock2D","UpDecoderBlock2D","UpDecoderBlock2D"],
|
574 |
+
block_out_channels=[32, 64, 128],
|
575 |
+
layers_per_block=1,
|
576 |
+
)
|
577 |
+
|
578 |
+
if depth_recon:
|
579 |
+
# self.dlin1 = nn.Sequential(
|
580 |
+
# nn.Linear(h, midas_emb_size),
|
581 |
+
# nn.Sigmoid(),
|
582 |
+
# )
|
583 |
+
self.dlin1 = nn.Linear(h*seq_len, 4096)
|
584 |
+
self.dgroupnorm = nn.GroupNorm(1, 256)
|
585 |
+
self.dupsampler = Decoder(
|
586 |
+
in_channels=256,
|
587 |
+
out_channels=1,#128,
|
588 |
+
up_block_types=["UpDecoderBlock2D","UpDecoderBlock2D","UpDecoderBlock2D","UpDecoderBlock2D"],
|
589 |
+
block_out_channels=[32, 64, 128, 256],
|
590 |
+
layers_per_block=1,
|
591 |
+
)
|
592 |
+
|
593 |
+
def mixer_block1(self, h, drop):
|
594 |
+
return nn.Sequential(
|
595 |
+
nn.LayerNorm(h),
|
596 |
+
self.mlp(h, h, drop), # Token mixing
|
597 |
+
)
|
598 |
+
|
599 |
+
def mixer_block2(self, seq_len, drop):
|
600 |
+
return nn.Sequential(
|
601 |
+
nn.LayerNorm(seq_len),
|
602 |
+
self.mlp(seq_len, seq_len, drop) # Channel mixing
|
603 |
+
)
|
604 |
+
|
605 |
+
def mlp(self, in_dim, out_dim, drop):
|
606 |
+
return nn.Sequential(
|
607 |
+
nn.Linear(in_dim, out_dim),
|
608 |
+
nn.GELU(),
|
609 |
+
nn.Dropout(drop),
|
610 |
+
nn.Linear(out_dim, out_dim),
|
611 |
+
)
|
612 |
+
|
613 |
+
def forward(self, x, idx = None):
|
614 |
+
print(idx)
|
615 |
+
# make empty tensors for blur and depth outputs
|
616 |
+
b,d = torch.Tensor([0.]), torch.Tensor([0.])
|
617 |
+
|
618 |
+
# Initial linear layer
|
619 |
+
# x = self.lin0(x)
|
620 |
+
|
621 |
+
# Reshape to seq_len by dim
|
622 |
+
# x = x.reshape(-1, self.seq_len, self.h)
|
623 |
+
|
624 |
+
# Mixer blocks
|
625 |
+
#print("x shape ", x.shape)
|
626 |
+
residual1 = x
|
627 |
+
residual2 = x.permute(0,2,1)
|
628 |
+
#print("residual 2", residual2.shape)
|
629 |
+
for block1, block2 in zip(self.mixer_blocks1,self.mixer_blocks2):
|
630 |
+
x = block1(x) + residual1
|
631 |
+
#print("xblo", x.shape)
|
632 |
+
residual1 = x
|
633 |
+
x = x.permute(0,2,1)
|
634 |
+
|
635 |
+
x = block2(x) + residual2
|
636 |
+
#print("xblo2", x.shape)
|
637 |
+
residual2 = x
|
638 |
+
x = x.permute(0,2,1)
|
639 |
+
|
640 |
+
# Flatten
|
641 |
+
x = x.reshape(x.size(0), -1)
|
642 |
+
|
643 |
+
c = self.clin1(x)
|
644 |
+
|
645 |
+
# low rank linear to out dim cuts # params by nearly half compared to full linear mapping
|
646 |
+
# c = (x @ (self.V/100) @ (self.U/100)) + self.S
|
647 |
+
|
648 |
+
c = self.clip_proj(c.reshape(len(c), -1, self.clip_size))
|
649 |
+
|
650 |
+
if blurry_recon:
|
651 |
+
b = self.blin1(x)
|
652 |
+
b = b.reshape(len(b), 256, 4, 4)
|
653 |
+
b = self.bgroupnorm(b)
|
654 |
+
b = self.bupsampler(b)
|
655 |
+
|
656 |
+
if depth_recon:
|
657 |
+
d = self.dlin1(x)#.reshape(len(x), 1, 32, 32)
|
658 |
+
d = d.reshape(len(d), 256, 4, 4)
|
659 |
+
d = self.dgroupnorm(d)
|
660 |
+
d = self.dupsampler(d)
|
661 |
+
|
662 |
+
return c, b, d
|
663 |
+
|
664 |
+
|
665 |
+
class TimeEmbedding(nn.Module):
|
666 |
+
def __init__(self, embedding_time_dim=512, num_past_voxels=15):
|
667 |
+
super().__init__()
|
668 |
+
self.embedding_time = nn.Embedding(num_past_voxels, embedding_time_dim)
|
669 |
+
self.num_past_voxels = num_past_voxels
|
670 |
+
self.embedding_time_dim = embedding_time_dim
|
671 |
+
|
672 |
+
def forward(self, time):
|
673 |
+
# time is (batch_size,)
|
674 |
+
time = time.long()
|
675 |
+
time = self.embedding_time(time)
|
676 |
+
return time # (batch_size, embedding_time_dim)
|
677 |
+
|
678 |
+
|
679 |
+
#model.memory_encoder = MemoryEncoder(in_dim=voxels.shape[1], out_dim=4096, num_past_voxels=15, embedding_time_dim=512)
|
680 |
+
model.time_embedding = TimeEmbedding(embedding_time_dim=512, num_past_voxels=15)
|
681 |
+
|
682 |
+
model.backbone = BrainNetwork(h=hidden_dim + clip_emb_dim, in_dim=hidden_dim + clip_emb_dim, seq_len=seq_len, clip_size=clip_emb_dim, out_dim=clip_emb_dim*clip_seq_dim)
|
683 |
+
utils.count_params(model.backbone)
|
684 |
+
utils.count_params(model)
|
685 |
+
|
686 |
+
# test that the model works on some fake data
|
687 |
+
b = torch.randn((1,seq_len,hidden_dim + clip_emb_dim))
|
688 |
+
print("b.shape",b.shape)
|
689 |
+
with torch.no_grad():
|
690 |
+
clip_, blur_, depth_ = model.backbone(b)
|
691 |
+
print(clip_.shape, blur_.shape, depth_.shape)
|
692 |
+
|
693 |
+
|
694 |
+
# In[24]:
|
695 |
+
|
696 |
+
|
697 |
+
"""
|
698 |
+
voxel_ridge = torch.randn(512,4096)
|
699 |
+
voxel_ridge = voxel_ridge.view(int(voxel_ridge.shape[0]/seq_len), seq_len, hidden_dim)
|
700 |
+
print("b.shape",voxel_ridge.shape)
|
701 |
+
with torch.no_grad():
|
702 |
+
clip_, blur_, depth_ = model.backbone(voxel_ridge)
|
703 |
+
print(clip_.shape, blur_.shape, depth_.shape)"""
|
704 |
+
|
705 |
+
|
706 |
+
# In[25]:
|
707 |
+
|
708 |
+
|
709 |
+
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
|
710 |
+
opt_grouped_parameters = [
|
711 |
+
{'params': [p for n, p in model.ridge.named_parameters()], 'weight_decay': 1e-2},
|
712 |
+
{'params': [p for n, p in model.backbone.named_parameters() if not any(nd in n for nd in no_decay)], 'weight_decay': 1e-2},
|
713 |
+
{'params': [p for n, p in model.backbone.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0},
|
714 |
+
]
|
715 |
+
|
716 |
+
optimizer = torch.optim.AdamW(opt_grouped_parameters, lr=max_lr)
|
717 |
+
|
718 |
+
if lr_scheduler_type == 'linear':
|
719 |
+
lr_scheduler = torch.optim.lr_scheduler.LinearLR(
|
720 |
+
optimizer,
|
721 |
+
total_iters=int(np.floor(num_epochs*(num_train/num_devices/batch_size))),
|
722 |
+
last_epoch=-1
|
723 |
+
)
|
724 |
+
elif lr_scheduler_type == 'cycle':
|
725 |
+
total_steps=int(np.floor(num_epochs*(num_train/num_devices/batch_size)))
|
726 |
+
print("total_steps", total_steps)
|
727 |
+
lr_scheduler = torch.optim.lr_scheduler.OneCycleLR(
|
728 |
+
optimizer,
|
729 |
+
max_lr=max_lr,
|
730 |
+
total_steps=total_steps,
|
731 |
+
final_div_factor=1000,
|
732 |
+
last_epoch=-1, pct_start=2/num_epochs
|
733 |
+
)
|
734 |
+
|
735 |
+
def save_ckpt(tag):
|
736 |
+
ckpt_path = outdir+f'/{tag}.pth'
|
737 |
+
print(f'saving {ckpt_path}',flush=True)
|
738 |
+
unwrapped_model = accelerator.unwrap_model(model)
|
739 |
+
try:
|
740 |
+
torch.save({
|
741 |
+
'epoch': epoch,
|
742 |
+
'model_state_dict': unwrapped_model.state_dict(),
|
743 |
+
'optimizer_state_dict': optimizer.state_dict(),
|
744 |
+
'lr_scheduler': lr_scheduler.state_dict(),
|
745 |
+
'train_losses': losses,
|
746 |
+
'test_losses': test_losses,
|
747 |
+
'lrs': lrs,
|
748 |
+
}, ckpt_path)
|
749 |
+
except:
|
750 |
+
print("Couldn't save... moving on to prevent crashing.")
|
751 |
+
del unwrapped_model
|
752 |
+
|
753 |
+
print("\nDone with model preparations!")
|
754 |
+
utils.count_params(model)
|
755 |
+
|
756 |
+
|
757 |
+
# In[26]:
|
758 |
+
|
759 |
+
|
760 |
+
#nn++
|
761 |
+
|
762 |
+
|
763 |
+
# In[27]:
|
764 |
+
|
765 |
+
|
766 |
+
"""pp = None
|
767 |
+
for train_i, (behav, past_behav, future_behav, old_behav) in enumerate(train_dl):
|
768 |
+
#with torch.cuda.amp.autocast(dtype=data_type):
|
769 |
+
#optimizer.zero_grad()
|
770 |
+
|
771 |
+
voxel = voxels[behav[:,0,5].cpu().long()]#.to(device)
|
772 |
+
image = images[behav[:,0,0].cpu().long()].float()#.to(device).float()
|
773 |
+
|
774 |
+
past_15_voxels = voxels[past_behav[:,:seq_len-1,5].cpu().long()]#.to(device) # batch_size, 15, 15279
|
775 |
+
past_15_times = torch.Tensor([i for i in range(seq_len)])#.to(device) # 15
|
776 |
+
print(past_behav[:,:seq_len-1,0].cpu().long())
|
777 |
+
past_15_images = images[past_behav[:,:seq_len-1,0].cpu().long()]
|
778 |
+
|
779 |
+
break
|
780 |
+
|
781 |
+
print(past_15_times)
|
782 |
+
#for past in range(1):
|
783 |
+
# past_voxel = voxels[past_behav[:,past,5].cpu().long()].to(device)
|
784 |
+
|
785 |
+
#if blurry_recon:
|
786 |
+
# blurry_image_enc = autoenc.encode(2*utils.resize(image,128)-1).latent_dist.mode() * 0.18215
|
787 |
+
blurry_image_enc = autoenc.encode(2*utils.resize(add_saturation(image),128)-1).latents * 0.18215
|
788 |
+
|
789 |
+
if depth_recon:
|
790 |
+
# depth_images = utils.resize(midas_depth.model(image).unsqueeze(1).repeat(1,3,1,1), 128)
|
791 |
+
depth_images = utils.resize(midas_depth.model(image).unsqueeze(1), 32)
|
792 |
+
depth_images = (depth_images / depth_images.view(depth_images.shape[0], -1).max(dim=1)[0].view(-1, 1, 1, 1).expand_as(depth_images)).half()
|
793 |
+
depth_image_enc = depth_images # autoenc.encode(2*depth_images-1).latents * 0.18215
|
794 |
+
|
795 |
+
if use_image_aug:
|
796 |
+
image = img_augment(image)
|
797 |
+
|
798 |
+
clip_target = clip_model.embed_image(image)
|
799 |
+
assert not torch.any(torch.isnan(clip_target))
|
800 |
+
|
801 |
+
if epoch < int(mixup_pct * num_epochs):
|
802 |
+
voxel, perm, betas, select = utils.mixco(voxel)
|
803 |
+
past_voxel, _, _, _ = utils.mixco(voxel, perm=perm, betas=betas, select=select)
|
804 |
+
|
805 |
+
for p in range(seq_len-1):
|
806 |
+
print(past_behav.shape) #128, 15, 17
|
807 |
+
print(past_behav[:,p,-1])
|
808 |
+
print(past_15_voxels.shape) # 128, 1, 15724
|
809 |
+
mask = past_behav[:,p,-1] == torch.ones_like(past_behav[:,p,-1])
|
810 |
+
print(mask) # 128
|
811 |
+
past_15_voxels[mask, p, :] = torch.zeros_like(past_15_voxels[0, p, :])
|
812 |
+
print(past_15_voxels)
|
813 |
+
pp = past_15_voxels
|
814 |
+
|
815 |
+
break"""
|
816 |
+
|
817 |
+
|
818 |
+
# In[28]:
|
819 |
+
|
820 |
+
|
821 |
+
#pp[20, 0, :]
|
822 |
+
|
823 |
+
|
824 |
+
# # Weights and Biases
|
825 |
+
|
826 |
+
# In[29]:
|
827 |
+
|
828 |
+
|
829 |
+
if local_rank==0 and wandb_log: # only use main process for wandb logging
|
830 |
+
import wandb
|
831 |
+
wandb_project = 'mindeyev2'
|
832 |
+
wandb_run = model_name
|
833 |
+
wandb_notes = ''
|
834 |
+
|
835 |
+
print(f"wandb {wandb_project} run {wandb_run}")
|
836 |
+
wandb.login(host='https://stability.wandb.io')#, relogin=True)
|
837 |
+
wandb_config = {
|
838 |
+
"model_name": model_name,
|
839 |
+
"global_batch_size": global_batch_size,
|
840 |
+
"batch_size": batch_size,
|
841 |
+
"num_epochs": num_epochs,
|
842 |
+
"clip_scale": clip_scale,
|
843 |
+
"blur_scale": blur_scale,
|
844 |
+
"use_image_aug": use_image_aug,
|
845 |
+
"max_lr": max_lr,
|
846 |
+
"mixup_pct": mixup_pct,
|
847 |
+
"num_train": num_train,
|
848 |
+
"num_test": num_test,
|
849 |
+
"ckpt_interval": ckpt_interval,
|
850 |
+
"ckpt_saving": ckpt_saving,
|
851 |
+
"seed": seed,
|
852 |
+
"distributed": distributed,
|
853 |
+
"num_devices": num_devices,
|
854 |
+
"world_size": world_size,
|
855 |
+
"train_url": train_url,
|
856 |
+
"test_url": test_url,
|
857 |
+
}
|
858 |
+
print("wandb_config:\n",wandb_config)
|
859 |
+
if False: # wandb_auto_resume
|
860 |
+
print("wandb_id:",model_name)
|
861 |
+
wandb.init(
|
862 |
+
id = model_name,
|
863 |
+
project=wandb_project,
|
864 |
+
name=wandb_run,
|
865 |
+
config=wandb_config,
|
866 |
+
notes=wandb_notes,
|
867 |
+
resume="allow",
|
868 |
+
)
|
869 |
+
else:
|
870 |
+
wandb.init(
|
871 |
+
project=wandb_project,
|
872 |
+
name=wandb_run,
|
873 |
+
config=wandb_config,
|
874 |
+
notes=wandb_notes,
|
875 |
+
)
|
876 |
+
else:
|
877 |
+
wandb_log = False
|
878 |
+
|
879 |
+
|
880 |
+
# # Main
|
881 |
+
|
882 |
+
# In[30]:
|
883 |
+
|
884 |
+
|
885 |
+
epoch = 0
|
886 |
+
losses, test_losses, lrs = [], [], []
|
887 |
+
best_test_loss = 1e9
|
888 |
+
soft_loss_temps = utils.cosine_anneal(0.004, 0.0075, num_epochs - int(mixup_pct * num_epochs))
|
889 |
+
|
890 |
+
# Optionally resume from checkpoint #
|
891 |
+
if resume_from_ckpt:
|
892 |
+
print("\n---resuming from last.pth ckpt---\n")
|
893 |
+
try:
|
894 |
+
checkpoint = torch.load(outdir+'/last.pth', map_location='cpu')
|
895 |
+
except:
|
896 |
+
print('last.pth failed... trying last_backup.pth')
|
897 |
+
checkpoint = torch.load(outdir+'/last_backup.pth', map_location='cpu')
|
898 |
+
epoch = checkpoint['epoch']
|
899 |
+
print("Epoch",epoch)
|
900 |
+
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
|
901 |
+
lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
|
902 |
+
model.load_state_dict(checkpoint['model_state_dict'])
|
903 |
+
del checkpoint
|
904 |
+
elif wandb_log:
|
905 |
+
if wandb.run.resumed:
|
906 |
+
print("\n---resuming from last.pth ckpt---\n")
|
907 |
+
try:
|
908 |
+
checkpoint = torch.load(outdir+'/last.pth', map_location='cpu')
|
909 |
+
except:
|
910 |
+
print('last.pth failed... trying last_backup.pth')
|
911 |
+
checkpoint = torch.load(outdir+'/last_backup.pth', map_location='cpu')
|
912 |
+
epoch = checkpoint['epoch']
|
913 |
+
print("Epoch",epoch)
|
914 |
+
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
|
915 |
+
lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
|
916 |
+
model.load_state_dict(checkpoint['model_state_dict'])
|
917 |
+
del checkpoint
|
918 |
+
torch.cuda.empty_cache()
|
919 |
+
|
920 |
+
|
921 |
+
# In[31]:
|
922 |
+
|
923 |
+
|
924 |
+
model, optimizer, train_dl, lr_scheduler = accelerator.prepare(
|
925 |
+
model, optimizer, train_dl, lr_scheduler
|
926 |
+
)
|
927 |
+
# leaving out test_dl since we will only have local_rank 0 device do evals
|
928 |
+
|
929 |
+
|
930 |
+
# In[32]:
|
931 |
+
|
932 |
+
|
933 |
+
def add_saturation(image, alpha=2):
|
934 |
+
gray_image = 0.2989 * image[:, 0, :, :] + 0.5870 * image[:, 1, :, :] + 0.1140 * image[:, 2, :, :]
|
935 |
+
gray_image = gray_image.unsqueeze(1).expand_as(image)
|
936 |
+
saturated_image = alpha * image + (1 - alpha) * gray_image
|
937 |
+
return torch.clamp(saturated_image, 0, 1)
|
938 |
+
|
939 |
+
|
940 |
+
# In[33]:
|
941 |
+
|
942 |
+
|
943 |
+
#b = torch.randn(1,2)
|
944 |
+
#b.to(device)
|
945 |
+
|
946 |
+
|
947 |
+
# In[34]:
|
948 |
+
|
949 |
+
|
950 |
+
#device
|
951 |
+
|
952 |
+
|
953 |
+
# In[35]:
|
954 |
+
|
955 |
+
|
956 |
+
#past_15_times = torch.Tensor([i for i in range(seq_len-1)]).long() # 15
|
957 |
+
#past_15_times.to(device)
|
958 |
+
|
959 |
+
|
960 |
+
# In[36]:
|
961 |
+
|
962 |
+
|
963 |
+
#nn++
|
964 |
+
|
965 |
+
|
966 |
+
# In[ ]:
|
967 |
+
|
968 |
+
|
969 |
+
#images.shape
|
970 |
+
|
971 |
+
|
972 |
+
# In[94]:
|
973 |
+
|
974 |
+
|
975 |
+
print(f"{model_name} starting with epoch {epoch} / {num_epochs}")
|
976 |
+
progress_bar = tqdm(range(epoch,num_epochs), ncols=1200, disable=(local_rank!=0))
|
977 |
+
test_image, test_voxel = None, None
|
978 |
+
mse = nn.MSELoss()
|
979 |
+
l1 = nn.L1Loss()
|
980 |
+
|
981 |
+
for epoch in progress_bar:
|
982 |
+
model.train()
|
983 |
+
|
984 |
+
fwd_percent_correct = 0.
|
985 |
+
bwd_percent_correct = 0.
|
986 |
+
test_fwd_percent_correct = 0.
|
987 |
+
test_bwd_percent_correct = 0.
|
988 |
+
|
989 |
+
loss_clip_total = 0.
|
990 |
+
loss_blurry_total = 0.
|
991 |
+
loss_depth_total = 0.
|
992 |
+
test_loss_clip_total = 0.
|
993 |
+
test_loss_blurry_total = 0.
|
994 |
+
test_loss_depth_total = 0.
|
995 |
+
|
996 |
+
blurry_pixcorr = 0.
|
997 |
+
test_blurry_pixcorr = 0. # needs >.456 to beat low-level subj01 results in mindeye v1
|
998 |
+
|
999 |
+
for train_i, (behav, past_behav, future_behav, old_behav) in enumerate(train_dl):
|
1000 |
+
with torch.cuda.amp.autocast():
|
1001 |
+
optimizer.zero_grad()
|
1002 |
+
|
1003 |
+
#voxel = voxels[behav[:,0,5].cpu().long()].to(device)
|
1004 |
+
#image = images[behav[:,0,0].cpu().long()].to(device).float()
|
1005 |
+
|
1006 |
+
#past_15_voxels = voxels[past_behav[:,:,5].cpu().long()].to(device) # batch_size, 15, 15279
|
1007 |
+
#past_15_times = torch.Tensor([i for i in range(seq_len - 1)]).to(device) # 15
|
1008 |
+
|
1009 |
+
voxel = voxels[behav[:,0,5].cpu().long()].to(device)
|
1010 |
+
image = images[behav[:,0,0].cpu().long()].to(device).float()
|
1011 |
+
|
1012 |
+
past_15_voxels = voxels[past_behav[:,:seq_len-1,5].cpu().long()].to(device) # batch_size, 15, 15279
|
1013 |
+
#print(past_behav[:,:seq_len-1,0].cpu().long(), behav[:,0,0].cpu().long(), past_behav[:,:seq_len-1,0].cpu().long()[0])
|
1014 |
+
past_15_images = images[past_behav[:,:seq_len-1,0].cpu().long()].to(device).float()
|
1015 |
+
past_array = [i for i in range(seq_len-1)]
|
1016 |
+
past_15_times = torch.Tensor(past_array) # 15
|
1017 |
+
#print(past_15_times)
|
1018 |
+
#print(past_15_voxels.shape, past_behav[:,:seq_len-1,5].cpu().long())
|
1019 |
+
past_15_times = past_15_times.to(device)
|
1020 |
+
#for past in range(1):
|
1021 |
+
# past_voxel = voxels[past_behav[:,past,5].cpu().long()].to(device)
|
1022 |
+
|
1023 |
+
if blurry_recon:
|
1024 |
+
# blurry_image_enc = autoenc.encode(2*utils.resize(image,128)-1).latent_dist.mode() * 0.18215
|
1025 |
+
blurry_image_enc = autoenc.encode(2*utils.resize(add_saturation(image),128)-1).latents * 0.18215
|
1026 |
+
|
1027 |
+
if depth_recon:
|
1028 |
+
# depth_images = utils.resize(midas_depth.model(image).unsqueeze(1).repeat(1,3,1,1), 128)
|
1029 |
+
depth_images = utils.resize(midas_depth.model(image).unsqueeze(1), 32)
|
1030 |
+
depth_images = (depth_images / depth_images.view(depth_images.shape[0], -1).max(dim=1)[0].view(-1, 1, 1, 1).expand_as(depth_images)).half()
|
1031 |
+
depth_image_enc = depth_images # autoenc.encode(2*depth_images-1).latents * 0.18215
|
1032 |
+
|
1033 |
+
if use_image_aug:
|
1034 |
+
image = img_augment(image)
|
1035 |
+
|
1036 |
+
clip_target = clip_model.embed_image(image)
|
1037 |
+
assert not torch.any(torch.isnan(clip_target))
|
1038 |
+
|
1039 |
+
if epoch < int(mixup_pct * num_epochs):
|
1040 |
+
voxel, perm, betas, select = utils.mixco(voxel)
|
1041 |
+
past_voxel, _, _, _ = utils.mixco(voxel, perm=perm, betas=betas, select=select)
|
1042 |
+
|
1043 |
+
#print(past_15_images.shape)
|
1044 |
+
|
1045 |
+
for p in range(seq_len-1):
|
1046 |
+
#print(past_behav.shape) #128, 15, 17
|
1047 |
+
#print(past_behav[:,p,-1])
|
1048 |
+
#print(past_15_voxels.shape) # 128, 1, 15724
|
1049 |
+
mask = past_behav[:,p,-1] == torch.ones_like(past_behav[:,p,-1])
|
1050 |
+
#print(mask) # 128
|
1051 |
+
past_15_voxels[mask, p, :] = torch.zeros_like(past_15_voxels[0, p, :])
|
1052 |
+
past_15_images[mask, p, :] = torch.zeros_like(past_15_images[0, p, :])
|
1053 |
+
#print(past_15_voxels)
|
1054 |
+
|
1055 |
+
past_15_voxels = past_15_voxels.reshape(-1, past_15_voxels.shape[-1])
|
1056 |
+
past_15_images = past_15_images.reshape(-1, past_15_images.shape[-3], past_15_images.shape[-2], past_15_images.shape[-1])
|
1057 |
+
#print(past_15_images.shape)
|
1058 |
+
past_15_embeddings = clip_model2.embed_image(past_15_images)
|
1059 |
+
#print(past_15_embeddings.shape, 'uteho')
|
1060 |
+
past_15_embeddings = torch.cat([torch.zeros(batch_size, past_15_embeddings.shape[-1]).to(past_15_embeddings.device), past_15_embeddings], dim = 0)
|
1061 |
+
#print('tuhet', past_15_embeddings.shape)
|
1062 |
+
#print('yepe', past_15_embeddings[0,:])
|
1063 |
+
#print('yepe', past_15_embeddings[17,:])
|
1064 |
+
past_15_times = past_15_times.repeat(voxel.shape[0], 1)
|
1065 |
+
past_15_times = past_15_times.reshape(-1)
|
1066 |
+
time_embeddings = model.time_embedding(past_15_times)
|
1067 |
+
|
1068 |
+
past_info_full = torch.cat((past_15_voxels, time_embeddings), dim=-1)
|
1069 |
+
|
1070 |
+
positional_current_voxel = torch.zeros((voxel.shape[0], time_embeddings.shape[-1])).to(voxel.device)
|
1071 |
+
voxel = torch.cat((voxel, positional_current_voxel), dim=-1)
|
1072 |
+
voxel_ridge = model.ridge(torch.cat((voxel, past_info_full), dim=-2))
|
1073 |
+
voxel_ridge = voxel_ridge.view(seq_len,int(voxel_ridge.shape[0]/seq_len), hidden_dim).permute(1,0,2)
|
1074 |
+
#past_15_embeddings = torch.split(past_15_embeddings, seq_len)
|
1075 |
+
#print(past_15_embeddings, 'ttt')
|
1076 |
+
past_15_embeddings = past_15_embeddings.reshape(seq_len, int(past_15_embeddings.shape[0]/seq_len), clip_emb_dim).permute(1,0,2)
|
1077 |
+
#unsqueeze(1) # bz * 2, 1, 4096
|
1078 |
+
#print(voxel_ridge.shape, past_15_embeddings.shape)
|
1079 |
+
#print('yepe', past_15_embeddings[10,0,:])
|
1080 |
+
#print('yepe', past_15_embeddings[10,1,:])
|
1081 |
+
voxel_ridge = torch.cat((voxel_ridge, past_15_embeddings), dim=-1)
|
1082 |
+
#print(voxel_ridge[:,0,-10:-1])
|
1083 |
+
#print(voxel_ridge[:,0,10:20])
|
1084 |
+
#raise("uehot")
|
1085 |
+
# past_voxel_ridge = model.ridge(past_voxel)
|
1086 |
+
# voxel_ridge = torch.cat((voxel_ridge.unsqueeze(1), past_voxel_ridge.unsqueeze(1)), axis=1)
|
1087 |
+
#print(voxel_ridge.shape)
|
1088 |
+
|
1089 |
+
clip_voxels, blurry_image_enc_, depth_image_enc_ = model.backbone(voxel_ridge)
|
1090 |
+
|
1091 |
+
clip_voxels_norm = nn.functional.normalize(clip_voxels.flatten(1), dim=-1)
|
1092 |
+
clip_target_norm = nn.functional.normalize(clip_target.flatten(1), dim=-1)
|
1093 |
+
|
1094 |
+
if epoch < int(mixup_pct * num_epochs):
|
1095 |
+
loss_clip = utils.mixco_nce(
|
1096 |
+
clip_voxels_norm,
|
1097 |
+
clip_target_norm,
|
1098 |
+
temp=.006,
|
1099 |
+
perm=perm, betas=betas, select=select)
|
1100 |
+
else:
|
1101 |
+
epoch_temp = soft_loss_temps[epoch-int(mixup_pct*num_epochs)]
|
1102 |
+
loss_clip = utils.soft_clip_loss(
|
1103 |
+
clip_voxels_norm,
|
1104 |
+
clip_target_norm,
|
1105 |
+
temp=epoch_temp)
|
1106 |
+
|
1107 |
+
loss_clip_total += loss_clip.item()
|
1108 |
+
loss_clip *= clip_scale
|
1109 |
+
loss = loss_clip
|
1110 |
+
|
1111 |
+
if blurry_recon:
|
1112 |
+
downsampled_image = nn.functional.interpolate(image, size=(8, 8), mode='bilinear', align_corners=False)
|
1113 |
+
re_upsampled_image = add_saturation(nn.functional.interpolate(downsampled_image, size=(128, 128), mode='nearest'))
|
1114 |
+
re_upsampled_enc = autoenc.encode(2*re_upsampled_image-1).latents * 0.18215
|
1115 |
+
|
1116 |
+
loss_blurry = (l1(blurry_image_enc_, blurry_image_enc) + l1(blurry_image_enc_, re_upsampled_enc))
|
1117 |
+
loss_blurry += l1(torch.var(blurry_image_enc), torch.var(blurry_image_enc_))
|
1118 |
+
loss_blurry_total += loss_blurry.item()
|
1119 |
+
loss_blurry *= blur_scale
|
1120 |
+
loss += loss_blurry
|
1121 |
+
|
1122 |
+
if depth_recon:
|
1123 |
+
loss_depth = l1(depth_image_enc_, depth_image_enc)
|
1124 |
+
# loss_depth += l1(torch.var(depth_image_enc_), torch.var(depth_image_enc))
|
1125 |
+
loss_depth_total += loss_depth.item()
|
1126 |
+
loss_depth *= depth_scale
|
1127 |
+
loss += loss_depth
|
1128 |
+
|
1129 |
+
# forward and backward top 1 accuracy
|
1130 |
+
labels = torch.arange(len(clip_target_norm)).to(clip_voxels_norm.device)
|
1131 |
+
fwd_percent_correct += utils.topk(torch.abs(utils.batchwise_cosine_similarity(clip_voxels_norm, clip_target_norm)), labels, k=1).item()
|
1132 |
+
bwd_percent_correct += utils.topk(torch.abs(utils.batchwise_cosine_similarity(clip_target_norm, clip_voxels_norm)), labels, k=1).item()
|
1133 |
+
|
1134 |
+
if blurry_recon:
|
1135 |
+
with torch.no_grad():
|
1136 |
+
# only doing pixcorr eval on a subset of the samples per batch because its costly & slow to compute autoenc.decode()
|
1137 |
+
random_samps = np.random.choice(np.arange(len(voxel)), size=batch_size//5, replace=False)
|
1138 |
+
# random_samps = np.arange(batch_size//5)
|
1139 |
+
blurry_recon_images = (autoenc.decode(blurry_image_enc_[random_samps]/0.18215).sample/ 2 + 0.5).clamp(0,1)
|
1140 |
+
# pixcorr_origsize_nanmean is computationally less intense than utils.pixcorr and uses nanmean instead of mean
|
1141 |
+
pixcorr = utils.pixcorr_origsize_nanmean(image[random_samps], blurry_recon_images)
|
1142 |
+
# pixcorr = utils.pixcorr(image[random_samps], blurry_recon_images)
|
1143 |
+
# loss += (1 - pixcorr)
|
1144 |
+
blurry_pixcorr += pixcorr.item()
|
1145 |
+
# utils.check_loss(pixcorr)
|
1146 |
+
|
1147 |
+
utils.check_loss(loss)
|
1148 |
+
accelerator.backward(loss)
|
1149 |
+
optimizer.step()
|
1150 |
+
|
1151 |
+
losses.append(loss.item())
|
1152 |
+
lrs.append(optimizer.param_groups[0]['lr'])
|
1153 |
+
|
1154 |
+
if lr_scheduler_type is not None:
|
1155 |
+
lr_scheduler.step()
|
1156 |
+
|
1157 |
+
model.eval()
|
1158 |
+
if local_rank==0:
|
1159 |
+
with torch.no_grad(), torch.cuda.amp.autocast(dtype=data_type):
|
1160 |
+
for test_i, (behav, past_behav, future_behav, old_behav) in enumerate(test_dl):
|
1161 |
+
# all test samples should be loaded per batch such that test_i should never exceed 0
|
1162 |
+
assert len(behav) == num_test
|
1163 |
+
|
1164 |
+
## Average same-image repeats ##
|
1165 |
+
if test_image is None:
|
1166 |
+
voxel = voxels[behav[:,0,5].cpu().long()]
|
1167 |
+
image = behav[:,0,0].cpu().long()
|
1168 |
+
|
1169 |
+
unique_image, sort_indices = torch.unique(image, return_inverse=True)
|
1170 |
+
for im in unique_image:
|
1171 |
+
locs = torch.where(im == image)[0]
|
1172 |
+
if test_image is None:
|
1173 |
+
test_image = images[im][None]
|
1174 |
+
test_voxel = torch.mean(voxel[locs],axis=0)[None]
|
1175 |
+
else:
|
1176 |
+
test_image = torch.vstack((test_image, images[im][None]))
|
1177 |
+
test_voxel = torch.vstack((test_voxel, torch.mean(voxel[locs],axis=0)[None]))
|
1178 |
+
|
1179 |
+
# random sample of 300
|
1180 |
+
random_indices = torch.arange(len(test_voxel))[:300]
|
1181 |
+
voxel = test_voxel[random_indices].to(device)
|
1182 |
+
image = test_image[random_indices].to(device)
|
1183 |
+
assert len(image) == 300
|
1184 |
+
|
1185 |
+
current_past_behav = past_behav[random_indices]
|
1186 |
+
|
1187 |
+
past_15_voxels = voxels[current_past_behav[:,:seq_len-1,5].cpu().long()].to(device) # batch_size, 15, 15279
|
1188 |
+
past_15_images = images[current_past_behav[:,:seq_len-1,0].cpu().long()].to(device).float()
|
1189 |
+
past_15_times = torch.Tensor([i for i in range(seq_len-1)]).to(device) # 15
|
1190 |
+
|
1191 |
+
if blurry_recon:
|
1192 |
+
# blurry_image_enc = autoenc.encode(2*utils.resize(image,128)-1).latent_dist.mode() * 0.18215
|
1193 |
+
blurry_image_enc = autoenc.encode(2*utils.resize(add_saturation(image),128)-1).latents * 0.18215
|
1194 |
+
|
1195 |
+
if depth_recon:
|
1196 |
+
# depth_images = utils.resize(midas_depth.model(image).unsqueeze(1).repeat(1,3,1,1), 128)
|
1197 |
+
depth_images = utils.resize(midas_depth.model(image).unsqueeze(1), 32)
|
1198 |
+
depth_images = (depth_images / depth_images.view(depth_images.shape[0], -1).max(dim=1)[0].view(-1, 1, 1, 1).expand_as(depth_images)).half()
|
1199 |
+
depth_image_enc = depth_images # autoenc.encode(2*depth_images-1).latents * 0.18215
|
1200 |
+
|
1201 |
+
clip_target = clip_model.embed_image(image.float())
|
1202 |
+
|
1203 |
+
|
1204 |
+
past_15_voxels = past_15_voxels.reshape(-1, past_15_voxels.shape[-1])
|
1205 |
+
past_15_images = past_15_images.reshape(-1, past_15_images.shape[-3], past_15_images.shape[-2], past_15_images.shape[-1])
|
1206 |
+
#print(past_15_images.shape)
|
1207 |
+
past_15_embeddings = clip_model2.embed_image(past_15_images)
|
1208 |
+
#print(past_15_embeddings.shape)
|
1209 |
+
past_15_embeddings = torch.cat([torch.zeros(image.shape[0], past_15_embeddings.shape[-1]).to(past_15_embeddings.device), past_15_embeddings], dim = 0)
|
1210 |
+
#print(past_15_embeddings.shape)
|
1211 |
+
past_15_times = past_15_times.repeat(voxel.shape[0], 1)
|
1212 |
+
past_15_times = past_15_times.reshape(-1)
|
1213 |
+
time_embeddings = model.time_embedding(past_15_times)
|
1214 |
+
past_info_full = torch.cat((past_15_voxels, time_embeddings), dim=-1)
|
1215 |
+
|
1216 |
+
positional_current_voxel = torch.zeros((voxel.shape[0], time_embeddings.shape[-1])).to(voxel.device)
|
1217 |
+
voxel = torch.cat((voxel, positional_current_voxel), dim=-1)
|
1218 |
+
voxel_ridge = model.ridge(torch.cat((voxel, past_info_full), dim=-2))
|
1219 |
+
voxel_ridge = voxel_ridge.view(seq_len, int(voxel_ridge.shape[0]/seq_len), hidden_dim).permute(1,0,2)
|
1220 |
+
past_15_embeddings = past_15_embeddings.view(seq_len, int(past_15_embeddings.shape[0]/seq_len), clip_emb_dim).permute(1,0,2)
|
1221 |
+
#print(past_15_embeddings.shape, voxel_ridge.shape)
|
1222 |
+
voxel_ridge = torch.cat((voxel_ridge, past_15_embeddings), dim=-1)
|
1223 |
+
|
1224 |
+
#voxel_ridge = model.ridge(voxel).unsqueeze(1)
|
1225 |
+
|
1226 |
+
# voxel_ridge = torch.cat((voxel_ridge.unsqueeze(1),voxel_ridge.unsqueeze(1)),axis=1)
|
1227 |
+
|
1228 |
+
clip_voxels, blurry_image_enc_, depth_image_enc_ = model.backbone(voxel_ridge)
|
1229 |
+
|
1230 |
+
clip_voxels_norm = nn.functional.normalize(clip_voxels.flatten(1), dim=-1)
|
1231 |
+
clip_target_norm = nn.functional.normalize(clip_target.flatten(1), dim=-1)
|
1232 |
+
|
1233 |
+
loss_clip = utils.soft_clip_loss(
|
1234 |
+
clip_voxels_norm,
|
1235 |
+
clip_target_norm,
|
1236 |
+
temp=.006)
|
1237 |
+
test_loss_clip_total += loss_clip.item()
|
1238 |
+
loss_clip = loss_clip * clip_scale
|
1239 |
+
loss = loss_clip
|
1240 |
+
|
1241 |
+
if blurry_recon:
|
1242 |
+
downsampled_image = nn.functional.interpolate(image, size=(8, 8), mode='bilinear', align_corners=False)
|
1243 |
+
re_upsampled_image = add_saturation(nn.functional.interpolate(downsampled_image, size=(128, 128), mode='nearest'))
|
1244 |
+
re_upsampled_enc = autoenc.encode(2*re_upsampled_image-1).latents * 0.18215
|
1245 |
+
|
1246 |
+
loss_blurry = (l1(blurry_image_enc_, blurry_image_enc) + l1(blurry_image_enc_, re_upsampled_enc))
|
1247 |
+
loss_blurry += l1(torch.var(blurry_image_enc), torch.var(blurry_image_enc_))
|
1248 |
+
test_loss_blurry_total += loss_blurry.item()
|
1249 |
+
loss_blurry *= blur_scale
|
1250 |
+
loss += loss_blurry
|
1251 |
+
|
1252 |
+
# halving the batch size because the decoder is computationally heavy
|
1253 |
+
blurry_recon_images = (autoenc.decode(blurry_image_enc_[:len(voxel)//2]/0.18215).sample / 2 + 0.5).clamp(0,1)
|
1254 |
+
blurry_recon_images = torch.vstack((blurry_recon_images, (autoenc.decode(blurry_image_enc_[len(voxel)//2:]/0.18215).sample / 2 + 0.5).clamp(0,1)))
|
1255 |
+
pixcorr = utils.pixcorr(image, blurry_recon_images)
|
1256 |
+
loss += (1 - pixcorr)
|
1257 |
+
test_blurry_pixcorr += pixcorr.item()
|
1258 |
+
|
1259 |
+
if depth_recon:
|
1260 |
+
loss_depth = l1(depth_image_enc_, depth_image_enc)
|
1261 |
+
# loss_depth += l1(torch.var(depth_image_enc_), torch.var(depth_image_enc))
|
1262 |
+
test_loss_depth_total += loss_depth.item()
|
1263 |
+
loss_depth *= depth_scale
|
1264 |
+
loss += loss_depth
|
1265 |
+
|
1266 |
+
# forward and backward top 1 accuracy
|
1267 |
+
labels = torch.arange(len(clip_target_norm)).to(clip_voxels_norm.device)
|
1268 |
+
test_fwd_percent_correct += utils.topk(utils.batchwise_cosine_similarity(clip_voxels_norm, clip_target_norm), labels, k=1).item()
|
1269 |
+
test_bwd_percent_correct += utils.topk(utils.batchwise_cosine_similarity(clip_target_norm, clip_voxels_norm), labels, k=1).item()
|
1270 |
+
|
1271 |
+
utils.check_loss(loss)
|
1272 |
+
test_losses.append(loss.item())
|
1273 |
+
|
1274 |
+
# if utils.is_interactive(): clear_output(wait=True)
|
1275 |
+
print("---")
|
1276 |
+
|
1277 |
+
assert (test_i+1) == 1
|
1278 |
+
logs = {"train/loss": np.mean(losses[-(train_i+1):]),
|
1279 |
+
"test/loss": np.mean(test_losses[-(test_i+1):]),
|
1280 |
+
"train/lr": lrs[-1],
|
1281 |
+
"train/num_steps": len(losses),
|
1282 |
+
"test/num_steps": len(test_losses),
|
1283 |
+
"train/fwd_pct_correct": fwd_percent_correct / (train_i + 1),
|
1284 |
+
"train/bwd_pct_correct": bwd_percent_correct / (train_i + 1),
|
1285 |
+
"test/test_fwd_pct_correct": test_fwd_percent_correct / (test_i + 1),
|
1286 |
+
"test/test_bwd_pct_correct": test_bwd_percent_correct / (test_i + 1),
|
1287 |
+
"train/loss_clip_total": loss_clip_total / (train_i + 1),
|
1288 |
+
"train/loss_blurry_total": loss_blurry_total / (train_i + 1),
|
1289 |
+
"test/loss_clip_total": test_loss_clip_total / (test_i + 1),
|
1290 |
+
"test/loss_blurry_total": test_loss_blurry_total / (test_i + 1),
|
1291 |
+
"train/blurry_pixcorr": blurry_pixcorr / (train_i + 1),
|
1292 |
+
"test/blurry_pixcorr": test_blurry_pixcorr / (test_i + 1),
|
1293 |
+
"train/loss_depth_total": loss_depth_total / (train_i + 1),
|
1294 |
+
"test/loss_depth_total": test_loss_depth_total / (test_i + 1),
|
1295 |
+
}
|
1296 |
+
|
1297 |
+
if blurry_recon:
|
1298 |
+
# transform blurry recon latents to images and plot it
|
1299 |
+
fig, axes = plt.subplots(1, 8, figsize=(10, 4))
|
1300 |
+
jj=-1
|
1301 |
+
for j in [0,1,2,3]:
|
1302 |
+
jj+=1
|
1303 |
+
axes[jj].imshow(utils.torch_to_Image((autoenc.decode(blurry_image_enc[[j]]/0.18215).sample / 2 + 0.5).clamp(0,1)))
|
1304 |
+
axes[jj].axis('off')
|
1305 |
+
jj+=1
|
1306 |
+
axes[jj].imshow(utils.torch_to_Image((autoenc.decode(blurry_image_enc_[[j]]/0.18215).sample / 2 + 0.5).clamp(0,1)))
|
1307 |
+
axes[jj].axis('off')
|
1308 |
+
|
1309 |
+
if wandb_log:
|
1310 |
+
logs[f"test/recons"] = wandb.Image(fig, caption=f"epoch{epoch:03d}")
|
1311 |
+
plt.close()
|
1312 |
+
else:
|
1313 |
+
plt.show()
|
1314 |
+
|
1315 |
+
if depth_recon:
|
1316 |
+
# transform blurry recon latents to images and plot it
|
1317 |
+
fig, axes = plt.subplots(1, 8, figsize=(10, 4))
|
1318 |
+
# axes[0].imshow(utils.torch_to_Image((autoenc.decode(depth_image_enc[[0]]/0.18215).sample / 2 + 0.5).clamp(0,1)))
|
1319 |
+
# axes[1].imshow(utils.torch_to_Image((autoenc.decode(depth_image_enc_[[0]]/0.18215).sample / 2 + 0.5).clamp(0,1)))
|
1320 |
+
jj=-1
|
1321 |
+
for j in [0,1,2,3]:
|
1322 |
+
jj+=1
|
1323 |
+
axes[jj].imshow(utils.torch_to_Image(utils.resize(depth_image_enc[[j]].view(1,1,32,32).clamp(0,1), 224)))
|
1324 |
+
axes[jj].axis('off')
|
1325 |
+
jj+=1
|
1326 |
+
axes[jj].imshow(utils.torch_to_Image(utils.resize(depth_image_enc_[[j]].view(1,1,32,32).clamp(0,1), 224)))
|
1327 |
+
axes[jj].axis('off')
|
1328 |
+
if wandb_log:
|
1329 |
+
logs[f"test/depth_recons"] = wandb.Image(fig, caption=f"epoch{epoch:03d}")
|
1330 |
+
plt.close()
|
1331 |
+
else:
|
1332 |
+
plt.show()
|
1333 |
+
|
1334 |
+
progress_bar.set_postfix(**logs)
|
1335 |
+
|
1336 |
+
# Save model checkpoint and reconstruct
|
1337 |
+
if epoch % ckpt_interval == 0:
|
1338 |
+
if not utils.is_interactive():
|
1339 |
+
save_ckpt(f'last')
|
1340 |
+
|
1341 |
+
if wandb_log: wandb.log(logs)
|
1342 |
+
|
1343 |
+
# wait for other GPUs to catch up if needed
|
1344 |
+
accelerator.wait_for_everyone()
|
1345 |
+
torch.cuda.empty_cache()
|
1346 |
+
gc.collect()
|
1347 |
+
|
1348 |
+
print("\n===Finished!===\n")
|
1349 |
+
if ckpt_saving:
|
1350 |
+
save_ckpt(f'last')
|
1351 |
+
if not utils.is_interactive():
|
1352 |
+
sys.exit(0)
|
1353 |
+
|
1354 |
+
|
1355 |
+
# In[ ]:
|
1356 |
+
|
1357 |
+
|
1358 |
+
plt.plot(losses)
|
1359 |
+
plt.show()
|
1360 |
+
plt.plot(test_losses)
|
1361 |
+
plt.show()
|
1362 |
+
|
1363 |
+
|
1364 |
+
# # Retrieve nearest neighbor in the training set using test set data
|
1365 |
+
|
1366 |
+
# In[ ]:
|
1367 |
+
|
1368 |
+
|
1369 |
+
annots = np.load("/fsx/proj-fmri/shared/mindeyev2_dataset/COCO_73k_annots_curated.npy")
|
1370 |
+
|
1371 |
+
|
1372 |
+
# In[ ]:
|
1373 |
+
|
1374 |
+
|
1375 |
+
ii=2
|
1376 |
+
all_indices = np.unique(train_73k_images) #np.hstack((test_vox_indices[ii],train_vox_indices))
|
1377 |
+
with torch.no_grad(), torch.cuda.amp.autocast():
|
1378 |
+
for batch in tqdm(range(0,len(all_indices),512)):
|
1379 |
+
if batch==0:
|
1380 |
+
clip_target = clip_model.embed_image(images[all_indices[batch:batch+512]]).cpu()
|
1381 |
+
else:
|
1382 |
+
target = clip_model.embed_image(images[all_indices[batch:batch+512]]).cpu()
|
1383 |
+
clip_target = torch.vstack((clip_target,target))
|
1384 |
+
clip_target_norm = nn.functional.normalize(clip_target.flatten(1), dim=-1)
|
1385 |
+
|
1386 |
+
voxel = test_voxel[[ii]].to(device)
|
1387 |
+
image = test_image[[ii]].to(device)
|
1388 |
+
|
1389 |
+
print("Original Image (test set)")
|
1390 |
+
display(utils.torch_to_Image(image))
|
1391 |
+
|
1392 |
+
clip_target = clip_model.embed_image(image).cpu()
|
1393 |
+
# clip_target_norm = torch.vstack((clip_target_norm, nn.functional.normalize(clip_target.flatten(1), dim=-1)))
|
1394 |
+
|
1395 |
+
voxel_ridge = model.ridge(voxel).unsqueeze(1)
|
1396 |
+
clip_voxels, _, _ = model.backbone(voxel_ridge)
|
1397 |
+
clip_voxels_norm = nn.functional.normalize(clip_voxels.flatten(1), dim=-1)
|
1398 |
+
clip_voxels_norm = nn.functional.normalize(clip_target.flatten(1), dim=-1)
|
1399 |
+
|
1400 |
+
print("clip_voxels_norm", clip_voxels_norm.shape)
|
1401 |
+
print("clip_target_norm", clip_target_norm.shape)
|
1402 |
+
|
1403 |
+
sortt = torch.argsort(utils.batchwise_cosine_similarity(clip_voxels_norm.cpu(),
|
1404 |
+
clip_target_norm).flatten()).flip(0)
|
1405 |
+
picks = all_indices[sortt[:5]]
|
1406 |
+
|
1407 |
+
print("\nNearest neighbors in training set")
|
1408 |
+
for ip,p in enumerate(picks):
|
1409 |
+
display(utils.torch_to_Image(images[[p]]))
|
1410 |
+
# print(utils.select_annotations([annots[int(p)]]))
|
1411 |
+
if ip==0: predicted_caption = utils.select_annotations([annots[int(p)]])[0]
|
1412 |
+
|
1413 |
+
print("\n=====\npredicted_caption:\n", predicted_caption)
|
1414 |
+
|
1415 |
+
|
1416 |
+
# # Feed into Stable Diffusion XL for reconstructions
|
1417 |
+
|
1418 |
+
# In[ ]:
|
1419 |
+
|
1420 |
+
|
1421 |
+
from diffusers import StableDiffusionXLPipeline
|
1422 |
+
pipe = StableDiffusionXLPipeline.from_pretrained(
|
1423 |
+
"/fsx/proj-fmri/shared/cache/models--stabilityai--stable-diffusion-xl-base-1.0/snapshots/f898a3e026e802f68796b95e9702464bac78d76f", torch_dtype=torch.float16, variant="fp16", use_safetensors=True
|
1424 |
+
)
|
1425 |
+
pipe.to("cuda")
|
1426 |
+
pass
|
1427 |
+
|
1428 |
+
|
1429 |
+
# In[ ]:
|
1430 |
+
|
1431 |
+
|
1432 |
+
prompt = predicted_caption
|
1433 |
+
recon = pipe(prompt=prompt).images[0]
|
1434 |
+
|
1435 |
+
|
1436 |
+
# In[ ]:
|
1437 |
+
|
1438 |
+
|
1439 |
+
print("Seen image")
|
1440 |
+
display(utils.torch_to_Image(image))
|
1441 |
+
|
1442 |
+
print("Reconstruction")
|
1443 |
+
utils.torch_to_Image(utils.resize(transforms.ToTensor()(recon),224))
|
1444 |
+
|
src/Train_MLPMixer.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
src/Train_MLPMixer.py
ADDED
@@ -0,0 +1,1275 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# coding: utf-8
|
3 |
+
|
4 |
+
# In[1]:
|
5 |
+
|
6 |
+
|
7 |
+
# # Code to convert this notebook to .py if you want to run it via command line or with Slurm
|
8 |
+
#from subprocess import call
|
9 |
+
#command = "jupyter nbconvert Train_MLPMixer-Copy1.ipynb --to python"
|
10 |
+
#call(command,shell=True)
|
11 |
+
|
12 |
+
|
13 |
+
# # Import packages & functions
|
14 |
+
|
15 |
+
# In[2]:
|
16 |
+
|
17 |
+
|
18 |
+
import os
|
19 |
+
import sys
|
20 |
+
import json
|
21 |
+
import argparse
|
22 |
+
import numpy as np
|
23 |
+
import math
|
24 |
+
from einops import rearrange
|
25 |
+
import time
|
26 |
+
import random
|
27 |
+
import string
|
28 |
+
import h5py
|
29 |
+
from tqdm import tqdm
|
30 |
+
|
31 |
+
import webdataset as wds
|
32 |
+
import gc
|
33 |
+
|
34 |
+
import matplotlib.pyplot as plt
|
35 |
+
import torch
|
36 |
+
import torch.nn as nn
|
37 |
+
from torchvision import transforms
|
38 |
+
|
39 |
+
from accelerate import Accelerator, DeepSpeedPlugin
|
40 |
+
|
41 |
+
# tf32 data type is faster than standard float32
|
42 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
43 |
+
|
44 |
+
# custom functions #
|
45 |
+
import utils
|
46 |
+
|
47 |
+
|
48 |
+
# In[3]:
|
49 |
+
|
50 |
+
|
51 |
+
### Multi-GPU config ###
|
52 |
+
local_rank = os.getenv('RANK')
|
53 |
+
if local_rank is None:
|
54 |
+
local_rank = 0
|
55 |
+
else:
|
56 |
+
local_rank = int(local_rank)
|
57 |
+
print("LOCAL RANK ", local_rank)
|
58 |
+
|
59 |
+
num_devices = torch.cuda.device_count()
|
60 |
+
if num_devices==0: num_devices = 1
|
61 |
+
|
62 |
+
# ## UNCOMMENT BELOW SECTION AND COMMENT OUT DEEPSPEED SECTION TO AVOID USING DEEPSPEED ###
|
63 |
+
# accelerator = Accelerator(split_batches=False, mixed_precision="fp16")
|
64 |
+
# global_batch_size = batch_size = 32
|
65 |
+
# data_type = torch.float16 # change depending on your mixed_precision
|
66 |
+
|
67 |
+
### DEEPSPEED INITIALIZATION ###
|
68 |
+
if num_devices <= 1 and utils.is_interactive():
|
69 |
+
global_batch_size = batch_size = 32
|
70 |
+
print(f"Setting batch_size to {batch_size}")
|
71 |
+
# can emulate a distributed environment for deepspeed to work in jupyter notebook
|
72 |
+
os.environ["MASTER_ADDR"] = "localhost"
|
73 |
+
os.environ["MASTER_PORT"] = str(np.random.randint(10000)+9000)
|
74 |
+
os.environ["RANK"] = "0"
|
75 |
+
os.environ["LOCAL_RANK"] = "0"
|
76 |
+
os.environ["WORLD_SIZE"] = "1"
|
77 |
+
os.environ["GLOBAL_BATCH_SIZE"] = str(global_batch_size) # set this to your batch size!
|
78 |
+
else:
|
79 |
+
global_batch_size = os.environ["GLOBAL_BATCH_SIZE"]
|
80 |
+
batch_size = int(os.environ["GLOBAL_BATCH_SIZE"]) // num_devices
|
81 |
+
|
82 |
+
# alter the deepspeed config according to your global and local batch size
|
83 |
+
if local_rank == 0:
|
84 |
+
with open('/fsx/proj-fmri/ckadirt/MindEyeV2/src/deepspeed_config_stage2.json', 'r') as file:
|
85 |
+
config = json.load(file)
|
86 |
+
config['train_batch_size'] = int(os.environ["GLOBAL_BATCH_SIZE"])
|
87 |
+
config['train_micro_batch_size_per_gpu'] = batch_size
|
88 |
+
config['bf16'] = {'enabled': False}
|
89 |
+
config['fp16'] = {'enabled': True}
|
90 |
+
with open('/fsx/proj-fmri/ckadirt/MindEyeV2/src/deepspeed_config_stage2.json', 'w') as file:
|
91 |
+
json.dump(config, file)
|
92 |
+
else:
|
93 |
+
# give some time for the local_rank=0 gpu to prep new deepspeed config file
|
94 |
+
time.sleep(10)
|
95 |
+
deepspeed_plugin = DeepSpeedPlugin("/fsx/proj-fmri/ckadirt/MindEyeV2/src/deepspeed_config_stage2_cpuoffload.json")
|
96 |
+
accelerator = Accelerator(split_batches=False, deepspeed_plugin=deepspeed_plugin)
|
97 |
+
|
98 |
+
|
99 |
+
# In[4]:
|
100 |
+
|
101 |
+
|
102 |
+
print("PID of this process =",os.getpid())
|
103 |
+
device = accelerator.device
|
104 |
+
print("device:",device)
|
105 |
+
num_workers = num_devices
|
106 |
+
print(accelerator.state)
|
107 |
+
world_size = accelerator.state.num_processes
|
108 |
+
distributed = not accelerator.state.distributed_type == 'NO'
|
109 |
+
|
110 |
+
# set data_type to match your mixed precision (automatically set based on deepspeed config)
|
111 |
+
if accelerator.mixed_precision == "bf16":
|
112 |
+
data_type = torch.bfloat16
|
113 |
+
elif accelerator.mixed_precision == "fp16":
|
114 |
+
data_type = torch.float16
|
115 |
+
else:
|
116 |
+
data_type = torch.float32
|
117 |
+
|
118 |
+
print("distributed =",distributed, "num_devices =", num_devices, "local rank =", local_rank, "world size =", world_size, "data_type =", data_type)
|
119 |
+
print = accelerator.print # only print if local_rank=0
|
120 |
+
|
121 |
+
|
122 |
+
# # Configurations
|
123 |
+
|
124 |
+
# In[5]:
|
125 |
+
|
126 |
+
|
127 |
+
# if running this interactively, can specify jupyter_args here for argparser to use
|
128 |
+
if utils.is_interactive():
|
129 |
+
# create random model_name
|
130 |
+
model_name = ''.join(random.choices(string.ascii_letters + string.digits, k=10))
|
131 |
+
model_name = model_name + "_interactive"
|
132 |
+
print("model_name:", model_name)
|
133 |
+
|
134 |
+
# global_batch_size and batch_size should already be defined in the above cells
|
135 |
+
# other variables can be specified in the following string:
|
136 |
+
jupyter_args = f"--data_path=/fsx/proj-fmri/shared/mindeyev2_dataset \
|
137 |
+
--model_name={model_name} \
|
138 |
+
--subj=1 --batch_size={batch_size} --no-blurry_recon --no-depth_recon --hidden_dim=4096 \
|
139 |
+
--clip_scale=1. --blur_scale=100. --depth_scale=100. \
|
140 |
+
--max_lr=3e-4 --mixup_pct=.66 --num_epochs=12 --ckpt_interval=999 --no-use_image_aug --no-ckpt_saving"
|
141 |
+
|
142 |
+
jupyter_args = jupyter_args.split()
|
143 |
+
print(jupyter_args)
|
144 |
+
|
145 |
+
from IPython.display import clear_output # function to clear print outputs in cell
|
146 |
+
get_ipython().run_line_magic('load_ext', 'autoreload')
|
147 |
+
# this allows you to change functions in models.py or utils.py and have this notebook automatically update with your revisions
|
148 |
+
get_ipython().run_line_magic('autoreload', '2')
|
149 |
+
|
150 |
+
|
151 |
+
# In[6]:
|
152 |
+
|
153 |
+
|
154 |
+
parser = argparse.ArgumentParser(description="Model Training Configuration")
|
155 |
+
parser.add_argument(
|
156 |
+
"--model_name", type=str, default="testing",
|
157 |
+
help="name of model, used for ckpt saving and wandb logging (if enabled)",
|
158 |
+
)
|
159 |
+
parser.add_argument(
|
160 |
+
"--data_path", type=str, default="/fsx/proj-fmri/shared/natural-scenes-dataset",
|
161 |
+
help="Path to where NSD data is stored / where to download it to",
|
162 |
+
)
|
163 |
+
parser.add_argument(
|
164 |
+
"--subj",type=int, default=1, choices=[1,2,5,7],
|
165 |
+
)
|
166 |
+
parser.add_argument(
|
167 |
+
"--batch_size", type=int, default=32,
|
168 |
+
help="Batch size can be increased by 10x if only training v2c and not diffusion diffuser",
|
169 |
+
)
|
170 |
+
parser.add_argument(
|
171 |
+
"--wandb_log",action=argparse.BooleanOptionalAction,default=True,
|
172 |
+
help="whether to log to wandb",
|
173 |
+
)
|
174 |
+
parser.add_argument(
|
175 |
+
"--resume_from_ckpt",action=argparse.BooleanOptionalAction,default=False,
|
176 |
+
help="if not using wandb and want to resume from a ckpt",
|
177 |
+
)
|
178 |
+
parser.add_argument(
|
179 |
+
"--wandb_project",type=str,default="stability",
|
180 |
+
help="wandb project name",
|
181 |
+
)
|
182 |
+
parser.add_argument(
|
183 |
+
"--mixup_pct",type=float,default=.33,
|
184 |
+
help="proportion of way through training when to switch from BiMixCo to SoftCLIP",
|
185 |
+
)
|
186 |
+
parser.add_argument(
|
187 |
+
"--blurry_recon",action=argparse.BooleanOptionalAction,default=True,
|
188 |
+
help="whether to output blurry reconstructions",
|
189 |
+
)
|
190 |
+
parser.add_argument(
|
191 |
+
"--depth_recon",action=argparse.BooleanOptionalAction,default=True,
|
192 |
+
help="whether to output depth reconstructions",
|
193 |
+
)
|
194 |
+
parser.add_argument(
|
195 |
+
"--blur_scale",type=float,default=100.,
|
196 |
+
help="multiply loss from blurry recons by this number",
|
197 |
+
)
|
198 |
+
parser.add_argument(
|
199 |
+
"--depth_scale",type=float,default=100.,
|
200 |
+
help="multiply loss from depth recons by this number",
|
201 |
+
)
|
202 |
+
parser.add_argument(
|
203 |
+
"--clip_scale",type=float,default=1.,
|
204 |
+
help="multiply contrastive loss by this number",
|
205 |
+
)
|
206 |
+
parser.add_argument(
|
207 |
+
"--use_image_aug",action=argparse.BooleanOptionalAction,default=True,
|
208 |
+
help="whether to use image augmentation",
|
209 |
+
)
|
210 |
+
parser.add_argument(
|
211 |
+
"--num_epochs",type=int,default=120,
|
212 |
+
help="number of epochs of training",
|
213 |
+
)
|
214 |
+
parser.add_argument(
|
215 |
+
"--hidden_dim",type=int,default=4096,
|
216 |
+
)
|
217 |
+
parser.add_argument(
|
218 |
+
"--lr_scheduler_type",type=str,default='cycle',choices=['cycle','linear'],
|
219 |
+
)
|
220 |
+
parser.add_argument(
|
221 |
+
"--ckpt_saving",action=argparse.BooleanOptionalAction,default=True,
|
222 |
+
)
|
223 |
+
parser.add_argument(
|
224 |
+
"--ckpt_interval",type=int,default=5,
|
225 |
+
help="save backup ckpt and reconstruct every x epochs",
|
226 |
+
)
|
227 |
+
parser.add_argument(
|
228 |
+
"--seed",type=int,default=42,
|
229 |
+
)
|
230 |
+
parser.add_argument(
|
231 |
+
"--max_lr",type=float,default=3e-4,
|
232 |
+
)
|
233 |
+
parser.add_argument(
|
234 |
+
"--seq_len",type=int,default=2,
|
235 |
+
)
|
236 |
+
|
237 |
+
if utils.is_interactive():
|
238 |
+
args = parser.parse_args(jupyter_args)
|
239 |
+
else:
|
240 |
+
args = parser.parse_args()
|
241 |
+
|
242 |
+
# create global variables without the args prefix
|
243 |
+
for attribute_name in vars(args).keys():
|
244 |
+
globals()[attribute_name] = getattr(args, attribute_name)
|
245 |
+
|
246 |
+
|
247 |
+
# In[7]:
|
248 |
+
|
249 |
+
|
250 |
+
outdir = os.path.abspath(f'../train_logs/{model_name}')
|
251 |
+
if not os.path.exists(outdir) and ckpt_saving:
|
252 |
+
os.makedirs(outdir,exist_ok=True)
|
253 |
+
if use_image_aug:
|
254 |
+
import kornia
|
255 |
+
from kornia.augmentation.container import AugmentationSequential
|
256 |
+
img_augment = AugmentationSequential(
|
257 |
+
kornia.augmentation.RandomResizedCrop((224,224), (0.6,1), p=0.3),
|
258 |
+
kornia.augmentation.Resize((224, 224)),
|
259 |
+
kornia.augmentation.RandomHorizontalFlip(p=0.3),
|
260 |
+
kornia.augmentation.ColorJitter(brightness=0.4, contrast=0.4, saturation=0.2, hue=0.1, p=0.3),
|
261 |
+
kornia.augmentation.RandomGrayscale(p=0.3),
|
262 |
+
same_on_batch=False,
|
263 |
+
data_keys=["input"],
|
264 |
+
)
|
265 |
+
|
266 |
+
|
267 |
+
# # Prep data, models, and dataloaders
|
268 |
+
|
269 |
+
# ## Dataloader
|
270 |
+
|
271 |
+
# In[8]:
|
272 |
+
|
273 |
+
|
274 |
+
if subj==1:
|
275 |
+
num_train = 24958
|
276 |
+
num_test = 2770
|
277 |
+
test_batch_size = num_test
|
278 |
+
|
279 |
+
def my_split_by_node(urls): return urls
|
280 |
+
|
281 |
+
train_url = f"{data_path}/wds/subj0{subj}/train/" + "{0..36}.tar"
|
282 |
+
# train_url = f"{data_path}/wds/subj0{subj}/train/" + "{0..1}.tar"
|
283 |
+
print(train_url)
|
284 |
+
|
285 |
+
train_data = wds.WebDataset(train_url,resampled=False,nodesplitter=my_split_by_node)\
|
286 |
+
.shuffle(750, initial=1500, rng=random.Random(42))\
|
287 |
+
.decode("torch")\
|
288 |
+
.rename(behav="behav.npy", past_behav="past_behav.npy", future_behav="future_behav.npy", olds_behav="olds_behav.npy")\
|
289 |
+
.to_tuple(*["behav", "past_behav", "future_behav", "olds_behav"])
|
290 |
+
train_dl = torch.utils.data.DataLoader(train_data, batch_size=batch_size, shuffle=False, drop_last=True, pin_memory=True)
|
291 |
+
|
292 |
+
test_url = f"{data_path}/wds/subj0{subj}/test/" + "0.tar"
|
293 |
+
print(test_url)
|
294 |
+
|
295 |
+
test_data = wds.WebDataset(test_url,resampled=False,nodesplitter=my_split_by_node)\
|
296 |
+
.shuffle(750, initial=1500, rng=random.Random(42))\
|
297 |
+
.decode("torch")\
|
298 |
+
.rename(behav="behav.npy", past_behav="past_behav.npy", future_behav="future_behav.npy", olds_behav="olds_behav.npy")\
|
299 |
+
.to_tuple(*["behav", "past_behav", "future_behav", "olds_behav"])
|
300 |
+
test_dl = torch.utils.data.DataLoader(test_data, batch_size=test_batch_size, shuffle=False, drop_last=True, pin_memory=True)
|
301 |
+
|
302 |
+
|
303 |
+
# ### check dataloaders are working
|
304 |
+
|
305 |
+
# In[9]:
|
306 |
+
|
307 |
+
|
308 |
+
test_vox_indices = []
|
309 |
+
test_73k_images = []
|
310 |
+
for test_i, (behav, past_behav, future_behav, old_behav) in enumerate(test_dl):
|
311 |
+
test_vox_indices = np.append(test_vox_indices, behav[:,0,5].cpu().numpy())
|
312 |
+
test_73k_images = np.append(test_73k_images, behav[:,0,0].cpu().numpy())
|
313 |
+
test_vox_indices = test_vox_indices.astype(np.int16)
|
314 |
+
print(test_i, (test_i+1) * test_batch_size, len(test_vox_indices))
|
315 |
+
print("---\n")
|
316 |
+
|
317 |
+
train_vox_indices = []
|
318 |
+
train_73k_images = []
|
319 |
+
for train_i, (behav, past_behav, future_behav, old_behav) in enumerate(train_dl):
|
320 |
+
train_vox_indices = np.append(train_vox_indices, behav[:,0,5].long().cpu().numpy())
|
321 |
+
train_73k_images = np.append(train_73k_images, behav[:,0,0].cpu().numpy())
|
322 |
+
train_vox_indices = train_vox_indices.astype(np.int16)
|
323 |
+
print(train_i, (train_i+1) * batch_size, len(train_vox_indices))
|
324 |
+
|
325 |
+
|
326 |
+
# ## Load data and images
|
327 |
+
|
328 |
+
# In[10]:
|
329 |
+
|
330 |
+
|
331 |
+
# load betas
|
332 |
+
f = h5py.File(f'{data_path}/betas_all_subj0{subj}.hdf5', 'r')
|
333 |
+
# f = h5py.File(f'{data_path}/betas_subj0{subj}_thresholded_wholebrain.hdf5', 'r')
|
334 |
+
|
335 |
+
voxels = f['betas'][:]
|
336 |
+
print(f"subj0{subj} betas loaded into memory")
|
337 |
+
voxels = torch.Tensor(voxels).to("cpu").to(data_type)
|
338 |
+
print("voxels", voxels.shape)
|
339 |
+
num_voxels = voxels.shape[-1]
|
340 |
+
|
341 |
+
# load orig images
|
342 |
+
f = h5py.File(f'{data_path}/coco_images_224_float16.hdf5', 'r')
|
343 |
+
images = f['images'][:]
|
344 |
+
images = torch.Tensor(images).to("cpu").to(data_type)
|
345 |
+
print("images", images.shape)
|
346 |
+
|
347 |
+
|
348 |
+
# ## Load models
|
349 |
+
|
350 |
+
# ### CLIP image embeddings model
|
351 |
+
|
352 |
+
# In[11]:
|
353 |
+
|
354 |
+
|
355 |
+
from models import Clipper
|
356 |
+
clip_model = Clipper("ViT-L/14", device=torch.device(f"cuda:{local_rank}"), hidden_state=True, norm_embs=True)
|
357 |
+
clip_seq_dim = 257
|
358 |
+
clip_emb_dim = 768 #1024
|
359 |
+
# hidden_dim = 4096
|
360 |
+
#seq_len = 1 #2 #32
|
361 |
+
|
362 |
+
|
363 |
+
# ### SD VAE
|
364 |
+
|
365 |
+
# In[12]:
|
366 |
+
|
367 |
+
|
368 |
+
# if blurry_recon:
|
369 |
+
# from diffusers import AutoencoderKL
|
370 |
+
# autoenc = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16, cache_dir="/fsx/proj-fmri/shared/cache")
|
371 |
+
# # autoenc.load_state_dict(torch.load('../train_logs/sdxl_vae_normed/best.pth')["model_state_dict"])
|
372 |
+
# autoenc.eval()
|
373 |
+
# autoenc.requires_grad_(False)
|
374 |
+
# autoenc.to(device)
|
375 |
+
# utils.count_params(autoenc)
|
376 |
+
|
377 |
+
if blurry_recon:# or depth_recon:
|
378 |
+
from diffusers import VQModel
|
379 |
+
autoenc = VQModel.from_pretrained("/fsx/proj-fmri/shared/cache/models--microsoft--vq-diffusion-ithq/snapshots/3f796fb49ee559370dc638dea1d8116af131d993/vqvae", torch_dtype=data_type)
|
380 |
+
autoenc.eval()
|
381 |
+
autoenc.requires_grad_(False)
|
382 |
+
autoenc.to(device)
|
383 |
+
utils.count_params(autoenc)
|
384 |
+
|
385 |
+
|
386 |
+
# #### downsampled images
|
387 |
+
|
388 |
+
# In[13]:
|
389 |
+
|
390 |
+
|
391 |
+
if blurry_recon:
|
392 |
+
if utils.is_interactive(): display(utils.torch_to_Image(images[[30]]))
|
393 |
+
|
394 |
+
input_batch = images[[30]].to(device)
|
395 |
+
print(input_batch.shape)
|
396 |
+
|
397 |
+
downsampled_image = nn.functional.interpolate(input_batch, size=(8, 8), mode='bilinear', align_corners=False)
|
398 |
+
re_upsampled_image = nn.functional.interpolate(downsampled_image, size=(128, 128), mode='nearest')
|
399 |
+
re_upsampled_enc = autoenc.encode(2*re_upsampled_image-1).latents * 0.18215
|
400 |
+
print(re_upsampled_enc.shape)
|
401 |
+
|
402 |
+
if utils.is_interactive(): display(utils.torch_to_Image((autoenc.decode(re_upsampled_enc/0.18215).sample / 2 + 0.5).clamp(0,1)))
|
403 |
+
|
404 |
+
|
405 |
+
# #### MiDaS depth
|
406 |
+
|
407 |
+
# In[14]:
|
408 |
+
|
409 |
+
|
410 |
+
if depth_recon:
|
411 |
+
from controlnet_aux.midas import MidasDetector
|
412 |
+
|
413 |
+
midas_depth = MidasDetector.from_pretrained(
|
414 |
+
"valhalla/t2iadapter-aux-models", filename="dpt_large_384.pt", model_type="dpt_large", cache_dir="/fsx/proj-fmri/shared/cache").to(device)
|
415 |
+
midas_depth.model.eval()
|
416 |
+
midas_depth.model.requires_grad_(False)
|
417 |
+
midas_depth.model.to(device)
|
418 |
+
pass
|
419 |
+
|
420 |
+
|
421 |
+
# In[15]:
|
422 |
+
|
423 |
+
|
424 |
+
if depth_recon:
|
425 |
+
if utils.is_interactive(): display(utils.torch_to_Image(images[[30]]))
|
426 |
+
|
427 |
+
input_batch = images[[30,31]].float().to(device)
|
428 |
+
print(input_batch.shape)
|
429 |
+
|
430 |
+
midas_emb = midas_depth.model(input_batch).unsqueeze(1)
|
431 |
+
print(midas_emb.shape)
|
432 |
+
|
433 |
+
prediction = utils.resize(midas_emb, 32) #/30).clamp(0,1).half() # 30 is roughly prediction.max()
|
434 |
+
print(prediction.shape)
|
435 |
+
|
436 |
+
prediction = (prediction / prediction.view(prediction.shape[0], -1).max(dim=1)[0].view(-1, 1, 1, 1).expand_as(prediction)).half()
|
437 |
+
midas_emb_size = prediction.flatten(1).shape[1]
|
438 |
+
print("midas_emb", prediction.shape, prediction.min(), prediction.max())
|
439 |
+
print("midas_emb_size", midas_emb_size)
|
440 |
+
|
441 |
+
if utils.is_interactive(): display(utils.torch_to_Image(utils.resize(prediction, 224)))
|
442 |
+
|
443 |
+
if blurry_recon:
|
444 |
+
prediction = utils.resize(midas_emb, 128).half().repeat(1,3,1,1)
|
445 |
+
prediction = (prediction / prediction.view(prediction.shape[0], -1).max(dim=1)[0].view(-1, 1, 1, 1).expand_as(prediction)).half()
|
446 |
+
prediction_enc = autoenc.encode(2*prediction-1).latents * 0.18215
|
447 |
+
print("vae midas_emb", prediction_enc.shape, prediction_enc.min(), prediction_enc.max())
|
448 |
+
|
449 |
+
if utils.is_interactive(): display(utils.torch_to_Image((autoenc.decode(prediction_enc/0.18215).sample / 2 + 0.5).clamp(0,1)))
|
450 |
+
|
451 |
+
|
452 |
+
# ### MindEye modules
|
453 |
+
|
454 |
+
# In[17]:
|
455 |
+
|
456 |
+
|
457 |
+
class MindEyeModule(nn.Module):
|
458 |
+
def __init__(self):
|
459 |
+
super(MindEyeModule, self).__init__()
|
460 |
+
def forward(self, x):
|
461 |
+
return x
|
462 |
+
|
463 |
+
model = MindEyeModule()
|
464 |
+
model
|
465 |
+
|
466 |
+
|
467 |
+
# In[18]:
|
468 |
+
|
469 |
+
|
470 |
+
time_embedding_dim = 512
|
471 |
+
|
472 |
+
class RidgeRegression(torch.nn.Module):
|
473 |
+
# make sure to add weight_decay when initializing optimizer
|
474 |
+
def __init__(self, input_size, out_features):
|
475 |
+
super(RidgeRegression, self).__init__()
|
476 |
+
self.out_features = out_features
|
477 |
+
self.linear = torch.nn.Linear(input_size, out_features)
|
478 |
+
def forward(self, x):
|
479 |
+
return self.linear(x)
|
480 |
+
|
481 |
+
model.ridge = RidgeRegression(voxels.shape[1] + time_embedding_dim, out_features=hidden_dim)
|
482 |
+
utils.count_params(model.ridge)
|
483 |
+
utils.count_params(model)
|
484 |
+
|
485 |
+
b = torch.randn((2,1,voxels.shape[1]))
|
486 |
+
time_emb_test = torch.randn((2,1,time_embedding_dim))
|
487 |
+
print(b.shape, model.ridge(torch.cat((b,time_emb_test),dim=-1)).shape)
|
488 |
+
|
489 |
+
|
490 |
+
# In[24]:
|
491 |
+
|
492 |
+
|
493 |
+
num_past_voxels = 15
|
494 |
+
|
495 |
+
|
496 |
+
|
497 |
+
# In[25]:
|
498 |
+
|
499 |
+
|
500 |
+
from functools import partial
|
501 |
+
from diffusers.models.vae import Decoder
|
502 |
+
class BrainNetwork(nn.Module):
|
503 |
+
def __init__(self, out_dim=768, in_dim=15724, seq_len=2, h=4096, n_blocks=4, drop=.15, clip_size=768):
|
504 |
+
super().__init__()
|
505 |
+
self.seq_len = seq_len
|
506 |
+
self.h = h
|
507 |
+
self.clip_size = clip_size
|
508 |
+
|
509 |
+
# Initial linear layer to match the input dimensions to hidden dimensions
|
510 |
+
# self.lin0 = nn.Linear(in_dim, seq_len * h)
|
511 |
+
|
512 |
+
# Mixer Blocks
|
513 |
+
self.mixer_blocks1 = nn.ModuleList([
|
514 |
+
self.mixer_block1(h, drop) for _ in range(n_blocks)
|
515 |
+
])
|
516 |
+
self.mixer_blocks2 = nn.ModuleList([
|
517 |
+
self.mixer_block2(seq_len, drop) for _ in range(n_blocks)
|
518 |
+
])
|
519 |
+
|
520 |
+
# Output linear layer
|
521 |
+
self.clin1 = nn.Linear(h * seq_len, out_dim, bias=True)
|
522 |
+
|
523 |
+
# low-rank matrices
|
524 |
+
# self.rank = 500
|
525 |
+
# self.U = nn.Parameter(torch.randn(self.rank, out_dim))
|
526 |
+
# self.V = nn.Parameter(torch.randn(h * seq_len, self.rank))
|
527 |
+
# self.S = nn.Parameter(torch.randn(out_dim))
|
528 |
+
|
529 |
+
self.clip_proj = nn.Sequential(
|
530 |
+
nn.LayerNorm(clip_size),
|
531 |
+
nn.GELU(),
|
532 |
+
nn.Linear(clip_size, 2048),
|
533 |
+
nn.LayerNorm(2048),
|
534 |
+
nn.GELU(),
|
535 |
+
nn.Linear(2048, 2048),
|
536 |
+
nn.LayerNorm(2048),
|
537 |
+
nn.GELU(),
|
538 |
+
nn.Linear(2048, clip_size)
|
539 |
+
)
|
540 |
+
|
541 |
+
if blurry_recon:
|
542 |
+
# self.blin1 = nn.Sequential(
|
543 |
+
# nn.Linear(out_dim, 4096, bias=True),
|
544 |
+
# nn.LayerNorm(4096),
|
545 |
+
# nn.GELU(),
|
546 |
+
# nn.Linear(4096, 4096))
|
547 |
+
self.blin1 = nn.Linear(h*seq_len, 4096)
|
548 |
+
self.bgroupnorm = nn.GroupNorm(1, 256)
|
549 |
+
self.bupsampler = Decoder(
|
550 |
+
in_channels=256,
|
551 |
+
out_channels=128,
|
552 |
+
up_block_types=["UpDecoderBlock2D","UpDecoderBlock2D","UpDecoderBlock2D"],
|
553 |
+
block_out_channels=[32, 64, 128],
|
554 |
+
layers_per_block=1,
|
555 |
+
)
|
556 |
+
|
557 |
+
if depth_recon:
|
558 |
+
# self.dlin1 = nn.Sequential(
|
559 |
+
# nn.Linear(h, midas_emb_size),
|
560 |
+
# nn.Sigmoid(),
|
561 |
+
# )
|
562 |
+
self.dlin1 = nn.Linear(h*seq_len, 4096)
|
563 |
+
self.dgroupnorm = nn.GroupNorm(1, 256)
|
564 |
+
self.dupsampler = Decoder(
|
565 |
+
in_channels=256,
|
566 |
+
out_channels=1,#128,
|
567 |
+
up_block_types=["UpDecoderBlock2D","UpDecoderBlock2D","UpDecoderBlock2D","UpDecoderBlock2D"],
|
568 |
+
block_out_channels=[32, 64, 128, 256],
|
569 |
+
layers_per_block=1,
|
570 |
+
)
|
571 |
+
|
572 |
+
def mixer_block1(self, h, drop):
|
573 |
+
return nn.Sequential(
|
574 |
+
nn.LayerNorm(h),
|
575 |
+
self.mlp(h, h, drop), # Token mixing
|
576 |
+
)
|
577 |
+
|
578 |
+
def mixer_block2(self, seq_len, drop):
|
579 |
+
return nn.Sequential(
|
580 |
+
nn.LayerNorm(seq_len),
|
581 |
+
self.mlp(seq_len, seq_len, drop) # Channel mixing
|
582 |
+
)
|
583 |
+
|
584 |
+
def mlp(self, in_dim, out_dim, drop):
|
585 |
+
return nn.Sequential(
|
586 |
+
nn.Linear(in_dim, out_dim),
|
587 |
+
nn.GELU(),
|
588 |
+
nn.Dropout(drop),
|
589 |
+
nn.Linear(out_dim, out_dim),
|
590 |
+
)
|
591 |
+
|
592 |
+
def forward(self, x, idx = None):
|
593 |
+
print(idx)
|
594 |
+
# make empty tensors for blur and depth outputs
|
595 |
+
b,d = torch.Tensor([0.]), torch.Tensor([0.])
|
596 |
+
|
597 |
+
# Initial linear layer
|
598 |
+
# x = self.lin0(x)
|
599 |
+
|
600 |
+
# Reshape to seq_len by dim
|
601 |
+
# x = x.reshape(-1, self.seq_len, self.h)
|
602 |
+
|
603 |
+
# Mixer blocks
|
604 |
+
#print("x shape ", x.shape)
|
605 |
+
residual1 = x
|
606 |
+
residual2 = x.permute(0,2,1)
|
607 |
+
#print("residual 2", residual2.shape)
|
608 |
+
for block1, block2 in zip(self.mixer_blocks1,self.mixer_blocks2):
|
609 |
+
x = block1(x) + residual1
|
610 |
+
#print("xblo", x.shape)
|
611 |
+
residual1 = x
|
612 |
+
x = x.permute(0,2,1)
|
613 |
+
|
614 |
+
x = block2(x) + residual2
|
615 |
+
#print("xblo2", x.shape)
|
616 |
+
residual2 = x
|
617 |
+
x = x.permute(0,2,1)
|
618 |
+
|
619 |
+
# Flatten
|
620 |
+
x = x.reshape(x.size(0), -1)
|
621 |
+
|
622 |
+
c = self.clin1(x)
|
623 |
+
|
624 |
+
# low rank linear to out dim cuts # params by nearly half compared to full linear mapping
|
625 |
+
# c = (x @ (self.V/100) @ (self.U/100)) + self.S
|
626 |
+
|
627 |
+
c = self.clip_proj(c.reshape(len(c), -1, self.clip_size))
|
628 |
+
|
629 |
+
if blurry_recon:
|
630 |
+
b = self.blin1(x)
|
631 |
+
b = b.reshape(len(b), 256, 4, 4)
|
632 |
+
b = self.bgroupnorm(b)
|
633 |
+
b = self.bupsampler(b)
|
634 |
+
|
635 |
+
if depth_recon:
|
636 |
+
d = self.dlin1(x)#.reshape(len(x), 1, 32, 32)
|
637 |
+
d = d.reshape(len(d), 256, 4, 4)
|
638 |
+
d = self.dgroupnorm(d)
|
639 |
+
d = self.dupsampler(d)
|
640 |
+
|
641 |
+
return c, b, d
|
642 |
+
|
643 |
+
|
644 |
+
class TimeEmbedding(nn.Module):
|
645 |
+
def __init__(self, embedding_time_dim=512, num_past_voxels=15):
|
646 |
+
super().__init__()
|
647 |
+
self.embedding_time = nn.Embedding(num_past_voxels, embedding_time_dim)
|
648 |
+
self.num_past_voxels = num_past_voxels
|
649 |
+
self.embedding_time_dim = embedding_time_dim
|
650 |
+
|
651 |
+
def forward(self, time):
|
652 |
+
# time is (batch_size,)
|
653 |
+
time = time.long()
|
654 |
+
time = self.embedding_time(time)
|
655 |
+
return time # (batch_size, embedding_time_dim)
|
656 |
+
|
657 |
+
|
658 |
+
#model.memory_encoder = MemoryEncoder(in_dim=voxels.shape[1], out_dim=4096, num_past_voxels=15, embedding_time_dim=512)
|
659 |
+
model.time_embedding = TimeEmbedding(embedding_time_dim=512, num_past_voxels=15)
|
660 |
+
|
661 |
+
model.backbone = BrainNetwork(h=hidden_dim, in_dim=hidden_dim, seq_len=seq_len, clip_size=clip_emb_dim, out_dim=clip_emb_dim*clip_seq_dim)
|
662 |
+
utils.count_params(model.backbone)
|
663 |
+
utils.count_params(model)
|
664 |
+
|
665 |
+
# test that the model works on some fake data
|
666 |
+
b = torch.randn((1,seq_len,hidden_dim))
|
667 |
+
print("b.shape",b.shape)
|
668 |
+
with torch.no_grad():
|
669 |
+
clip_, blur_, depth_ = model.backbone(b)
|
670 |
+
print(clip_.shape, blur_.shape, depth_.shape)
|
671 |
+
|
672 |
+
|
673 |
+
# In[ ]:
|
674 |
+
|
675 |
+
|
676 |
+
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
|
677 |
+
opt_grouped_parameters = [
|
678 |
+
{'params': [p for n, p in model.ridge.named_parameters()], 'weight_decay': 1e-2},
|
679 |
+
{'params': [p for n, p in model.backbone.named_parameters() if not any(nd in n for nd in no_decay)], 'weight_decay': 1e-2},
|
680 |
+
{'params': [p for n, p in model.backbone.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0},
|
681 |
+
]
|
682 |
+
|
683 |
+
optimizer = torch.optim.AdamW(opt_grouped_parameters, lr=max_lr)
|
684 |
+
|
685 |
+
if lr_scheduler_type == 'linear':
|
686 |
+
lr_scheduler = torch.optim.lr_scheduler.LinearLR(
|
687 |
+
optimizer,
|
688 |
+
total_iters=int(np.floor(num_epochs*(num_train/num_devices/batch_size))),
|
689 |
+
last_epoch=-1
|
690 |
+
)
|
691 |
+
elif lr_scheduler_type == 'cycle':
|
692 |
+
total_steps=int(np.floor(num_epochs*(num_train/num_devices/batch_size)))
|
693 |
+
print("total_steps", total_steps)
|
694 |
+
lr_scheduler = torch.optim.lr_scheduler.OneCycleLR(
|
695 |
+
optimizer,
|
696 |
+
max_lr=max_lr,
|
697 |
+
total_steps=total_steps,
|
698 |
+
final_div_factor=1000,
|
699 |
+
last_epoch=-1, pct_start=2/num_epochs
|
700 |
+
)
|
701 |
+
|
702 |
+
def save_ckpt(tag):
|
703 |
+
ckpt_path = outdir+f'/{tag}.pth'
|
704 |
+
print(f'saving {ckpt_path}',flush=True)
|
705 |
+
unwrapped_model = accelerator.unwrap_model(model)
|
706 |
+
try:
|
707 |
+
torch.save({
|
708 |
+
'epoch': epoch,
|
709 |
+
'model_state_dict': unwrapped_model.state_dict(),
|
710 |
+
'optimizer_state_dict': optimizer.state_dict(),
|
711 |
+
'lr_scheduler': lr_scheduler.state_dict(),
|
712 |
+
'train_losses': losses,
|
713 |
+
'test_losses': test_losses,
|
714 |
+
'lrs': lrs,
|
715 |
+
}, ckpt_path)
|
716 |
+
except:
|
717 |
+
print("Couldn't save... moving on to prevent crashing.")
|
718 |
+
del unwrapped_model
|
719 |
+
|
720 |
+
print("\nDone with model preparations!")
|
721 |
+
utils.count_params(model)
|
722 |
+
|
723 |
+
|
724 |
+
# # Weights and Biases
|
725 |
+
|
726 |
+
# In[ ]:
|
727 |
+
|
728 |
+
|
729 |
+
if local_rank==0 and wandb_log: # only use main process for wandb logging
|
730 |
+
import wandb
|
731 |
+
wandb_project = 'mindeyev2'
|
732 |
+
wandb_run = model_name
|
733 |
+
wandb_notes = ''
|
734 |
+
|
735 |
+
print(f"wandb {wandb_project} run {wandb_run}")
|
736 |
+
wandb.login(host='https://stability.wandb.io')#, relogin=True)
|
737 |
+
wandb_config = {
|
738 |
+
"model_name": model_name,
|
739 |
+
"global_batch_size": global_batch_size,
|
740 |
+
"batch_size": batch_size,
|
741 |
+
"num_epochs": num_epochs,
|
742 |
+
"clip_scale": clip_scale,
|
743 |
+
"blur_scale": blur_scale,
|
744 |
+
"use_image_aug": use_image_aug,
|
745 |
+
"max_lr": max_lr,
|
746 |
+
"mixup_pct": mixup_pct,
|
747 |
+
"num_train": num_train,
|
748 |
+
"num_test": num_test,
|
749 |
+
"ckpt_interval": ckpt_interval,
|
750 |
+
"ckpt_saving": ckpt_saving,
|
751 |
+
"seed": seed,
|
752 |
+
"distributed": distributed,
|
753 |
+
"num_devices": num_devices,
|
754 |
+
"world_size": world_size,
|
755 |
+
"train_url": train_url,
|
756 |
+
"test_url": test_url,
|
757 |
+
}
|
758 |
+
print("wandb_config:\n",wandb_config)
|
759 |
+
if False: # wandb_auto_resume
|
760 |
+
print("wandb_id:",model_name)
|
761 |
+
wandb.init(
|
762 |
+
id = model_name,
|
763 |
+
project=wandb_project,
|
764 |
+
name=wandb_run,
|
765 |
+
config=wandb_config,
|
766 |
+
notes=wandb_notes,
|
767 |
+
resume="allow",
|
768 |
+
)
|
769 |
+
else:
|
770 |
+
wandb.init(
|
771 |
+
project=wandb_project,
|
772 |
+
name=wandb_run,
|
773 |
+
config=wandb_config,
|
774 |
+
notes=wandb_notes,
|
775 |
+
)
|
776 |
+
else:
|
777 |
+
wandb_log = False
|
778 |
+
|
779 |
+
|
780 |
+
# # Main
|
781 |
+
|
782 |
+
# In[ ]:
|
783 |
+
|
784 |
+
|
785 |
+
epoch = 0
|
786 |
+
losses, test_losses, lrs = [], [], []
|
787 |
+
best_test_loss = 1e9
|
788 |
+
soft_loss_temps = utils.cosine_anneal(0.004, 0.0075, num_epochs - int(mixup_pct * num_epochs))
|
789 |
+
|
790 |
+
# Optionally resume from checkpoint #
|
791 |
+
if resume_from_ckpt:
|
792 |
+
print("\n---resuming from last.pth ckpt---\n")
|
793 |
+
try:
|
794 |
+
checkpoint = torch.load(outdir+'/last.pth', map_location='cpu')
|
795 |
+
except:
|
796 |
+
print('last.pth failed... trying last_backup.pth')
|
797 |
+
checkpoint = torch.load(outdir+'/last_backup.pth', map_location='cpu')
|
798 |
+
epoch = checkpoint['epoch']
|
799 |
+
print("Epoch",epoch)
|
800 |
+
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
|
801 |
+
lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
|
802 |
+
model.load_state_dict(checkpoint['model_state_dict'])
|
803 |
+
del checkpoint
|
804 |
+
elif wandb_log:
|
805 |
+
if wandb.run.resumed:
|
806 |
+
print("\n---resuming from last.pth ckpt---\n")
|
807 |
+
try:
|
808 |
+
checkpoint = torch.load(outdir+'/last.pth', map_location='cpu')
|
809 |
+
except:
|
810 |
+
print('last.pth failed... trying last_backup.pth')
|
811 |
+
checkpoint = torch.load(outdir+'/last_backup.pth', map_location='cpu')
|
812 |
+
epoch = checkpoint['epoch']
|
813 |
+
print("Epoch",epoch)
|
814 |
+
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
|
815 |
+
lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
|
816 |
+
model.load_state_dict(checkpoint['model_state_dict'])
|
817 |
+
del checkpoint
|
818 |
+
torch.cuda.empty_cache()
|
819 |
+
|
820 |
+
|
821 |
+
# In[ ]:
|
822 |
+
|
823 |
+
|
824 |
+
model, optimizer, train_dl, lr_scheduler = accelerator.prepare(
|
825 |
+
model, optimizer, train_dl, lr_scheduler
|
826 |
+
)
|
827 |
+
# leaving out test_dl since we will only have local_rank 0 device do evals
|
828 |
+
|
829 |
+
|
830 |
+
# In[ ]:
|
831 |
+
|
832 |
+
|
833 |
+
def add_saturation(image, alpha=2):
|
834 |
+
gray_image = 0.2989 * image[:, 0, :, :] + 0.5870 * image[:, 1, :, :] + 0.1140 * image[:, 2, :, :]
|
835 |
+
gray_image = gray_image.unsqueeze(1).expand_as(image)
|
836 |
+
saturated_image = alpha * image + (1 - alpha) * gray_image
|
837 |
+
return torch.clamp(saturated_image, 0, 1)
|
838 |
+
|
839 |
+
|
840 |
+
# In[ ]:
|
841 |
+
|
842 |
+
|
843 |
+
print(f"{model_name} starting with epoch {epoch} / {num_epochs}")
|
844 |
+
progress_bar = tqdm(range(epoch,num_epochs), ncols=1200, disable=(local_rank!=0))
|
845 |
+
test_image, test_voxel = None, None
|
846 |
+
mse = nn.MSELoss()
|
847 |
+
l1 = nn.L1Loss()
|
848 |
+
|
849 |
+
for epoch in progress_bar:
|
850 |
+
model.train()
|
851 |
+
|
852 |
+
fwd_percent_correct = 0.
|
853 |
+
bwd_percent_correct = 0.
|
854 |
+
test_fwd_percent_correct = 0.
|
855 |
+
test_bwd_percent_correct = 0.
|
856 |
+
|
857 |
+
loss_clip_total = 0.
|
858 |
+
loss_blurry_total = 0.
|
859 |
+
loss_depth_total = 0.
|
860 |
+
test_loss_clip_total = 0.
|
861 |
+
test_loss_blurry_total = 0.
|
862 |
+
test_loss_depth_total = 0.
|
863 |
+
|
864 |
+
blurry_pixcorr = 0.
|
865 |
+
test_blurry_pixcorr = 0. # needs >.456 to beat low-level subj01 results in mindeye v1
|
866 |
+
|
867 |
+
for train_i, (behav, past_behav, future_behav, old_behav) in enumerate(train_dl):
|
868 |
+
with torch.cuda.amp.autocast(dtype=data_type):
|
869 |
+
optimizer.zero_grad()
|
870 |
+
|
871 |
+
#voxel = voxels[behav[:,0,5].cpu().long()].to(device)
|
872 |
+
#image = images[behav[:,0,0].cpu().long()].to(device).float()
|
873 |
+
|
874 |
+
#past_15_voxels = voxels[past_behav[:,:,5].cpu().long()].to(device) # batch_size, 15, 15279
|
875 |
+
#past_15_times = torch.Tensor([i for i in range(seq_len - 1)]).to(device) # 15
|
876 |
+
|
877 |
+
voxel = voxels[behav[:,0,5].cpu().long()].to(device)
|
878 |
+
image = images[behav[:,0,0].cpu().long()].to(device).float()
|
879 |
+
|
880 |
+
past_15_voxels = voxels[past_behav[:,:seq_len-1,5].cpu().long()].to(device) # batch_size, 15, 15279
|
881 |
+
past_15_times = torch.Tensor([i for i in range(seq_len-1)]).to(device) # 15
|
882 |
+
#for past in range(1):
|
883 |
+
# past_voxel = voxels[past_behav[:,past,5].cpu().long()].to(device)
|
884 |
+
|
885 |
+
if blurry_recon:
|
886 |
+
# blurry_image_enc = autoenc.encode(2*utils.resize(image,128)-1).latent_dist.mode() * 0.18215
|
887 |
+
blurry_image_enc = autoenc.encode(2*utils.resize(add_saturation(image),128)-1).latents * 0.18215
|
888 |
+
|
889 |
+
if depth_recon:
|
890 |
+
# depth_images = utils.resize(midas_depth.model(image).unsqueeze(1).repeat(1,3,1,1), 128)
|
891 |
+
depth_images = utils.resize(midas_depth.model(image).unsqueeze(1), 32)
|
892 |
+
depth_images = (depth_images / depth_images.view(depth_images.shape[0], -1).max(dim=1)[0].view(-1, 1, 1, 1).expand_as(depth_images)).half()
|
893 |
+
depth_image_enc = depth_images # autoenc.encode(2*depth_images-1).latents * 0.18215
|
894 |
+
|
895 |
+
if use_image_aug:
|
896 |
+
image = img_augment(image)
|
897 |
+
|
898 |
+
clip_target = clip_model.embed_image(image)
|
899 |
+
assert not torch.any(torch.isnan(clip_target))
|
900 |
+
|
901 |
+
if epoch < int(mixup_pct * num_epochs):
|
902 |
+
voxel, perm, betas, select = utils.mixco(voxel)
|
903 |
+
past_voxel, _, _, _ = utils.mixco(voxel, perm=perm, betas=betas, select=select)
|
904 |
+
|
905 |
+
for p in range(seq_len-1):
|
906 |
+
#print(past_behav.shape) #128, 15, 17
|
907 |
+
#print(past_behav[:,p,-1])
|
908 |
+
#print(past_15_voxels.shape) # 128, 1, 15724
|
909 |
+
mask = past_behav[:,p,-1] == torch.ones_like(past_behav[:,p,-1])
|
910 |
+
#print(mask) # 128
|
911 |
+
past_15_voxels[mask, p, :] = torch.zeros_like(past_15_voxels[0, p, :])
|
912 |
+
#print(past_15_voxels)
|
913 |
+
|
914 |
+
past_15_voxels = past_15_voxels.reshape(-1, past_15_voxels.shape[-1])
|
915 |
+
past_15_times = past_15_times.repeat(voxel.shape[0], 1)
|
916 |
+
past_15_times = past_15_times.reshape(-1)
|
917 |
+
time_embeddings = model.time_embedding(past_15_times)
|
918 |
+
past_info_full = torch.cat((past_15_voxels, time_embeddings), dim=-1)
|
919 |
+
|
920 |
+
positional_current_voxel = torch.zeros((voxel.shape[0], time_embeddings.shape[-1])).to(voxel.device)
|
921 |
+
voxel = torch.cat((voxel, positional_current_voxel), dim=-1)
|
922 |
+
voxel_ridge = model.ridge(torch.cat((voxel, past_info_full), dim=-2))
|
923 |
+
voxel_ridge = voxel_ridge.view(int(voxel_ridge.shape[0]/seq_len), seq_len, hidden_dim)
|
924 |
+
#unsqueeze(1) # bz * 2, 1, 4096
|
925 |
+
|
926 |
+
# past_voxel_ridge = model.ridge(past_voxel)
|
927 |
+
# voxel_ridge = torch.cat((voxel_ridge.unsqueeze(1), past_voxel_ridge.unsqueeze(1)), axis=1)
|
928 |
+
#print(voxel_ridge.shape)
|
929 |
+
|
930 |
+
clip_voxels, blurry_image_enc_, depth_image_enc_ = model.backbone(voxel_ridge, idx = train_i)
|
931 |
+
|
932 |
+
clip_voxels_norm = nn.functional.normalize(clip_voxels.flatten(1), dim=-1)
|
933 |
+
clip_target_norm = nn.functional.normalize(clip_target.flatten(1), dim=-1)
|
934 |
+
|
935 |
+
if epoch < int(mixup_pct * num_epochs):
|
936 |
+
loss_clip = utils.mixco_nce(
|
937 |
+
clip_voxels_norm,
|
938 |
+
clip_target_norm,
|
939 |
+
temp=.006,
|
940 |
+
perm=perm, betas=betas, select=select)
|
941 |
+
else:
|
942 |
+
epoch_temp = soft_loss_temps[epoch-int(mixup_pct*num_epochs)]
|
943 |
+
loss_clip = utils.soft_clip_loss(
|
944 |
+
clip_voxels_norm,
|
945 |
+
clip_target_norm,
|
946 |
+
temp=epoch_temp)
|
947 |
+
|
948 |
+
loss_clip_total += loss_clip.item()
|
949 |
+
loss_clip *= clip_scale
|
950 |
+
loss = loss_clip
|
951 |
+
|
952 |
+
if blurry_recon:
|
953 |
+
downsampled_image = nn.functional.interpolate(image, size=(8, 8), mode='bilinear', align_corners=False)
|
954 |
+
re_upsampled_image = add_saturation(nn.functional.interpolate(downsampled_image, size=(128, 128), mode='nearest'))
|
955 |
+
re_upsampled_enc = autoenc.encode(2*re_upsampled_image-1).latents * 0.18215
|
956 |
+
|
957 |
+
loss_blurry = (l1(blurry_image_enc_, blurry_image_enc) + l1(blurry_image_enc_, re_upsampled_enc))
|
958 |
+
loss_blurry += l1(torch.var(blurry_image_enc), torch.var(blurry_image_enc_))
|
959 |
+
loss_blurry_total += loss_blurry.item()
|
960 |
+
loss_blurry *= blur_scale
|
961 |
+
loss += loss_blurry
|
962 |
+
|
963 |
+
if depth_recon:
|
964 |
+
loss_depth = l1(depth_image_enc_, depth_image_enc)
|
965 |
+
# loss_depth += l1(torch.var(depth_image_enc_), torch.var(depth_image_enc))
|
966 |
+
loss_depth_total += loss_depth.item()
|
967 |
+
loss_depth *= depth_scale
|
968 |
+
loss += loss_depth
|
969 |
+
|
970 |
+
# forward and backward top 1 accuracy
|
971 |
+
labels = torch.arange(len(clip_target_norm)).to(clip_voxels_norm.device)
|
972 |
+
fwd_percent_correct += utils.topk(torch.abs(utils.batchwise_cosine_similarity(clip_voxels_norm, clip_target_norm)), labels, k=1).item()
|
973 |
+
bwd_percent_correct += utils.topk(torch.abs(utils.batchwise_cosine_similarity(clip_target_norm, clip_voxels_norm)), labels, k=1).item()
|
974 |
+
|
975 |
+
if blurry_recon:
|
976 |
+
with torch.no_grad():
|
977 |
+
# only doing pixcorr eval on a subset of the samples per batch because its costly & slow to compute autoenc.decode()
|
978 |
+
random_samps = np.random.choice(np.arange(len(voxel)), size=batch_size//5, replace=False)
|
979 |
+
# random_samps = np.arange(batch_size//5)
|
980 |
+
blurry_recon_images = (autoenc.decode(blurry_image_enc_[random_samps]/0.18215).sample/ 2 + 0.5).clamp(0,1)
|
981 |
+
# pixcorr_origsize_nanmean is computationally less intense than utils.pixcorr and uses nanmean instead of mean
|
982 |
+
pixcorr = utils.pixcorr_origsize_nanmean(image[random_samps], blurry_recon_images)
|
983 |
+
# pixcorr = utils.pixcorr(image[random_samps], blurry_recon_images)
|
984 |
+
# loss += (1 - pixcorr)
|
985 |
+
blurry_pixcorr += pixcorr.item()
|
986 |
+
# utils.check_loss(pixcorr)
|
987 |
+
|
988 |
+
utils.check_loss(loss)
|
989 |
+
accelerator.backward(loss)
|
990 |
+
optimizer.step()
|
991 |
+
|
992 |
+
losses.append(loss.item())
|
993 |
+
lrs.append(optimizer.param_groups[0]['lr'])
|
994 |
+
|
995 |
+
if lr_scheduler_type is not None:
|
996 |
+
lr_scheduler.step()
|
997 |
+
|
998 |
+
model.eval()
|
999 |
+
if local_rank==0:
|
1000 |
+
with torch.no_grad(), torch.cuda.amp.autocast(dtype=data_type):
|
1001 |
+
for test_i, (behav, past_behav, future_behav, old_behav) in enumerate(test_dl):
|
1002 |
+
# all test samples should be loaded per batch such that test_i should never exceed 0
|
1003 |
+
assert len(behav) == num_test
|
1004 |
+
|
1005 |
+
## Average same-image repeats ##
|
1006 |
+
if test_image is None:
|
1007 |
+
voxel = voxels[behav[:,0,5].cpu().long()]
|
1008 |
+
image = behav[:,0,0].cpu().long()
|
1009 |
+
|
1010 |
+
unique_image, sort_indices = torch.unique(image, return_inverse=True)
|
1011 |
+
for im in unique_image:
|
1012 |
+
locs = torch.where(im == image)[0]
|
1013 |
+
if test_image is None:
|
1014 |
+
test_image = images[im][None]
|
1015 |
+
test_voxel = torch.mean(voxel[locs],axis=0)[None]
|
1016 |
+
else:
|
1017 |
+
test_image = torch.vstack((test_image, images[im][None]))
|
1018 |
+
test_voxel = torch.vstack((test_voxel, torch.mean(voxel[locs],axis=0)[None]))
|
1019 |
+
|
1020 |
+
# random sample of 300
|
1021 |
+
random_indices = torch.arange(len(test_voxel))[:300]
|
1022 |
+
voxel = test_voxel[random_indices].to(device)
|
1023 |
+
image = test_image[random_indices].to(device)
|
1024 |
+
assert len(image) == 300
|
1025 |
+
|
1026 |
+
current_past_behav = past_behav[random_indices]
|
1027 |
+
|
1028 |
+
past_15_voxels = voxels[current_past_behav[:,:seq_len-1,5].cpu().long()].to(device) # batch_size, 15, 15279
|
1029 |
+
past_15_times = torch.Tensor([i for i in range(seq_len-1)]).to(device) # 15
|
1030 |
+
|
1031 |
+
if blurry_recon:
|
1032 |
+
# blurry_image_enc = autoenc.encode(2*utils.resize(image,128)-1).latent_dist.mode() * 0.18215
|
1033 |
+
blurry_image_enc = autoenc.encode(2*utils.resize(add_saturation(image),128)-1).latents * 0.18215
|
1034 |
+
|
1035 |
+
if depth_recon:
|
1036 |
+
# depth_images = utils.resize(midas_depth.model(image).unsqueeze(1).repeat(1,3,1,1), 128)
|
1037 |
+
depth_images = utils.resize(midas_depth.model(image).unsqueeze(1), 32)
|
1038 |
+
depth_images = (depth_images / depth_images.view(depth_images.shape[0], -1).max(dim=1)[0].view(-1, 1, 1, 1).expand_as(depth_images)).half()
|
1039 |
+
depth_image_enc = depth_images # autoenc.encode(2*depth_images-1).latents * 0.18215
|
1040 |
+
|
1041 |
+
clip_target = clip_model.embed_image(image.float())
|
1042 |
+
|
1043 |
+
|
1044 |
+
past_15_voxels = past_15_voxels.reshape(-1, past_15_voxels.shape[-1])
|
1045 |
+
past_15_times = past_15_times.repeat(voxel.shape[0], 1)
|
1046 |
+
past_15_times = past_15_times.reshape(-1)
|
1047 |
+
time_embeddings = model.time_embedding(past_15_times)
|
1048 |
+
past_info_full = torch.cat((past_15_voxels, time_embeddings), dim=-1)
|
1049 |
+
|
1050 |
+
positional_current_voxel = torch.zeros((voxel.shape[0], time_embeddings.shape[-1])).to(voxel.device)
|
1051 |
+
voxel = torch.cat((voxel, positional_current_voxel), dim=-1)
|
1052 |
+
voxel_ridge = model.ridge(torch.cat((voxel, past_info_full), dim=-2))
|
1053 |
+
voxel_ridge = voxel_ridge.view(int(voxel_ridge.shape[0]/seq_len), seq_len, hidden_dim)
|
1054 |
+
|
1055 |
+
#voxel_ridge = model.ridge(voxel).unsqueeze(1)
|
1056 |
+
|
1057 |
+
# voxel_ridge = torch.cat((voxel_ridge.unsqueeze(1),voxel_ridge.unsqueeze(1)),axis=1)
|
1058 |
+
|
1059 |
+
clip_voxels, blurry_image_enc_, depth_image_enc_ = model.backbone(voxel_ridge)
|
1060 |
+
|
1061 |
+
clip_voxels_norm = nn.functional.normalize(clip_voxels.flatten(1), dim=-1)
|
1062 |
+
clip_target_norm = nn.functional.normalize(clip_target.flatten(1), dim=-1)
|
1063 |
+
|
1064 |
+
loss_clip = utils.soft_clip_loss(
|
1065 |
+
clip_voxels_norm,
|
1066 |
+
clip_target_norm,
|
1067 |
+
temp=.006)
|
1068 |
+
test_loss_clip_total += loss_clip.item()
|
1069 |
+
loss_clip = loss_clip * clip_scale
|
1070 |
+
loss = loss_clip
|
1071 |
+
|
1072 |
+
if blurry_recon:
|
1073 |
+
downsampled_image = nn.functional.interpolate(image, size=(8, 8), mode='bilinear', align_corners=False)
|
1074 |
+
re_upsampled_image = add_saturation(nn.functional.interpolate(downsampled_image, size=(128, 128), mode='nearest'))
|
1075 |
+
re_upsampled_enc = autoenc.encode(2*re_upsampled_image-1).latents * 0.18215
|
1076 |
+
|
1077 |
+
loss_blurry = (l1(blurry_image_enc_, blurry_image_enc) + l1(blurry_image_enc_, re_upsampled_enc))
|
1078 |
+
loss_blurry += l1(torch.var(blurry_image_enc), torch.var(blurry_image_enc_))
|
1079 |
+
test_loss_blurry_total += loss_blurry.item()
|
1080 |
+
loss_blurry *= blur_scale
|
1081 |
+
loss += loss_blurry
|
1082 |
+
|
1083 |
+
# halving the batch size because the decoder is computationally heavy
|
1084 |
+
blurry_recon_images = (autoenc.decode(blurry_image_enc_[:len(voxel)//2]/0.18215).sample / 2 + 0.5).clamp(0,1)
|
1085 |
+
blurry_recon_images = torch.vstack((blurry_recon_images, (autoenc.decode(blurry_image_enc_[len(voxel)//2:]/0.18215).sample / 2 + 0.5).clamp(0,1)))
|
1086 |
+
pixcorr = utils.pixcorr(image, blurry_recon_images)
|
1087 |
+
loss += (1 - pixcorr)
|
1088 |
+
test_blurry_pixcorr += pixcorr.item()
|
1089 |
+
|
1090 |
+
if depth_recon:
|
1091 |
+
loss_depth = l1(depth_image_enc_, depth_image_enc)
|
1092 |
+
# loss_depth += l1(torch.var(depth_image_enc_), torch.var(depth_image_enc))
|
1093 |
+
test_loss_depth_total += loss_depth.item()
|
1094 |
+
loss_depth *= depth_scale
|
1095 |
+
loss += loss_depth
|
1096 |
+
|
1097 |
+
# forward and backward top 1 accuracy
|
1098 |
+
labels = torch.arange(len(clip_target_norm)).to(clip_voxels_norm.device)
|
1099 |
+
test_fwd_percent_correct += utils.topk(utils.batchwise_cosine_similarity(clip_voxels_norm, clip_target_norm), labels, k=1).item()
|
1100 |
+
test_bwd_percent_correct += utils.topk(utils.batchwise_cosine_similarity(clip_target_norm, clip_voxels_norm), labels, k=1).item()
|
1101 |
+
|
1102 |
+
utils.check_loss(loss)
|
1103 |
+
test_losses.append(loss.item())
|
1104 |
+
|
1105 |
+
# if utils.is_interactive(): clear_output(wait=True)
|
1106 |
+
print("---")
|
1107 |
+
|
1108 |
+
assert (test_i+1) == 1
|
1109 |
+
logs = {"train/loss": np.mean(losses[-(train_i+1):]),
|
1110 |
+
"test/loss": np.mean(test_losses[-(test_i+1):]),
|
1111 |
+
"train/lr": lrs[-1],
|
1112 |
+
"train/num_steps": len(losses),
|
1113 |
+
"test/num_steps": len(test_losses),
|
1114 |
+
"train/fwd_pct_correct": fwd_percent_correct / (train_i + 1),
|
1115 |
+
"train/bwd_pct_correct": bwd_percent_correct / (train_i + 1),
|
1116 |
+
"test/test_fwd_pct_correct": test_fwd_percent_correct / (test_i + 1),
|
1117 |
+
"test/test_bwd_pct_correct": test_bwd_percent_correct / (test_i + 1),
|
1118 |
+
"train/loss_clip_total": loss_clip_total / (train_i + 1),
|
1119 |
+
"train/loss_blurry_total": loss_blurry_total / (train_i + 1),
|
1120 |
+
"test/loss_clip_total": test_loss_clip_total / (test_i + 1),
|
1121 |
+
"test/loss_blurry_total": test_loss_blurry_total / (test_i + 1),
|
1122 |
+
"train/blurry_pixcorr": blurry_pixcorr / (train_i + 1),
|
1123 |
+
"test/blurry_pixcorr": test_blurry_pixcorr / (test_i + 1),
|
1124 |
+
"train/loss_depth_total": loss_depth_total / (train_i + 1),
|
1125 |
+
"test/loss_depth_total": test_loss_depth_total / (test_i + 1),
|
1126 |
+
}
|
1127 |
+
|
1128 |
+
if blurry_recon:
|
1129 |
+
# transform blurry recon latents to images and plot it
|
1130 |
+
fig, axes = plt.subplots(1, 8, figsize=(10, 4))
|
1131 |
+
jj=-1
|
1132 |
+
for j in [0,1,2,3]:
|
1133 |
+
jj+=1
|
1134 |
+
axes[jj].imshow(utils.torch_to_Image((autoenc.decode(blurry_image_enc[[j]]/0.18215).sample / 2 + 0.5).clamp(0,1)))
|
1135 |
+
axes[jj].axis('off')
|
1136 |
+
jj+=1
|
1137 |
+
axes[jj].imshow(utils.torch_to_Image((autoenc.decode(blurry_image_enc_[[j]]/0.18215).sample / 2 + 0.5).clamp(0,1)))
|
1138 |
+
axes[jj].axis('off')
|
1139 |
+
|
1140 |
+
if wandb_log:
|
1141 |
+
logs[f"test/recons"] = wandb.Image(fig, caption=f"epoch{epoch:03d}")
|
1142 |
+
plt.close()
|
1143 |
+
else:
|
1144 |
+
plt.show()
|
1145 |
+
|
1146 |
+
if depth_recon:
|
1147 |
+
# transform blurry recon latents to images and plot it
|
1148 |
+
fig, axes = plt.subplots(1, 8, figsize=(10, 4))
|
1149 |
+
# axes[0].imshow(utils.torch_to_Image((autoenc.decode(depth_image_enc[[0]]/0.18215).sample / 2 + 0.5).clamp(0,1)))
|
1150 |
+
# axes[1].imshow(utils.torch_to_Image((autoenc.decode(depth_image_enc_[[0]]/0.18215).sample / 2 + 0.5).clamp(0,1)))
|
1151 |
+
jj=-1
|
1152 |
+
for j in [0,1,2,3]:
|
1153 |
+
jj+=1
|
1154 |
+
axes[jj].imshow(utils.torch_to_Image(utils.resize(depth_image_enc[[j]].view(1,1,32,32).clamp(0,1), 224)))
|
1155 |
+
axes[jj].axis('off')
|
1156 |
+
jj+=1
|
1157 |
+
axes[jj].imshow(utils.torch_to_Image(utils.resize(depth_image_enc_[[j]].view(1,1,32,32).clamp(0,1), 224)))
|
1158 |
+
axes[jj].axis('off')
|
1159 |
+
if wandb_log:
|
1160 |
+
logs[f"test/depth_recons"] = wandb.Image(fig, caption=f"epoch{epoch:03d}")
|
1161 |
+
plt.close()
|
1162 |
+
else:
|
1163 |
+
plt.show()
|
1164 |
+
|
1165 |
+
progress_bar.set_postfix(**logs)
|
1166 |
+
|
1167 |
+
# Save model checkpoint and reconstruct
|
1168 |
+
if epoch % ckpt_interval == 0:
|
1169 |
+
if not utils.is_interactive():
|
1170 |
+
save_ckpt(f'last')
|
1171 |
+
|
1172 |
+
if wandb_log: wandb.log(logs)
|
1173 |
+
|
1174 |
+
# wait for other GPUs to catch up if needed
|
1175 |
+
accelerator.wait_for_everyone()
|
1176 |
+
torch.cuda.empty_cache()
|
1177 |
+
gc.collect()
|
1178 |
+
|
1179 |
+
print("\n===Finished!===\n")
|
1180 |
+
if ckpt_saving:
|
1181 |
+
save_ckpt(f'last')
|
1182 |
+
if not utils.is_interactive():
|
1183 |
+
sys.exit(0)
|
1184 |
+
|
1185 |
+
|
1186 |
+
# In[ ]:
|
1187 |
+
|
1188 |
+
|
1189 |
+
plt.plot(losses)
|
1190 |
+
plt.show()
|
1191 |
+
plt.plot(test_losses)
|
1192 |
+
plt.show()
|
1193 |
+
|
1194 |
+
|
1195 |
+
# # Retrieve nearest neighbor in the training set using test set data
|
1196 |
+
|
1197 |
+
# In[ ]:
|
1198 |
+
|
1199 |
+
|
1200 |
+
annots = np.load("/fsx/proj-fmri/shared/mindeyev2_dataset/COCO_73k_annots_curated.npy")
|
1201 |
+
|
1202 |
+
|
1203 |
+
# In[ ]:
|
1204 |
+
|
1205 |
+
|
1206 |
+
ii=2
|
1207 |
+
all_indices = np.unique(train_73k_images) #np.hstack((test_vox_indices[ii],train_vox_indices))
|
1208 |
+
with torch.no_grad(), torch.cuda.amp.autocast():
|
1209 |
+
for batch in tqdm(range(0,len(all_indices),512)):
|
1210 |
+
if batch==0:
|
1211 |
+
clip_target = clip_model.embed_image(images[all_indices[batch:batch+512]]).cpu()
|
1212 |
+
else:
|
1213 |
+
target = clip_model.embed_image(images[all_indices[batch:batch+512]]).cpu()
|
1214 |
+
clip_target = torch.vstack((clip_target,target))
|
1215 |
+
clip_target_norm = nn.functional.normalize(clip_target.flatten(1), dim=-1)
|
1216 |
+
|
1217 |
+
voxel = test_voxel[[ii]].to(device)
|
1218 |
+
image = test_image[[ii]].to(device)
|
1219 |
+
|
1220 |
+
print("Original Image (test set)")
|
1221 |
+
display(utils.torch_to_Image(image))
|
1222 |
+
|
1223 |
+
clip_target = clip_model.embed_image(image).cpu()
|
1224 |
+
# clip_target_norm = torch.vstack((clip_target_norm, nn.functional.normalize(clip_target.flatten(1), dim=-1)))
|
1225 |
+
|
1226 |
+
voxel_ridge = model.ridge(voxel).unsqueeze(1)
|
1227 |
+
clip_voxels, _, _ = model.backbone(voxel_ridge)
|
1228 |
+
clip_voxels_norm = nn.functional.normalize(clip_voxels.flatten(1), dim=-1)
|
1229 |
+
clip_voxels_norm = nn.functional.normalize(clip_target.flatten(1), dim=-1)
|
1230 |
+
|
1231 |
+
print("clip_voxels_norm", clip_voxels_norm.shape)
|
1232 |
+
print("clip_target_norm", clip_target_norm.shape)
|
1233 |
+
|
1234 |
+
sortt = torch.argsort(utils.batchwise_cosine_similarity(clip_voxels_norm.cpu(),
|
1235 |
+
clip_target_norm).flatten()).flip(0)
|
1236 |
+
picks = all_indices[sortt[:5]]
|
1237 |
+
|
1238 |
+
print("\nNearest neighbors in training set")
|
1239 |
+
for ip,p in enumerate(picks):
|
1240 |
+
display(utils.torch_to_Image(images[[p]]))
|
1241 |
+
# print(utils.select_annotations([annots[int(p)]]))
|
1242 |
+
if ip==0: predicted_caption = utils.select_annotations([annots[int(p)]])[0]
|
1243 |
+
|
1244 |
+
print("\n=====\npredicted_caption:\n", predicted_caption)
|
1245 |
+
|
1246 |
+
|
1247 |
+
# # Feed into Stable Diffusion XL for reconstructions
|
1248 |
+
|
1249 |
+
# In[ ]:
|
1250 |
+
|
1251 |
+
|
1252 |
+
from diffusers import StableDiffusionXLPipeline
|
1253 |
+
pipe = StableDiffusionXLPipeline.from_pretrained(
|
1254 |
+
"/fsx/proj-fmri/shared/cache/models--stabilityai--stable-diffusion-xl-base-1.0/snapshots/f898a3e026e802f68796b95e9702464bac78d76f", torch_dtype=torch.float16, variant="fp16", use_safetensors=True
|
1255 |
+
)
|
1256 |
+
pipe.to("cuda")
|
1257 |
+
pass
|
1258 |
+
|
1259 |
+
|
1260 |
+
# In[ ]:
|
1261 |
+
|
1262 |
+
|
1263 |
+
prompt = predicted_caption
|
1264 |
+
recon = pipe(prompt=prompt).images[0]
|
1265 |
+
|
1266 |
+
|
1267 |
+
# In[ ]:
|
1268 |
+
|
1269 |
+
|
1270 |
+
print("Seen image")
|
1271 |
+
display(utils.torch_to_Image(image))
|
1272 |
+
|
1273 |
+
print("Reconstruction")
|
1274 |
+
utils.torch_to_Image(utils.resize(transforms.ToTensor()(recon),224))
|
1275 |
+
|
src/Train_diffusion.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
src/accel.slurm
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
#SBATCH --account=topfmri
|
3 |
+
#SBATCH --partition=g40x
|
4 |
+
#SBATCH --job-name=ms
|
5 |
+
#SBATCH --nodes=1
|
6 |
+
#SBATCH --ntasks-per-node=4 # should = number of gpus
|
7 |
+
#SBATCH --gres=gpu:4
|
8 |
+
#SBATCH --time=32:00:00 # total run time limit (HH:MM:SS)
|
9 |
+
#SBATCH -e slurms/%j.err
|
10 |
+
#SBATCH -o slurms/%j.out
|
11 |
+
#SBATCH --comment=topfmri
|
12 |
+
|
13 |
+
module load cuda/11.7 # should match torch.cuda.version
|
14 |
+
|
15 |
+
export NUM_GPUS=4 # Set to equal gres=gpu:#
|
16 |
+
export GLOBAL_BATCH_SIZE=512
|
17 |
+
|
18 |
+
# Make sure another job doesnt use same port, here using random number
|
19 |
+
export MASTER_PORT=$((RANDOM % (19000 - 11000 + 1) + 11000))
|
20 |
+
|
21 |
+
export HOSTNAMES=$(scontrol show hostnames "$SLURM_JOB_NODELIST")
|
22 |
+
export MASTER_ADDR=$(scontrol show hostnames "$SLURM_JOB_NODELIST" | head -n 1)
|
23 |
+
export COUNT_NODE=$(scontrol show hostnames "$SLURM_JOB_NODELIST" | wc -l)
|
24 |
+
|
25 |
+
export WANDB_DIR="/fsx/proj-fmri/paulscotti/MindEyeV2/wandb/"
|
26 |
+
export WANDB_CACHE_DIR="/fsx/home-paulscotti/.cache"
|
27 |
+
export WANDB_MODE="online"
|
28 |
+
|
29 |
+
echo MASTER_ADDR=${MASTER_ADDR}
|
30 |
+
echo MASTER_PORT=${MASTER_PORT}
|
31 |
+
echo WORLD_SIZE=${COUNT_NODE}
|
32 |
+
|
33 |
+
###########
|
34 |
+
|
35 |
+
cd /fsx/proj-fmri/paulscotti/MindEyeV2
|
36 |
+
accelerate launch --num_processes=$(($NUM_GPUS * $COUNT_NODE)) --num_machines=$COUNT_NODE --main_process_ip=$MASTER_ADDR --main_process_port=$MASTER_PORT Train.py --data_path=/fsx/proj-fmri/shared/mindeyev2_dataset --model_name=test --subj=1 --batch_size=${GLOBAL_BATCH_SIZE} --n_samples_save=0 --max_lr=3e-4 --mixup_pct=.33 --num_epochs=240 --ckpt_interval=999 --no-use_image_aug
|
37 |
+
|
38 |
+
# --wandb_log
|
src/accel2.slurm
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
#SBATCH --account=fmri
|
3 |
+
#SBATCH --partition=g40x
|
4 |
+
#SBATCH --job-name=ms
|
5 |
+
#SBATCH --nodes=1
|
6 |
+
#SBATCH --ntasks-per-node=4 # should = number of gpus
|
7 |
+
#SBATCH --gres=gpu:8
|
8 |
+
#SBATCH --time=32:00:00 # total run time limit (HH:MM:SS)
|
9 |
+
#SBATCH -e slurms/%j.err
|
10 |
+
#SBATCH -o slurms/%j.out
|
11 |
+
#SBATCH --comment=fmri
|
12 |
+
|
13 |
+
|
14 |
+
|
15 |
+
export NUM_GPUS=8 # Set to equal gres=gpu:#
|
16 |
+
export GLOBAL_BATCH_SIZE=512
|
17 |
+
|
18 |
+
# Make sure another job doesnt use same port, here using random number
|
19 |
+
export MASTER_PORT=$((RANDOM % (19000 - 11000 + 1) + 11000))
|
20 |
+
|
21 |
+
export HOSTNAMES=$(scontrol show hostnames "$SLURM_JOB_NODELIST")
|
22 |
+
export MASTER_ADDR=$(scontrol show hostnames "$SLURM_JOB_NODELIST" | head -n 1)
|
23 |
+
export COUNT_NODE=$(scontrol show hostnames "$SLURM_JOB_NODELIST" | wc -l)
|
24 |
+
|
25 |
+
export WANDB_DIR="/fsx/proj-fmri/ckadirt/MindEyeV2/src/wandb"
|
26 |
+
export WANDB_CACHE_DIR="/admin/home-ckadirt/.cache"
|
27 |
+
export WANDB_MODE="online"
|
28 |
+
|
29 |
+
echo MASTER_ADDR=${MASTER_ADDR}
|
30 |
+
echo MASTER_PORT=${MASTER_PORT}
|
31 |
+
echo WORLD_SIZE=${COUNT_NODE}
|
32 |
+
|
33 |
+
source /admin/home-ckadirt/.bashrc
|
34 |
+
|
35 |
+
###########
|
36 |
+
|
37 |
+
cd /fsx/proj-fmri/ckadirt/MindEyeV2/src/
|
38 |
+
accelerate launch --num_processes=$(($NUM_GPUS * $COUNT_NODE)) --num_machines=$COUNT_NODE --main_process_ip=$MASTER_ADDR --main_process_port=$MASTER_PORT Train-with-memory-cat.py --data_path=/fsx/proj-fmri/shared/mindeyev2_dataset --model_name=test_mem_cat_r --subj=1 --batch_size=${GLOBAL_BATCH_SIZE} --n_samples_save=0 --max_lr=3e-5 --mixup_pct=.33 --num_epochs=240 --ckpt_interval=999 --no-use_image_aug
|
39 |
+
|
40 |
+
# --wandb_log
|
src/accel3.slurm
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
#SBATCH --account=fmri
|
3 |
+
#SBATCH --partition=g40x
|
4 |
+
#SBATCH --job-name=ms
|
5 |
+
#SBATCH --nodes=1
|
6 |
+
#SBATCH --ntasks-per-node=4 # should = number of gpus
|
7 |
+
#SBATCH --gres=gpu:4
|
8 |
+
#SBATCH --time=32:00:00 # total run time limit (HH:MM:SS)
|
9 |
+
#SBATCH -e slurms/%j.err
|
10 |
+
#SBATCH -o slurms/%j.out
|
11 |
+
#SBATCH --comment=fmri
|
12 |
+
|
13 |
+
|
14 |
+
|
15 |
+
export NUM_GPUS=4 # Set to equal gres=gpu:#
|
16 |
+
export GLOBAL_BATCH_SIZE=128
|
17 |
+
|
18 |
+
# Make sure another job doesnt use same port, here using random number
|
19 |
+
export MASTER_PORT=$((RANDOM % (19000 - 11000 + 1) + 11000))
|
20 |
+
|
21 |
+
export HOSTNAMES=$(scontrol show hostnames "$SLURM_JOB_NODELIST")
|
22 |
+
export MASTER_ADDR=$(scontrol show hostnames "$SLURM_JOB_NODELIST" | head -n 1)
|
23 |
+
export COUNT_NODE=$(scontrol show hostnames "$SLURM_JOB_NODELIST" | wc -l)
|
24 |
+
|
25 |
+
export WANDB_DIR="/fsx/proj-fmri/ckadirt/MindEyeV2/src/wandb"
|
26 |
+
export WANDB_CACHE_DIR="/admin/home-ckadirt/.cache"
|
27 |
+
export WANDB_MODE="online"
|
28 |
+
|
29 |
+
echo MASTER_ADDR=${MASTER_ADDR}
|
30 |
+
echo MASTER_PORT=${MASTER_PORT}
|
31 |
+
echo WORLD_SIZE=${COUNT_NODE}
|
32 |
+
|
33 |
+
source /admin/home-ckadirt/.bashrc
|
34 |
+
|
35 |
+
###########
|
36 |
+
|
37 |
+
cd /fsx/proj-fmri/ckadirt/MindEyeV2/src/
|
38 |
+
accelerate launch --num_processes=$(($NUM_GPUS * $COUNT_NODE)) --num_machines=$COUNT_NODE --main_process_ip=$MASTER_ADDR --main_process_port=$MASTER_PORT Train-with-memory.py --data_path=/fsx/proj-fmri/shared/mindeyev2_dataset --model_name=test_mem --subj=1 --batch_size=${GLOBAL_BATCH_SIZE} --n_samples_save=0 --max_lr=3e-4 --mixup_pct=.33 --num_epochs=40 --ckpt_interval=999 --no-use_image_aug
|
39 |
+
|
40 |
+
# --wandb_log
|
src/accel4.slurm
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
#SBATCH --account=fmri
|
3 |
+
#SBATCH --partition=g40x
|
4 |
+
#SBATCH --job-name=ms
|
5 |
+
#SBATCH --nodes=1
|
6 |
+
#SBATCH --ntasks-per-node=4 # should = number of gpus
|
7 |
+
#SBATCH --gres=gpu:8
|
8 |
+
#SBATCH --time=32:00:00 # total run time limit (HH:MM:SS)
|
9 |
+
#SBATCH -e slurms/%j.err
|
10 |
+
#SBATCH -o slurms/%j.out
|
11 |
+
#SBATCH --comment=fmri
|
12 |
+
|
13 |
+
|
14 |
+
|
15 |
+
export NUM_GPUS=8 # Set to equal gres=gpu:#
|
16 |
+
export GLOBAL_BATCH_SIZE=512
|
17 |
+
|
18 |
+
# Make sure another job doesnt use same port, here using random number
|
19 |
+
export MASTER_PORT=$((RANDOM % (19000 - 11000 + 1) + 11000))
|
20 |
+
|
21 |
+
export HOSTNAMES=$(scontrol show hostnames "$SLURM_JOB_NODELIST")
|
22 |
+
export MASTER_ADDR=$(scontrol show hostnames "$SLURM_JOB_NODELIST" | head -n 1)
|
23 |
+
export COUNT_NODE=$(scontrol show hostnames "$SLURM_JOB_NODELIST" | wc -l)
|
24 |
+
|
25 |
+
export WANDB_DIR="/fsx/proj-fmri/ckadirt/MindEyeV2/src/wandb"
|
26 |
+
export WANDB_CACHE_DIR="/admin/home-ckadirt/.cache"
|
27 |
+
export WANDB_MODE="online"
|
28 |
+
|
29 |
+
echo MASTER_ADDR=${MASTER_ADDR}
|
30 |
+
echo MASTER_PORT=${MASTER_PORT}
|
31 |
+
echo WORLD_SIZE=${COUNT_NODE}
|
32 |
+
|
33 |
+
source /admin/home-ckadirt/.bashrc
|
34 |
+
|
35 |
+
###########
|
36 |
+
|
37 |
+
cd /fsx/proj-fmri/ckadirt/MindEyeV2/src/
|
38 |
+
accelerate launch --num_processes=$(($NUM_GPUS * $COUNT_NODE)) --num_machines=$COUNT_NODE --main_process_ip=$MASTER_ADDR --main_process_port=$MASTER_PORT Train.py --data_path=/fsx/proj-fmri/shared/mindeyev2_dataset --model_name=baseline_r --subj=1 --batch_size=${GLOBAL_BATCH_SIZE} --n_samples_save=0 --max_lr=3e-5 --mixup_pct=.33 --num_epochs=240 --ckpt_interval=999 --no-use_image_aug
|
39 |
+
|
40 |
+
# --wandb_log
|
src/accel5.slurm
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
#SBATCH --account=fmri
|
3 |
+
#SBATCH --partition=g40x
|
4 |
+
#SBATCH --job-name=memoryrr
|
5 |
+
#SBATCH --nodes=1
|
6 |
+
#SBATCH --ntasks-per-node=4 # should = number of gpus
|
7 |
+
#SBATCH --gres=gpu:8
|
8 |
+
#SBATCH --time=32:00:00 # total run time limit (HH:MM:SS)
|
9 |
+
#SBATCH -e slurms/%j.err
|
10 |
+
#SBATCH -o slurms/%j.out
|
11 |
+
#SBATCH --comment=fmri
|
12 |
+
|
13 |
+
|
14 |
+
|
15 |
+
export NUM_GPUS=8 # Set to equal gres=gpu:#
|
16 |
+
export GLOBAL_BATCH_SIZE=512
|
17 |
+
|
18 |
+
# Make sure another job doesnt use same port, here using random number
|
19 |
+
export MASTER_PORT=$((RANDOM % (19000 - 11000 + 1) + 11000))
|
20 |
+
|
21 |
+
export HOSTNAMES=$(scontrol show hostnames "$SLURM_JOB_NODELIST")
|
22 |
+
export MASTER_ADDR=$(scontrol show hostnames "$SLURM_JOB_NODELIST" | head -n 1)
|
23 |
+
export COUNT_NODE=$(scontrol show hostnames "$SLURM_JOB_NODELIST" | wc -l)
|
24 |
+
|
25 |
+
export WANDB_DIR="/fsx/proj-fmri/ckadirt/MindEyeV2/src/wandb"
|
26 |
+
export WANDB_CACHE_DIR="/admin/home-ckadirt/.cache"
|
27 |
+
export WANDB_MODE="online"
|
28 |
+
|
29 |
+
echo MASTER_ADDR=${MASTER_ADDR}
|
30 |
+
echo MASTER_PORT=${MASTER_PORT}
|
31 |
+
echo WORLD_SIZE=${COUNT_NODE}
|
32 |
+
|
33 |
+
source /admin/home-ckadirt/.bashrc
|
34 |
+
|
35 |
+
###########
|
36 |
+
|
37 |
+
cd /fsx/proj-fmri/ckadirt/MindEyeV2/src/
|
38 |
+
accelerate launch --num_processes=$(($NUM_GPUS * $COUNT_NODE)) --num_machines=$COUNT_NODE --main_process_ip=$MASTER_ADDR --main_process_port=$MASTER_PORT Train-with-memory-rr.py --data_path=/fsx/proj-fmri/shared/mindeyev2_dataset --model_name=testing-rr-uni_r --subj=1 --batch_size=${GLOBAL_BATCH_SIZE} --n_samples_save=0 --max_lr=1e-5 --mixup_pct=.66 --num_epochs=120 --ckpt_interval=999 --no-use_image_aug
|
39 |
+
|
40 |
+
# --wandb_log
|
src/accel6.slurm
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
#SBATCH --account=fmri
|
3 |
+
#SBATCH --partition=g40x
|
4 |
+
#SBATCH --job-name=memoryrr
|
5 |
+
#SBATCH --nodes=1
|
6 |
+
#SBATCH --ntasks-per-node=4 # should = number of gpus
|
7 |
+
#SBATCH --gres=gpu:8
|
8 |
+
#SBATCH --time=32:00:00 # total run time limit (HH:MM:SS)
|
9 |
+
#SBATCH -e slurms/%j.err
|
10 |
+
#SBATCH -o slurms/%j.out
|
11 |
+
#SBATCH --comment=fmri
|
12 |
+
|
13 |
+
|
14 |
+
|
15 |
+
export NUM_GPUS=8 # Set to equal gres=gpu:#
|
16 |
+
export GLOBAL_BATCH_SIZE=512
|
17 |
+
|
18 |
+
# Make sure another job doesnt use same port, here using random number
|
19 |
+
export MASTER_PORT=$((RANDOM % (19000 - 11000 + 1) + 11000))
|
20 |
+
|
21 |
+
export HOSTNAMES=$(scontrol show hostnames "$SLURM_JOB_NODELIST")
|
22 |
+
export MASTER_ADDR=$(scontrol show hostnames "$SLURM_JOB_NODELIST" | head -n 1)
|
23 |
+
export COUNT_NODE=$(scontrol show hostnames "$SLURM_JOB_NODELIST" | wc -l)
|
24 |
+
|
25 |
+
export WANDB_DIR="/fsx/proj-fmri/ckadirt/MindEyeV2/src/wandb"
|
26 |
+
export WANDB_CACHE_DIR="/admin/home-ckadirt/.cache"
|
27 |
+
export WANDB_MODE="online"
|
28 |
+
|
29 |
+
echo MASTER_ADDR=${MASTER_ADDR}
|
30 |
+
echo MASTER_PORT=${MASTER_PORT}
|
31 |
+
echo WORLD_SIZE=${COUNT_NODE}
|
32 |
+
|
33 |
+
source /admin/home-ckadirt/.bashrc
|
34 |
+
|
35 |
+
###########
|
36 |
+
|
37 |
+
cd /fsx/proj-fmri/ckadirt/MindEyeV2/src/
|
38 |
+
accelerate launch --num_processes=$(($NUM_GPUS * $COUNT_NODE)) --num_machines=$COUNT_NODE --main_process_ip=$MASTER_ADDR --main_process_port=$MASTER_PORT Train-with-memory-rr-dropout.py --data_path=/fsx/proj-fmri/shared/mindeyev2_dataset --model_name=testing-rr-uni_r --subj=1 --batch_size=${GLOBAL_BATCH_SIZE} --n_samples_save=0 --max_lr=3e-5 --mixup_pct=.66 --num_epochs=120 --ckpt_interval=999 --no-use_image_aug
|
39 |
+
|
40 |
+
# --wandb_log
|
src/accel7.slurm
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
#SBATCH --account=fmri
|
3 |
+
#SBATCH --partition=g40x
|
4 |
+
#SBATCH --job-name=memoryrr
|
5 |
+
#SBATCH --nodes=1
|
6 |
+
#SBATCH --ntasks-per-node=8 # should = number of gpus
|
7 |
+
#SBATCH --gres=gpu:8
|
8 |
+
#SBATCH --time=32:00:00 # total run time limit (HH:MM:SS)
|
9 |
+
#SBATCH -e slurms/%j.err
|
10 |
+
#SBATCH -o slurms/%j.out
|
11 |
+
#SBATCH --comment=fmri
|
12 |
+
|
13 |
+
|
14 |
+
|
15 |
+
export NUM_GPUS=8 # Set to equal gres=gpu:#!
|
16 |
+
export BATCH_SIZE=32
|
17 |
+
export GLOBAL_BATCH_SIZE=$((BATCH_SIZE * NUM_GPUS))
|
18 |
+
|
19 |
+
# Make sure another job doesnt use same port, here using random number
|
20 |
+
export MASTER_PORT=$((RANDOM % (19000 - 11000 + 1) + 11000))
|
21 |
+
|
22 |
+
export HOSTNAMES=$(scontrol show hostnames "$SLURM_JOB_NODELIST")
|
23 |
+
export MASTER_ADDR=$(scontrol show hostnames "$SLURM_JOB_NODELIST" | head -n 1)
|
24 |
+
export COUNT_NODE=$(scontrol show hostnames "$SLURM_JOB_NODELIST" | wc -l)
|
25 |
+
|
26 |
+
export WANDB_DIR="/fsx/proj-fmri/ckadirt/MindEyeV2/src/wandb"
|
27 |
+
export WANDB_CACHE_DIR="/admin/home-ckadirt/.cache"
|
28 |
+
export WANDB_MODE="online"
|
29 |
+
|
30 |
+
echo MASTER_ADDR=${MASTER_ADDR}
|
31 |
+
echo MASTER_PORT=${MASTER_PORT}
|
32 |
+
echo WORLD_SIZE=${COUNT_NODE}
|
33 |
+
|
34 |
+
source /admin/home-ckadirt/.bashrc
|
35 |
+
|
36 |
+
###########
|
37 |
+
|
38 |
+
cd /fsx/proj-fmri/ckadirt/MindEyeV2/src/
|
39 |
+
accelerate launch --num_processes=$(($NUM_GPUS * $COUNT_NODE)) --num_machines=$COUNT_NODE --main_process_ip=$MASTER_ADDR --main_process_port=$MASTER_PORT Train_MLPMixer-Copy2.py --data_path=/fsx/proj-fmri/shared/mindeyev2_dataset --model_name=testing-rr-1024-past-5 --subj=1 --batch_size=${GLOBAL_BATCH_SIZE} --max_lr=3e-4 --mixup_pct=.66 --num_epochs=120 --ckpt_interval=10 --no-use_image_aug --hidden_dim=1024 --seq_len=5
|
40 |
+
|
41 |
+
# --wandb_log
|
src/accel8.slurm
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
#SBATCH --account=fmri
|
3 |
+
#SBATCH --partition=g40x
|
4 |
+
#SBATCH --job-name=memoryrr
|
5 |
+
#SBATCH --nodes=1
|
6 |
+
#SBATCH --ntasks-per-node=8 # should = number of gpus
|
7 |
+
#SBATCH --gres=gpu:8
|
8 |
+
#SBATCH --time=32:00:00 # total run time limit (HH:MM:SS)
|
9 |
+
#SBATCH -e slurms/%j.err
|
10 |
+
#SBATCH -o slurms/%j.out
|
11 |
+
#SBATCH --comment=fmri
|
12 |
+
|
13 |
+
|
14 |
+
|
15 |
+
export NUM_GPUS=8 # Set to equal gres=gpu:#!
|
16 |
+
export BATCH_SIZE=32
|
17 |
+
export GLOBAL_BATCH_SIZE=$((BATCH_SIZE * NUM_GPUS))
|
18 |
+
|
19 |
+
# Make sure another job doesnt use same port, here using random number
|
20 |
+
export MASTER_PORT=$((RANDOM % (19000 - 11000 + 1) + 11000))
|
21 |
+
|
22 |
+
export HOSTNAMES=$(scontrol show hostnames "$SLURM_JOB_NODELIST")
|
23 |
+
export MASTER_ADDR=$(scontrol show hostnames "$SLURM_JOB_NODELIST" | head -n 1)
|
24 |
+
export COUNT_NODE=$(scontrol show hostnames "$SLURM_JOB_NODELIST" | wc -l)
|
25 |
+
|
26 |
+
export WANDB_DIR="/fsx/proj-fmri/ckadirt/MindEyeV2/src/wandb"
|
27 |
+
export WANDB_CACHE_DIR="/admin/home-ckadirt/.cache"
|
28 |
+
export WANDB_MODE="online"
|
29 |
+
|
30 |
+
echo MASTER_ADDR=${MASTER_ADDR}
|
31 |
+
echo MASTER_PORT=${MASTER_PORT}
|
32 |
+
echo WORLD_SIZE=${COUNT_NODE}
|
33 |
+
|
34 |
+
source /admin/home-ckadirt/.bashrc
|
35 |
+
|
36 |
+
###########
|
37 |
+
|
38 |
+
cd /fsx/proj-fmri/ckadirt/MindEyeV2/src/
|
39 |
+
accelerate launch --num_processes=$(($NUM_GPUS * $COUNT_NODE)) --num_machines=$COUNT_NODE --main_process_ip=$MASTER_ADDR --main_process_port=$MASTER_PORT Train_MLPMixer-img.py --data_path=/fsx/proj-fmri/shared/mindeyev2_dataset --model_name=testing-rr-1024-img-past-2 --subj=1 --batch_size=${GLOBAL_BATCH_SIZE} --max_lr=3e-4 --mixup_pct=.66 --num_epochs=120 --ckpt_interval=10 --no-use_image_aug --hidden_dim=1024 --seq_len=2
|
40 |
+
|
41 |
+
# --wandb_log
|
src/accel9.slurm
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
#SBATCH --account=fmri
|
3 |
+
#SBATCH --partition=g40x
|
4 |
+
#SBATCH --job-name=blip2captions
|
5 |
+
#SBATCH --nodes=1
|
6 |
+
#SBATCH --ntasks-per-node=1 # should = number of gpus
|
7 |
+
#SBATCH --gres=gpu:1
|
8 |
+
#SBATCH --time=24:00:00 # total run time limit (HH:MM:SS)
|
9 |
+
#SBATCH --comment=medarc
|
10 |
+
#SBATCH --requeue
|
11 |
+
#SBATCH -e slurms/%j.err
|
12 |
+
#SBATCH -o slurms/%j.out
|
13 |
+
|
14 |
+
|
15 |
+
|
16 |
+
|
17 |
+
export NUM_GPUS=1 # Set to equal gres=gpu:#!
|
18 |
+
export BATCH_SIZE=128
|
19 |
+
export GLOBAL_BATCH_SIZE=$((BATCH_SIZE * NUM_GPUS))
|
20 |
+
|
21 |
+
# Make sure another job doesnt use same port, here using random number
|
22 |
+
export MASTER_PORT=$((RANDOM % (19000 - 11000 + 1) + 11000))
|
23 |
+
|
24 |
+
export HOSTNAMES=$(scontrol show hostnames "$SLURM_JOB_NODELIST")
|
25 |
+
export MASTER_ADDR=$(scontrol show hostnames "$SLURM_JOB_NODELIST" | head -n 1)
|
26 |
+
export COUNT_NODE=$(scontrol show hostnames "$SLURM_JOB_NODELIST" | wc -l)
|
27 |
+
|
28 |
+
export WANDB_DIR="/fsx/proj-fmri/ckadirt/MindEyeV2/src/wandb"
|
29 |
+
export WANDB_CACHE_DIR="/admin/home-ckadirt/.cache"
|
30 |
+
export WANDB_MODE="online"
|
31 |
+
|
32 |
+
echo MASTER_ADDR=${MASTER_ADDR}
|
33 |
+
echo MASTER_PORT=${MASTER_PORT}
|
34 |
+
echo WORLD_SIZE=${COUNT_NODE}
|
35 |
+
|
36 |
+
source /admin/home-ckadirt/.bashrc
|
37 |
+
|
38 |
+
###########
|
39 |
+
|
40 |
+
cd /fsx/proj-fmri/ckadirt/MindEyeV2/src/
|
41 |
+
# accelerate launch --num_processes=$(($NUM_GPUS * $COUNT_NODE)) --num_machines=$COUNT_NODE --main_process_ip=$MASTER_ADDR --main_process_port=$MASTER_PORT
|
42 |
+
python train2.py --data_path=/fsx/proj-fmri/shared/mindeyev2_dataset --model_name=caption_clip_0.5_bz --subj=1 --batch_size=${GLOBAL_BATCH_SIZE} --max_lr=1e-4 --mixup_pct=.66 --num_epochs=50 --use_image_aug --ckpt_interval=15 --clip_mse_ratio=0.5
|
43 |
+
|
44 |
+
# --wandb_log
|
src/blip2_captions.py
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
import json
|
4 |
+
import argparse
|
5 |
+
import numpy as np
|
6 |
+
import math
|
7 |
+
from einops import rearrange
|
8 |
+
import time
|
9 |
+
import random
|
10 |
+
import h5py
|
11 |
+
from tqdm import tqdm
|
12 |
+
|
13 |
+
import webdataset as wds
|
14 |
+
import gc
|
15 |
+
|
16 |
+
import matplotlib.pyplot as plt
|
17 |
+
import torch
|
18 |
+
import torch.nn as nn
|
19 |
+
from torchvision import transforms
|
20 |
+
from torchvision.transforms import ToPILImage #CHANGED (added)
|
21 |
+
|
22 |
+
from accelerate import Accelerator, DeepSpeedPlugin
|
23 |
+
|
24 |
+
# tf32 data type is faster than standard float32
|
25 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
26 |
+
|
27 |
+
# custom functions #
|
28 |
+
import utils
|
29 |
+
|
30 |
+
global_batch_size = 128 #128
|
31 |
+
|
32 |
+
### Multi-GPU config ###
|
33 |
+
local_rank = os.getenv('RANK')
|
34 |
+
if local_rank is None:
|
35 |
+
local_rank = 0
|
36 |
+
else:
|
37 |
+
local_rank = int(local_rank)
|
38 |
+
print("LOCAL RANK ", local_rank)
|
39 |
+
|
40 |
+
num_devices = torch.cuda.device_count()
|
41 |
+
if num_devices==0: num_devices = 1
|
42 |
+
|
43 |
+
accelerator = Accelerator(split_batches=False)
|
44 |
+
|
45 |
+
### UNCOMMENT BELOW STUFF TO USE DEEPSPEED (also comment out the immediately above "accelerator = " line) ###
|
46 |
+
|
47 |
+
# if num_devices <= 1 and utils.is_interactive():
|
48 |
+
# # can emulate a distributed environment for deepspeed to work in jupyter notebook
|
49 |
+
# os.environ["MASTER_ADDR"] = "localhost"
|
50 |
+
# os.environ["MASTER_PORT"] = str(np.random.randint(10000)+9000)
|
51 |
+
# os.environ["RANK"] = "0"
|
52 |
+
# os.environ["LOCAL_RANK"] = "0"
|
53 |
+
# os.environ["WORLD_SIZE"] = "1"
|
54 |
+
# os.environ["GLOBAL_BATCH_SIZE"] = str(global_batch_size) # set this to your batch size!
|
55 |
+
# global_batch_size = os.environ["GLOBAL_BATCH_SIZE"]
|
56 |
+
|
57 |
+
# # alter the deepspeed config according to your global and local batch size
|
58 |
+
# if local_rank == 0:
|
59 |
+
# with open('deepspeed_config_stage2.json', 'r') as file:
|
60 |
+
# config = json.load(file)
|
61 |
+
# config['train_batch_size'] = int(os.environ["GLOBAL_BATCH_SIZE"])
|
62 |
+
# config['train_micro_batch_size_per_gpu'] = int(os.environ["GLOBAL_BATCH_SIZE"]) // num_devices
|
63 |
+
# with open('deepspeed_config_stage2.json', 'w') as file:
|
64 |
+
# json.dump(config, file)
|
65 |
+
# else:
|
66 |
+
# # give some time for the local_rank=0 gpu to prep new deepspeed config file
|
67 |
+
# time.sleep(10)
|
68 |
+
# deepspeed_plugin = DeepSpeedPlugin("deepspeed_config_stage2.json")
|
69 |
+
# accelerator = Accelerator(split_batches=False, deepspeed_plugin=deepspeed_plugin)
|
70 |
+
|
71 |
+
|
src/blip_tryal.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
src/checking_models.ipynb
ADDED
@@ -0,0 +1,1526 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 25,
|
6 |
+
"id": "ef9e1556-7840-4004-b181-a2c97ac2ab17",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [],
|
9 |
+
"source": [
|
10 |
+
"import os\n",
|
11 |
+
"import torch\n",
|
12 |
+
"import torch.nn as nn\n",
|
13 |
+
"import numpy as np\n",
|
14 |
+
"import matplotlib.pyplot as plt"
|
15 |
+
]
|
16 |
+
},
|
17 |
+
{
|
18 |
+
"cell_type": "markdown",
|
19 |
+
"id": "b6f12dd4-f3aa-4981-b604-b72e67229011",
|
20 |
+
"metadata": {},
|
21 |
+
"source": [
|
22 |
+
"# DinoV2"
|
23 |
+
]
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"cell_type": "code",
|
27 |
+
"execution_count": 26,
|
28 |
+
"id": "2a604617-b602-4503-b288-e9828684505e",
|
29 |
+
"metadata": {},
|
30 |
+
"outputs": [
|
31 |
+
{
|
32 |
+
"name": "stderr",
|
33 |
+
"output_type": "stream",
|
34 |
+
"text": [
|
35 |
+
"Using cache found in /fsx/proj-fmri/shared/cache/dinov2/hub/facebookresearch_dinov2_main\n"
|
36 |
+
]
|
37 |
+
}
|
38 |
+
],
|
39 |
+
"source": [
|
40 |
+
"# need to change TORCH_HOME env variable to specify pretrained model should go in shared folder, not home directory\n",
|
41 |
+
"os.environ['TORCH_HOME'] = '/fsx/proj-fmri/shared/cache/dinov2'\n",
|
42 |
+
"dinov2_model = torch.hub.load('facebookresearch/dinov2', 'dinov2_vitl14')\n",
|
43 |
+
"# remove initial image patching\n",
|
44 |
+
"dinov2_model.patch_embed = nn.Identity()\n",
|
45 |
+
"dinov2_model.patch_embed = nn.Identity()"
|
46 |
+
]
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"cell_type": "code",
|
50 |
+
"execution_count": 27,
|
51 |
+
"id": "32da913d-d931-4967-a5e8-bd40c21d1ad9",
|
52 |
+
"metadata": {},
|
53 |
+
"outputs": [
|
54 |
+
{
|
55 |
+
"name": "stdout",
|
56 |
+
"output_type": "stream",
|
57 |
+
"text": [
|
58 |
+
"torch.Size([2, 33, 1024])\n"
|
59 |
+
]
|
60 |
+
}
|
61 |
+
],
|
62 |
+
"source": [
|
63 |
+
"dinov2_model.to(\"cuda\")\n",
|
64 |
+
"input = torch.randn((2,33,1024)).to(\"cuda\")\n",
|
65 |
+
"\n",
|
66 |
+
"for block in dinov2_model.blocks: input = block(input)\n",
|
67 |
+
"input = dinov2_model.norm(input)\n",
|
68 |
+
"\n",
|
69 |
+
"print(input.shape)"
|
70 |
+
]
|
71 |
+
},
|
72 |
+
{
|
73 |
+
"cell_type": "markdown",
|
74 |
+
"id": "febe89c0-06d0-4309-b378-a8d58b99bf4c",
|
75 |
+
"metadata": {},
|
76 |
+
"source": [
|
77 |
+
"# eva"
|
78 |
+
]
|
79 |
+
},
|
80 |
+
{
|
81 |
+
"cell_type": "code",
|
82 |
+
"execution_count": 28,
|
83 |
+
"id": "690204d0-13d7-452b-97af-14d144800e81",
|
84 |
+
"metadata": {},
|
85 |
+
"outputs": [],
|
86 |
+
"source": [
|
87 |
+
"from urllib.request import urlopen\n",
|
88 |
+
"from PIL import Image\n",
|
89 |
+
"import timm\n",
|
90 |
+
"\n",
|
91 |
+
"img = Image.open(urlopen(\n",
|
92 |
+
" 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'\n",
|
93 |
+
"))\n",
|
94 |
+
"\n",
|
95 |
+
"model = timm.create_model(\n",
|
96 |
+
" \"eva02_enormous_patch14_clip_224.laion2b\",\n",
|
97 |
+
" pretrained=True,\n",
|
98 |
+
" num_classes=0, # remove classifier nn.Linear\n",
|
99 |
+
")\n",
|
100 |
+
"model = model.eval()"
|
101 |
+
]
|
102 |
+
},
|
103 |
+
{
|
104 |
+
"cell_type": "code",
|
105 |
+
"execution_count": 39,
|
106 |
+
"id": "035e3e9d-86c9-4ddf-b760-7b78dded7d2e",
|
107 |
+
"metadata": {},
|
108 |
+
"outputs": [
|
109 |
+
{
|
110 |
+
"ename": "ValueError",
|
111 |
+
"evalue": "You have to specify pixel_values",
|
112 |
+
"output_type": "error",
|
113 |
+
"traceback": [
|
114 |
+
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
115 |
+
"\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)",
|
116 |
+
"Cell \u001b[0;32mIn[39], line 5\u001b[0m\n\u001b[1;32m 2\u001b[0m data_config \u001b[38;5;241m=\u001b[39m timm\u001b[38;5;241m.\u001b[39mdata\u001b[38;5;241m.\u001b[39mresolve_model_data_config(model)\n\u001b[1;32m 3\u001b[0m transforms \u001b[38;5;241m=\u001b[39m timm\u001b[38;5;241m.\u001b[39mdata\u001b[38;5;241m.\u001b[39mcreate_transform(\u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mdata_config, is_training\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mFalse\u001b[39;00m)\n\u001b[0;32m----> 5\u001b[0m output \u001b[38;5;241m=\u001b[39m \u001b[43mmodel\u001b[49m\u001b[43m(\u001b[49m\u001b[43mtransforms\u001b[49m\u001b[43m(\u001b[49m\u001b[43mimg\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43munsqueeze\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m0\u001b[39;49m\u001b[43m)\u001b[49m\u001b[43m)\u001b[49m \u001b[38;5;66;03m# output is (batch_size, num_features) shaped tensor\u001b[39;00m\n\u001b[1;32m 6\u001b[0m \u001b[38;5;28mprint\u001b[39m(output\u001b[38;5;241m.\u001b[39mshape)\n\u001b[1;32m 7\u001b[0m \u001b[38;5;66;03m# or equivalently (without needing to set num_classes=0)\u001b[39;00m\n",
|
117 |
+
"File \u001b[0;32m~/miniconda3/envs/mindeye/lib/python3.10/site-packages/torch/nn/modules/module.py:1501\u001b[0m, in \u001b[0;36mModule._call_impl\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 1496\u001b[0m \u001b[38;5;66;03m# If we don't have any hooks, we want to skip the rest of the logic in\u001b[39;00m\n\u001b[1;32m 1497\u001b[0m \u001b[38;5;66;03m# this function, and just call forward.\u001b[39;00m\n\u001b[1;32m 1498\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m (\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_backward_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_backward_pre_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_forward_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_forward_pre_hooks\n\u001b[1;32m 1499\u001b[0m \u001b[38;5;129;01mor\u001b[39;00m _global_backward_pre_hooks \u001b[38;5;129;01mor\u001b[39;00m _global_backward_hooks\n\u001b[1;32m 1500\u001b[0m \u001b[38;5;129;01mor\u001b[39;00m _global_forward_hooks \u001b[38;5;129;01mor\u001b[39;00m _global_forward_pre_hooks):\n\u001b[0;32m-> 1501\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mforward_call\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1502\u001b[0m \u001b[38;5;66;03m# Do not call functions when jit is used\u001b[39;00m\n\u001b[1;32m 1503\u001b[0m full_backward_hooks, non_full_backward_hooks \u001b[38;5;241m=\u001b[39m [], []\n",
|
118 |
+
"File \u001b[0;32m~/miniconda3/envs/mindeye/lib/python3.10/site-packages/transformers/models/clipseg/modeling_clipseg.py:1433\u001b[0m, in \u001b[0;36mCLIPSegForImageSegmentation.forward\u001b[0;34m(self, input_ids, pixel_values, conditional_pixel_values, conditional_embeddings, attention_mask, position_ids, labels, output_attentions, output_hidden_states, return_dict)\u001b[0m\n\u001b[1;32m 1431\u001b[0m \u001b[38;5;66;03m# step 1: forward the query images through the frozen CLIP vision encoder\u001b[39;00m\n\u001b[1;32m 1432\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m torch\u001b[38;5;241m.\u001b[39mno_grad():\n\u001b[0;32m-> 1433\u001b[0m vision_outputs \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mclip\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mvision_model\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 1434\u001b[0m \u001b[43m \u001b[49m\u001b[43mpixel_values\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mpixel_values\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1435\u001b[0m \u001b[43m \u001b[49m\u001b[43moutput_attentions\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43moutput_attentions\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1436\u001b[0m \u001b[43m \u001b[49m\u001b[43moutput_hidden_states\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;66;43;03m# we need the intermediate hidden states\u001b[39;49;00m\n\u001b[1;32m 1437\u001b[0m \u001b[43m \u001b[49m\u001b[43mreturn_dict\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mreturn_dict\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1438\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1439\u001b[0m pooled_output \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mclip\u001b[38;5;241m.\u001b[39mvisual_projection(vision_outputs[\u001b[38;5;241m1\u001b[39m])\n\u001b[1;32m 1441\u001b[0m hidden_states \u001b[38;5;241m=\u001b[39m vision_outputs\u001b[38;5;241m.\u001b[39mhidden_states \u001b[38;5;28;01mif\u001b[39;00m return_dict \u001b[38;5;28;01melse\u001b[39;00m vision_outputs[\u001b[38;5;241m2\u001b[39m]\n",
|
119 |
+
"File \u001b[0;32m~/miniconda3/envs/mindeye/lib/python3.10/site-packages/torch/nn/modules/module.py:1501\u001b[0m, in \u001b[0;36mModule._call_impl\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 1496\u001b[0m \u001b[38;5;66;03m# If we don't have any hooks, we want to skip the rest of the logic in\u001b[39;00m\n\u001b[1;32m 1497\u001b[0m \u001b[38;5;66;03m# this function, and just call forward.\u001b[39;00m\n\u001b[1;32m 1498\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m (\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_backward_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_backward_pre_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_forward_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_forward_pre_hooks\n\u001b[1;32m 1499\u001b[0m \u001b[38;5;129;01mor\u001b[39;00m _global_backward_pre_hooks \u001b[38;5;129;01mor\u001b[39;00m _global_backward_hooks\n\u001b[1;32m 1500\u001b[0m \u001b[38;5;129;01mor\u001b[39;00m _global_forward_hooks \u001b[38;5;129;01mor\u001b[39;00m _global_forward_pre_hooks):\n\u001b[0;32m-> 1501\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mforward_call\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1502\u001b[0m \u001b[38;5;66;03m# Do not call functions when jit is used\u001b[39;00m\n\u001b[1;32m 1503\u001b[0m full_backward_hooks, non_full_backward_hooks \u001b[38;5;241m=\u001b[39m [], []\n",
|
120 |
+
"File \u001b[0;32m~/miniconda3/envs/mindeye/lib/python3.10/site-packages/transformers/models/clipseg/modeling_clipseg.py:872\u001b[0m, in \u001b[0;36mCLIPSegVisionTransformer.forward\u001b[0;34m(self, pixel_values, output_attentions, output_hidden_states, return_dict)\u001b[0m\n\u001b[1;32m 869\u001b[0m return_dict \u001b[38;5;241m=\u001b[39m return_dict \u001b[38;5;28;01mif\u001b[39;00m return_dict \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;28;01melse\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mconfig\u001b[38;5;241m.\u001b[39muse_return_dict\n\u001b[1;32m 871\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m pixel_values \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[0;32m--> 872\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mYou have to specify pixel_values\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 874\u001b[0m hidden_states \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39membeddings(pixel_values)\n\u001b[1;32m 875\u001b[0m hidden_states \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mpre_layrnorm(hidden_states)\n",
|
121 |
+
"\u001b[0;31mValueError\u001b[0m: You have to specify pixel_values"
|
122 |
+
]
|
123 |
+
}
|
124 |
+
],
|
125 |
+
"source": [
|
126 |
+
"# get model specific transforms (normalization, resize)\n",
|
127 |
+
"data_config = timm.data.resolve_model_data_config(model)\n",
|
128 |
+
"transforms = timm.data.create_transform(**data_config, is_training=False)\n",
|
129 |
+
"\n",
|
130 |
+
"output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor\n",
|
131 |
+
"print(output.shape)\n",
|
132 |
+
"# or equivalently (without needing to set num_classes=0)\n",
|
133 |
+
"\n",
|
134 |
+
"output = model.forward_features(transforms(img).unsqueeze(0))\n",
|
135 |
+
"# output is unpooled, a (1, 257, 768) shaped tensor\n",
|
136 |
+
"print(output.shape)\n",
|
137 |
+
"\n",
|
138 |
+
"output = model.forward_head(output, pre_logits=True)\n",
|
139 |
+
"# output is a (1, num_features) shaped tensor\n",
|
140 |
+
"print(output.shape)"
|
141 |
+
]
|
142 |
+
},
|
143 |
+
{
|
144 |
+
"cell_type": "code",
|
145 |
+
"execution_count": null,
|
146 |
+
"id": "54275c4c-e506-4959-92f1-29e584f5ce51",
|
147 |
+
"metadata": {},
|
148 |
+
"outputs": [],
|
149 |
+
"source": [
|
150 |
+
"model.forward_features(transforms(img).unsqueeze(0)).shape"
|
151 |
+
]
|
152 |
+
},
|
153 |
+
{
|
154 |
+
"cell_type": "markdown",
|
155 |
+
"id": "6546c673-f3ab-4d43-a051-cab20e782bab",
|
156 |
+
"metadata": {},
|
157 |
+
"source": [
|
158 |
+
"# Eva02-clip"
|
159 |
+
]
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"cell_type": "code",
|
163 |
+
"execution_count": 29,
|
164 |
+
"id": "dfbc95de-9af9-4583-98fc-b8061114ef64",
|
165 |
+
"metadata": {},
|
166 |
+
"outputs": [],
|
167 |
+
"source": [
|
168 |
+
"import timm \n",
|
169 |
+
"# couldnt figure out how to load pretrained model from shared folder rather than home directory using timm...\n",
|
170 |
+
"eva02_model = timm.create_model(\"eva02_enormous_patch14_clip_224.laion2b\", pretrained=True)\n",
|
171 |
+
"# eva02_model.head_drop = nn.Identity()\n",
|
172 |
+
"# eva02_model.head = nn.Identity()"
|
173 |
+
]
|
174 |
+
},
|
175 |
+
{
|
176 |
+
"cell_type": "code",
|
177 |
+
"execution_count": 30,
|
178 |
+
"id": "97e3ea29-ae6b-4bd2-b3d7-17839098a6e4",
|
179 |
+
"metadata": {},
|
180 |
+
"outputs": [
|
181 |
+
{
|
182 |
+
"data": {
|
183 |
+
"text/plain": [
|
184 |
+
"torch.Size([2, 1024])"
|
185 |
+
]
|
186 |
+
},
|
187 |
+
"execution_count": 30,
|
188 |
+
"metadata": {},
|
189 |
+
"output_type": "execute_result"
|
190 |
+
}
|
191 |
+
],
|
192 |
+
"source": [
|
193 |
+
"eva02_model(torch.randn((2,3,224,224))).shape"
|
194 |
+
]
|
195 |
+
},
|
196 |
+
{
|
197 |
+
"cell_type": "code",
|
198 |
+
"execution_count": 31,
|
199 |
+
"id": "069b76f0-029f-42b1-85f5-a492ee1cc5d1",
|
200 |
+
"metadata": {},
|
201 |
+
"outputs": [
|
202 |
+
{
|
203 |
+
"name": "stdout",
|
204 |
+
"output_type": "stream",
|
205 |
+
"text": [
|
206 |
+
"torch.Size([2, 256, 1024])\n"
|
207 |
+
]
|
208 |
+
}
|
209 |
+
],
|
210 |
+
"source": [
|
211 |
+
"image = torch.randn((2,3,224,224))\n",
|
212 |
+
"\n",
|
213 |
+
"input = eva02_model.patch_embed(image)\n",
|
214 |
+
"input = eva02_model.pos_drop(input)\n",
|
215 |
+
"for block in eva02_model.blocks: input = block(input)\n",
|
216 |
+
"input = eva02_model.norm(input)\n",
|
217 |
+
"input = eva02_model.fc_norm(input)\n",
|
218 |
+
"input = eva02_model.head_drop(input)\n",
|
219 |
+
"input = eva02_model.head(input)\n",
|
220 |
+
"\n",
|
221 |
+
"print(input.shape)"
|
222 |
+
]
|
223 |
+
},
|
224 |
+
{
|
225 |
+
"cell_type": "code",
|
226 |
+
"execution_count": 32,
|
227 |
+
"id": "90e4e8e7-3dd1-43b0-a305-066a6ec13c2e",
|
228 |
+
"metadata": {},
|
229 |
+
"outputs": [
|
230 |
+
{
|
231 |
+
"name": "stdout",
|
232 |
+
"output_type": "stream",
|
233 |
+
"text": [
|
234 |
+
"Help on Eva in module timm.models.eva object:\n",
|
235 |
+
"\n",
|
236 |
+
"class Eva(torch.nn.modules.module.Module)\n",
|
237 |
+
" | Eva(img_size: Union[int, Tuple[int, int]] = 224, patch_size: Union[int, Tuple[int, int]] = 16, in_chans: int = 3, num_classes: int = 1000, global_pool: str = 'avg', embed_dim: int = 768, depth: int = 12, num_heads: int = 12, qkv_bias: bool = True, qkv_fused: bool = True, mlp_ratio: float = 4.0, swiglu_mlp: bool = False, scale_mlp: bool = False, scale_attn_inner: bool = False, drop_rate: float = 0.0, pos_drop_rate: float = 0.0, patch_drop_rate: float = 0.0, proj_drop_rate: float = 0.0, attn_drop_rate: float = 0.0, drop_path_rate: float = 0.0, norm_layer: Callable = <class 'timm.layers.norm.LayerNorm'>, init_values: Optional[float] = None, class_token: bool = True, use_abs_pos_emb: bool = True, use_rot_pos_emb: bool = False, use_post_norm: bool = False, ref_feat_shape: Union[int, Tuple[int, int], NoneType] = None, head_init_scale: float = 0.001)\n",
|
238 |
+
" | \n",
|
239 |
+
" | Eva Vision Transformer w/ Abs & Rotary Pos Embed\n",
|
240 |
+
" | \n",
|
241 |
+
" | This class implements the EVA and EVA02 models that were based on the BEiT ViT variant\n",
|
242 |
+
" | * EVA - abs pos embed, global avg pool\n",
|
243 |
+
" | * EVA02 - abs + rope pos embed, global avg pool, SwiGLU, scale Norm in MLP (ala normformer)\n",
|
244 |
+
" | \n",
|
245 |
+
" | Method resolution order:\n",
|
246 |
+
" | Eva\n",
|
247 |
+
" | torch.nn.modules.module.Module\n",
|
248 |
+
" | builtins.object\n",
|
249 |
+
" | \n",
|
250 |
+
" | Methods defined here:\n",
|
251 |
+
" | \n",
|
252 |
+
" | __init__(self, img_size: Union[int, Tuple[int, int]] = 224, patch_size: Union[int, Tuple[int, int]] = 16, in_chans: int = 3, num_classes: int = 1000, global_pool: str = 'avg', embed_dim: int = 768, depth: int = 12, num_heads: int = 12, qkv_bias: bool = True, qkv_fused: bool = True, mlp_ratio: float = 4.0, swiglu_mlp: bool = False, scale_mlp: bool = False, scale_attn_inner: bool = False, drop_rate: float = 0.0, pos_drop_rate: float = 0.0, patch_drop_rate: float = 0.0, proj_drop_rate: float = 0.0, attn_drop_rate: float = 0.0, drop_path_rate: float = 0.0, norm_layer: Callable = <class 'timm.layers.norm.LayerNorm'>, init_values: Optional[float] = None, class_token: bool = True, use_abs_pos_emb: bool = True, use_rot_pos_emb: bool = False, use_post_norm: bool = False, ref_feat_shape: Union[int, Tuple[int, int], NoneType] = None, head_init_scale: float = 0.001)\n",
|
253 |
+
" | Args:\n",
|
254 |
+
" | img_size:\n",
|
255 |
+
" | patch_size:\n",
|
256 |
+
" | in_chans:\n",
|
257 |
+
" | num_classes:\n",
|
258 |
+
" | global_pool:\n",
|
259 |
+
" | embed_dim:\n",
|
260 |
+
" | depth:\n",
|
261 |
+
" | num_heads:\n",
|
262 |
+
" | qkv_bias:\n",
|
263 |
+
" | qkv_fused:\n",
|
264 |
+
" | mlp_ratio:\n",
|
265 |
+
" | swiglu_mlp:\n",
|
266 |
+
" | scale_mlp:\n",
|
267 |
+
" | scale_attn_inner:\n",
|
268 |
+
" | drop_rate:\n",
|
269 |
+
" | pos_drop_rate:\n",
|
270 |
+
" | proj_drop_rate:\n",
|
271 |
+
" | attn_drop_rate:\n",
|
272 |
+
" | drop_path_rate:\n",
|
273 |
+
" | norm_layer:\n",
|
274 |
+
" | init_values:\n",
|
275 |
+
" | class_token:\n",
|
276 |
+
" | use_abs_pos_emb:\n",
|
277 |
+
" | use_rot_pos_emb:\n",
|
278 |
+
" | use_post_norm:\n",
|
279 |
+
" | ref_feat_shape:\n",
|
280 |
+
" | head_init_scale:\n",
|
281 |
+
" | \n",
|
282 |
+
" | fix_init_weight(self)\n",
|
283 |
+
" | \n",
|
284 |
+
" | forward(self, x)\n",
|
285 |
+
" | Defines the computation performed at every call.\n",
|
286 |
+
" | \n",
|
287 |
+
" | Should be overridden by all subclasses.\n",
|
288 |
+
" | \n",
|
289 |
+
" | .. note::\n",
|
290 |
+
" | Although the recipe for forward pass needs to be defined within\n",
|
291 |
+
" | this function, one should call the :class:`Module` instance afterwards\n",
|
292 |
+
" | instead of this since the former takes care of running the\n",
|
293 |
+
" | registered hooks while the latter silently ignores them.\n",
|
294 |
+
" | \n",
|
295 |
+
" | forward_features(self, x)\n",
|
296 |
+
" | \n",
|
297 |
+
" | forward_head(self, x, pre_logits: bool = False)\n",
|
298 |
+
" | \n",
|
299 |
+
" | get_classifier(self)\n",
|
300 |
+
" | \n",
|
301 |
+
" | group_matcher(self, coarse=False)\n",
|
302 |
+
" | \n",
|
303 |
+
" | no_weight_decay(self)\n",
|
304 |
+
" | \n",
|
305 |
+
" | reset_classifier(self, num_classes, global_pool=None)\n",
|
306 |
+
" | \n",
|
307 |
+
" | set_grad_checkpointing(self, enable=True)\n",
|
308 |
+
" | \n",
|
309 |
+
" | ----------------------------------------------------------------------\n",
|
310 |
+
" | Data and other attributes defined here:\n",
|
311 |
+
" | \n",
|
312 |
+
" | __annotations__ = {}\n",
|
313 |
+
" | \n",
|
314 |
+
" | ----------------------------------------------------------------------\n",
|
315 |
+
" | Methods inherited from torch.nn.modules.module.Module:\n",
|
316 |
+
" | \n",
|
317 |
+
" | __call__ = _call_impl(self, *args, **kwargs)\n",
|
318 |
+
" | \n",
|
319 |
+
" | __delattr__(self, name)\n",
|
320 |
+
" | Implement delattr(self, name).\n",
|
321 |
+
" | \n",
|
322 |
+
" | __dir__(self)\n",
|
323 |
+
" | Default dir() implementation.\n",
|
324 |
+
" | \n",
|
325 |
+
" | __getattr__(self, name: str) -> Union[torch.Tensor, ForwardRef('Module')]\n",
|
326 |
+
" | \n",
|
327 |
+
" | __repr__(self)\n",
|
328 |
+
" | Return repr(self).\n",
|
329 |
+
" | \n",
|
330 |
+
" | __setattr__(self, name: str, value: Union[torch.Tensor, ForwardRef('Module')]) -> None\n",
|
331 |
+
" | Implement setattr(self, name, value).\n",
|
332 |
+
" | \n",
|
333 |
+
" | __setstate__(self, state)\n",
|
334 |
+
" | \n",
|
335 |
+
" | add_module(self, name: str, module: Optional[ForwardRef('Module')]) -> None\n",
|
336 |
+
" | Adds a child module to the current module.\n",
|
337 |
+
" | \n",
|
338 |
+
" | The module can be accessed as an attribute using the given name.\n",
|
339 |
+
" | \n",
|
340 |
+
" | Args:\n",
|
341 |
+
" | name (str): name of the child module. The child module can be\n",
|
342 |
+
" | accessed from this module using the given name\n",
|
343 |
+
" | module (Module): child module to be added to the module.\n",
|
344 |
+
" | \n",
|
345 |
+
" | apply(self: ~T, fn: Callable[[ForwardRef('Module')], NoneType]) -> ~T\n",
|
346 |
+
" | Applies ``fn`` recursively to every submodule (as returned by ``.children()``)\n",
|
347 |
+
" | as well as self. Typical use includes initializing the parameters of a model\n",
|
348 |
+
" | (see also :ref:`nn-init-doc`).\n",
|
349 |
+
" | \n",
|
350 |
+
" | Args:\n",
|
351 |
+
" | fn (:class:`Module` -> None): function to be applied to each submodule\n",
|
352 |
+
" | \n",
|
353 |
+
" | Returns:\n",
|
354 |
+
" | Module: self\n",
|
355 |
+
" | \n",
|
356 |
+
" | Example::\n",
|
357 |
+
" | \n",
|
358 |
+
" | >>> @torch.no_grad()\n",
|
359 |
+
" | >>> def init_weights(m):\n",
|
360 |
+
" | >>> print(m)\n",
|
361 |
+
" | >>> if type(m) == nn.Linear:\n",
|
362 |
+
" | >>> m.weight.fill_(1.0)\n",
|
363 |
+
" | >>> print(m.weight)\n",
|
364 |
+
" | >>> net = nn.Sequential(nn.Linear(2, 2), nn.Linear(2, 2))\n",
|
365 |
+
" | >>> net.apply(init_weights)\n",
|
366 |
+
" | Linear(in_features=2, out_features=2, bias=True)\n",
|
367 |
+
" | Parameter containing:\n",
|
368 |
+
" | tensor([[1., 1.],\n",
|
369 |
+
" | [1., 1.]], requires_grad=True)\n",
|
370 |
+
" | Linear(in_features=2, out_features=2, bias=True)\n",
|
371 |
+
" | Parameter containing:\n",
|
372 |
+
" | tensor([[1., 1.],\n",
|
373 |
+
" | [1., 1.]], requires_grad=True)\n",
|
374 |
+
" | Sequential(\n",
|
375 |
+
" | (0): Linear(in_features=2, out_features=2, bias=True)\n",
|
376 |
+
" | (1): Linear(in_features=2, out_features=2, bias=True)\n",
|
377 |
+
" | )\n",
|
378 |
+
" | \n",
|
379 |
+
" | bfloat16(self: ~T) -> ~T\n",
|
380 |
+
" | Casts all floating point parameters and buffers to ``bfloat16`` datatype.\n",
|
381 |
+
" | \n",
|
382 |
+
" | .. note::\n",
|
383 |
+
" | This method modifies the module in-place.\n",
|
384 |
+
" | \n",
|
385 |
+
" | Returns:\n",
|
386 |
+
" | Module: self\n",
|
387 |
+
" | \n",
|
388 |
+
" | buffers(self, recurse: bool = True) -> Iterator[torch.Tensor]\n",
|
389 |
+
" | Returns an iterator over module buffers.\n",
|
390 |
+
" | \n",
|
391 |
+
" | Args:\n",
|
392 |
+
" | recurse (bool): if True, then yields buffers of this module\n",
|
393 |
+
" | and all submodules. Otherwise, yields only buffers that\n",
|
394 |
+
" | are direct members of this module.\n",
|
395 |
+
" | \n",
|
396 |
+
" | Yields:\n",
|
397 |
+
" | torch.Tensor: module buffer\n",
|
398 |
+
" | \n",
|
399 |
+
" | Example::\n",
|
400 |
+
" | \n",
|
401 |
+
" | >>> # xdoctest: +SKIP(\"undefined vars\")\n",
|
402 |
+
" | >>> for buf in model.buffers():\n",
|
403 |
+
" | >>> print(type(buf), buf.size())\n",
|
404 |
+
" | <class 'torch.Tensor'> (20L,)\n",
|
405 |
+
" | <class 'torch.Tensor'> (20L, 1L, 5L, 5L)\n",
|
406 |
+
" | \n",
|
407 |
+
" | children(self) -> Iterator[ForwardRef('Module')]\n",
|
408 |
+
" | Returns an iterator over immediate children modules.\n",
|
409 |
+
" | \n",
|
410 |
+
" | Yields:\n",
|
411 |
+
" | Module: a child module\n",
|
412 |
+
" | \n",
|
413 |
+
" | cpu(self: ~T) -> ~T\n",
|
414 |
+
" | Moves all model parameters and buffers to the CPU.\n",
|
415 |
+
" | \n",
|
416 |
+
" | .. note::\n",
|
417 |
+
" | This method modifies the module in-place.\n",
|
418 |
+
" | \n",
|
419 |
+
" | Returns:\n",
|
420 |
+
" | Module: self\n",
|
421 |
+
" | \n",
|
422 |
+
" | cuda(self: ~T, device: Union[int, torch.device, NoneType] = None) -> ~T\n",
|
423 |
+
" | Moves all model parameters and buffers to the GPU.\n",
|
424 |
+
" | \n",
|
425 |
+
" | This also makes associated parameters and buffers different objects. So\n",
|
426 |
+
" | it should be called before constructing optimizer if the module will\n",
|
427 |
+
" | live on GPU while being optimized.\n",
|
428 |
+
" | \n",
|
429 |
+
" | .. note::\n",
|
430 |
+
" | This method modifies the module in-place.\n",
|
431 |
+
" | \n",
|
432 |
+
" | Args:\n",
|
433 |
+
" | device (int, optional): if specified, all parameters will be\n",
|
434 |
+
" | copied to that device\n",
|
435 |
+
" | \n",
|
436 |
+
" | Returns:\n",
|
437 |
+
" | Module: self\n",
|
438 |
+
" | \n",
|
439 |
+
" | double(self: ~T) -> ~T\n",
|
440 |
+
" | Casts all floating point parameters and buffers to ``double`` datatype.\n",
|
441 |
+
" | \n",
|
442 |
+
" | .. note::\n",
|
443 |
+
" | This method modifies the module in-place.\n",
|
444 |
+
" | \n",
|
445 |
+
" | Returns:\n",
|
446 |
+
" | Module: self\n",
|
447 |
+
" | \n",
|
448 |
+
" | eval(self: ~T) -> ~T\n",
|
449 |
+
" | Sets the module in evaluation mode.\n",
|
450 |
+
" | \n",
|
451 |
+
" | This has any effect only on certain modules. See documentations of\n",
|
452 |
+
" | particular modules for details of their behaviors in training/evaluation\n",
|
453 |
+
" | mode, if they are affected, e.g. :class:`Dropout`, :class:`BatchNorm`,\n",
|
454 |
+
" | etc.\n",
|
455 |
+
" | \n",
|
456 |
+
" | This is equivalent with :meth:`self.train(False) <torch.nn.Module.train>`.\n",
|
457 |
+
" | \n",
|
458 |
+
" | See :ref:`locally-disable-grad-doc` for a comparison between\n",
|
459 |
+
" | `.eval()` and several similar mechanisms that may be confused with it.\n",
|
460 |
+
" | \n",
|
461 |
+
" | Returns:\n",
|
462 |
+
" | Module: self\n",
|
463 |
+
" | \n",
|
464 |
+
" | extra_repr(self) -> str\n",
|
465 |
+
" | Set the extra representation of the module\n",
|
466 |
+
" | \n",
|
467 |
+
" | To print customized extra information, you should re-implement\n",
|
468 |
+
" | this method in your own modules. Both single-line and multi-line\n",
|
469 |
+
" | strings are acceptable.\n",
|
470 |
+
" | \n",
|
471 |
+
" | float(self: ~T) -> ~T\n",
|
472 |
+
" | Casts all floating point parameters and buffers to ``float`` datatype.\n",
|
473 |
+
" | \n",
|
474 |
+
" | .. note::\n",
|
475 |
+
" | This method modifies the module in-place.\n",
|
476 |
+
" | \n",
|
477 |
+
" | Returns:\n",
|
478 |
+
" | Module: self\n",
|
479 |
+
" | \n",
|
480 |
+
" | get_buffer(self, target: str) -> 'Tensor'\n",
|
481 |
+
" | Returns the buffer given by ``target`` if it exists,\n",
|
482 |
+
" | otherwise throws an error.\n",
|
483 |
+
" | \n",
|
484 |
+
" | See the docstring for ``get_submodule`` for a more detailed\n",
|
485 |
+
" | explanation of this method's functionality as well as how to\n",
|
486 |
+
" | correctly specify ``target``.\n",
|
487 |
+
" | \n",
|
488 |
+
" | Args:\n",
|
489 |
+
" | target: The fully-qualified string name of the buffer\n",
|
490 |
+
" | to look for. (See ``get_submodule`` for how to specify a\n",
|
491 |
+
" | fully-qualified string.)\n",
|
492 |
+
" | \n",
|
493 |
+
" | Returns:\n",
|
494 |
+
" | torch.Tensor: The buffer referenced by ``target``\n",
|
495 |
+
" | \n",
|
496 |
+
" | Raises:\n",
|
497 |
+
" | AttributeError: If the target string references an invalid\n",
|
498 |
+
" | path or resolves to something that is not a\n",
|
499 |
+
" | buffer\n",
|
500 |
+
" | \n",
|
501 |
+
" | get_extra_state(self) -> Any\n",
|
502 |
+
" | Returns any extra state to include in the module's state_dict.\n",
|
503 |
+
" | Implement this and a corresponding :func:`set_extra_state` for your module\n",
|
504 |
+
" | if you need to store extra state. This function is called when building the\n",
|
505 |
+
" | module's `state_dict()`.\n",
|
506 |
+
" | \n",
|
507 |
+
" | Note that extra state should be picklable to ensure working serialization\n",
|
508 |
+
" | of the state_dict. We only provide provide backwards compatibility guarantees\n",
|
509 |
+
" | for serializing Tensors; other objects may break backwards compatibility if\n",
|
510 |
+
" | their serialized pickled form changes.\n",
|
511 |
+
" | \n",
|
512 |
+
" | Returns:\n",
|
513 |
+
" | object: Any extra state to store in the module's state_dict\n",
|
514 |
+
" | \n",
|
515 |
+
" | get_parameter(self, target: str) -> 'Parameter'\n",
|
516 |
+
" | Returns the parameter given by ``target`` if it exists,\n",
|
517 |
+
" | otherwise throws an error.\n",
|
518 |
+
" | \n",
|
519 |
+
" | See the docstring for ``get_submodule`` for a more detailed\n",
|
520 |
+
" | explanation of this method's functionality as well as how to\n",
|
521 |
+
" | correctly specify ``target``.\n",
|
522 |
+
" | \n",
|
523 |
+
" | Args:\n",
|
524 |
+
" | target: The fully-qualified string name of the Parameter\n",
|
525 |
+
" | to look for. (See ``get_submodule`` for how to specify a\n",
|
526 |
+
" | fully-qualified string.)\n",
|
527 |
+
" | \n",
|
528 |
+
" | Returns:\n",
|
529 |
+
" | torch.nn.Parameter: The Parameter referenced by ``target``\n",
|
530 |
+
" | \n",
|
531 |
+
" | Raises:\n",
|
532 |
+
" | AttributeError: If the target string references an invalid\n",
|
533 |
+
" | path or resolves to something that is not an\n",
|
534 |
+
" | ``nn.Parameter``\n",
|
535 |
+
" | \n",
|
536 |
+
" | get_submodule(self, target: str) -> 'Module'\n",
|
537 |
+
" | Returns the submodule given by ``target`` if it exists,\n",
|
538 |
+
" | otherwise throws an error.\n",
|
539 |
+
" | \n",
|
540 |
+
" | For example, let's say you have an ``nn.Module`` ``A`` that\n",
|
541 |
+
" | looks like this:\n",
|
542 |
+
" | \n",
|
543 |
+
" | .. code-block:: text\n",
|
544 |
+
" | \n",
|
545 |
+
" | A(\n",
|
546 |
+
" | (net_b): Module(\n",
|
547 |
+
" | (net_c): Module(\n",
|
548 |
+
" | (conv): Conv2d(16, 33, kernel_size=(3, 3), stride=(2, 2))\n",
|
549 |
+
" | )\n",
|
550 |
+
" | (linear): Linear(in_features=100, out_features=200, bias=True)\n",
|
551 |
+
" | )\n",
|
552 |
+
" | )\n",
|
553 |
+
" | \n",
|
554 |
+
" | (The diagram shows an ``nn.Module`` ``A``. ``A`` has a nested\n",
|
555 |
+
" | submodule ``net_b``, which itself has two submodules ``net_c``\n",
|
556 |
+
" | and ``linear``. ``net_c`` then has a submodule ``conv``.)\n",
|
557 |
+
" | \n",
|
558 |
+
" | To check whether or not we have the ``linear`` submodule, we\n",
|
559 |
+
" | would call ``get_submodule(\"net_b.linear\")``. To check whether\n",
|
560 |
+
" | we have the ``conv`` submodule, we would call\n",
|
561 |
+
" | ``get_submodule(\"net_b.net_c.conv\")``.\n",
|
562 |
+
" | \n",
|
563 |
+
" | The runtime of ``get_submodule`` is bounded by the degree\n",
|
564 |
+
" | of module nesting in ``target``. A query against\n",
|
565 |
+
" | ``named_modules`` achieves the same result, but it is O(N) in\n",
|
566 |
+
" | the number of transitive modules. So, for a simple check to see\n",
|
567 |
+
" | if some submodule exists, ``get_submodule`` should always be\n",
|
568 |
+
" | used.\n",
|
569 |
+
" | \n",
|
570 |
+
" | Args:\n",
|
571 |
+
" | target: The fully-qualified string name of the submodule\n",
|
572 |
+
" | to look for. (See above example for how to specify a\n",
|
573 |
+
" | fully-qualified string.)\n",
|
574 |
+
" | \n",
|
575 |
+
" | Returns:\n",
|
576 |
+
" | torch.nn.Module: The submodule referenced by ``target``\n",
|
577 |
+
" | \n",
|
578 |
+
" | Raises:\n",
|
579 |
+
" | AttributeError: If the target string references an invalid\n",
|
580 |
+
" | path or resolves to something that is not an\n",
|
581 |
+
" | ``nn.Module``\n",
|
582 |
+
" | \n",
|
583 |
+
" | half(self: ~T) -> ~T\n",
|
584 |
+
" | Casts all floating point parameters and buffers to ``half`` datatype.\n",
|
585 |
+
" | \n",
|
586 |
+
" | .. note::\n",
|
587 |
+
" | This method modifies the module in-place.\n",
|
588 |
+
" | \n",
|
589 |
+
" | Returns:\n",
|
590 |
+
" | Module: self\n",
|
591 |
+
" | \n",
|
592 |
+
" | ipu(self: ~T, device: Union[int, torch.device, NoneType] = None) -> ~T\n",
|
593 |
+
" | Moves all model parameters and buffers to the IPU.\n",
|
594 |
+
" | \n",
|
595 |
+
" | This also makes associated parameters and buffers different objects. So\n",
|
596 |
+
" | it should be called before constructing optimizer if the module will\n",
|
597 |
+
" | live on IPU while being optimized.\n",
|
598 |
+
" | \n",
|
599 |
+
" | .. note::\n",
|
600 |
+
" | This method modifies the module in-place.\n",
|
601 |
+
" | \n",
|
602 |
+
" | Arguments:\n",
|
603 |
+
" | device (int, optional): if specified, all parameters will be\n",
|
604 |
+
" | copied to that device\n",
|
605 |
+
" | \n",
|
606 |
+
" | Returns:\n",
|
607 |
+
" | Module: self\n",
|
608 |
+
" | \n",
|
609 |
+
" | load_state_dict(self, state_dict: Mapping[str, Any], strict: bool = True)\n",
|
610 |
+
" | Copies parameters and buffers from :attr:`state_dict` into\n",
|
611 |
+
" | this module and its descendants. If :attr:`strict` is ``True``, then\n",
|
612 |
+
" | the keys of :attr:`state_dict` must exactly match the keys returned\n",
|
613 |
+
" | by this module's :meth:`~torch.nn.Module.state_dict` function.\n",
|
614 |
+
" | \n",
|
615 |
+
" | Args:\n",
|
616 |
+
" | state_dict (dict): a dict containing parameters and\n",
|
617 |
+
" | persistent buffers.\n",
|
618 |
+
" | strict (bool, optional): whether to strictly enforce that the keys\n",
|
619 |
+
" | in :attr:`state_dict` match the keys returned by this module's\n",
|
620 |
+
" | :meth:`~torch.nn.Module.state_dict` function. Default: ``True``\n",
|
621 |
+
" | \n",
|
622 |
+
" | Returns:\n",
|
623 |
+
" | ``NamedTuple`` with ``missing_keys`` and ``unexpected_keys`` fields:\n",
|
624 |
+
" | * **missing_keys** is a list of str containing the missing keys\n",
|
625 |
+
" | * **unexpected_keys** is a list of str containing the unexpected keys\n",
|
626 |
+
" | \n",
|
627 |
+
" | Note:\n",
|
628 |
+
" | If a parameter or buffer is registered as ``None`` and its corresponding key\n",
|
629 |
+
" | exists in :attr:`state_dict`, :meth:`load_state_dict` will raise a\n",
|
630 |
+
" | ``RuntimeError``.\n",
|
631 |
+
" | \n",
|
632 |
+
" | modules(self) -> Iterator[ForwardRef('Module')]\n",
|
633 |
+
" | Returns an iterator over all modules in the network.\n",
|
634 |
+
" | \n",
|
635 |
+
" | Yields:\n",
|
636 |
+
" | Module: a module in the network\n",
|
637 |
+
" | \n",
|
638 |
+
" | Note:\n",
|
639 |
+
" | Duplicate modules are returned only once. In the following\n",
|
640 |
+
" | example, ``l`` will be returned only once.\n",
|
641 |
+
" | \n",
|
642 |
+
" | Example::\n",
|
643 |
+
" | \n",
|
644 |
+
" | >>> l = nn.Linear(2, 2)\n",
|
645 |
+
" | >>> net = nn.Sequential(l, l)\n",
|
646 |
+
" | >>> for idx, m in enumerate(net.modules()):\n",
|
647 |
+
" | ... print(idx, '->', m)\n",
|
648 |
+
" | \n",
|
649 |
+
" | 0 -> Sequential(\n",
|
650 |
+
" | (0): Linear(in_features=2, out_features=2, bias=True)\n",
|
651 |
+
" | (1): Linear(in_features=2, out_features=2, bias=True)\n",
|
652 |
+
" | )\n",
|
653 |
+
" | 1 -> Linear(in_features=2, out_features=2, bias=True)\n",
|
654 |
+
" | \n",
|
655 |
+
" | named_buffers(self, prefix: str = '', recurse: bool = True, remove_duplicate: bool = True) -> Iterator[Tuple[str, torch.Tensor]]\n",
|
656 |
+
" | Returns an iterator over module buffers, yielding both the\n",
|
657 |
+
" | name of the buffer as well as the buffer itself.\n",
|
658 |
+
" | \n",
|
659 |
+
" | Args:\n",
|
660 |
+
" | prefix (str): prefix to prepend to all buffer names.\n",
|
661 |
+
" | recurse (bool, optional): if True, then yields buffers of this module\n",
|
662 |
+
" | and all submodules. Otherwise, yields only buffers that\n",
|
663 |
+
" | are direct members of this module. Defaults to True.\n",
|
664 |
+
" | remove_duplicate (bool, optional): whether to remove the duplicated buffers in the result. Defaults to True.\n",
|
665 |
+
" | \n",
|
666 |
+
" | Yields:\n",
|
667 |
+
" | (str, torch.Tensor): Tuple containing the name and buffer\n",
|
668 |
+
" | \n",
|
669 |
+
" | Example::\n",
|
670 |
+
" | \n",
|
671 |
+
" | >>> # xdoctest: +SKIP(\"undefined vars\")\n",
|
672 |
+
" | >>> for name, buf in self.named_buffers():\n",
|
673 |
+
" | >>> if name in ['running_var']:\n",
|
674 |
+
" | >>> print(buf.size())\n",
|
675 |
+
" | \n",
|
676 |
+
" | named_children(self) -> Iterator[Tuple[str, ForwardRef('Module')]]\n",
|
677 |
+
" | Returns an iterator over immediate children modules, yielding both\n",
|
678 |
+
" | the name of the module as well as the module itself.\n",
|
679 |
+
" | \n",
|
680 |
+
" | Yields:\n",
|
681 |
+
" | (str, Module): Tuple containing a name and child module\n",
|
682 |
+
" | \n",
|
683 |
+
" | Example::\n",
|
684 |
+
" | \n",
|
685 |
+
" | >>> # xdoctest: +SKIP(\"undefined vars\")\n",
|
686 |
+
" | >>> for name, module in model.named_children():\n",
|
687 |
+
" | >>> if name in ['conv4', 'conv5']:\n",
|
688 |
+
" | >>> print(module)\n",
|
689 |
+
" | \n",
|
690 |
+
" | named_modules(self, memo: Optional[Set[ForwardRef('Module')]] = None, prefix: str = '', remove_duplicate: bool = True)\n",
|
691 |
+
" | Returns an iterator over all modules in the network, yielding\n",
|
692 |
+
" | both the name of the module as well as the module itself.\n",
|
693 |
+
" | \n",
|
694 |
+
" | Args:\n",
|
695 |
+
" | memo: a memo to store the set of modules already added to the result\n",
|
696 |
+
" | prefix: a prefix that will be added to the name of the module\n",
|
697 |
+
" | remove_duplicate: whether to remove the duplicated module instances in the result\n",
|
698 |
+
" | or not\n",
|
699 |
+
" | \n",
|
700 |
+
" | Yields:\n",
|
701 |
+
" | (str, Module): Tuple of name and module\n",
|
702 |
+
" | \n",
|
703 |
+
" | Note:\n",
|
704 |
+
" | Duplicate modules are returned only once. In the following\n",
|
705 |
+
" | example, ``l`` will be returned only once.\n",
|
706 |
+
" | \n",
|
707 |
+
" | Example::\n",
|
708 |
+
" | \n",
|
709 |
+
" | >>> l = nn.Linear(2, 2)\n",
|
710 |
+
" | >>> net = nn.Sequential(l, l)\n",
|
711 |
+
" | >>> for idx, m in enumerate(net.named_modules()):\n",
|
712 |
+
" | ... print(idx, '->', m)\n",
|
713 |
+
" | \n",
|
714 |
+
" | 0 -> ('', Sequential(\n",
|
715 |
+
" | (0): Linear(in_features=2, out_features=2, bias=True)\n",
|
716 |
+
" | (1): Linear(in_features=2, out_features=2, bias=True)\n",
|
717 |
+
" | ))\n",
|
718 |
+
" | 1 -> ('0', Linear(in_features=2, out_features=2, bias=True))\n",
|
719 |
+
" | \n",
|
720 |
+
" | named_parameters(self, prefix: str = '', recurse: bool = True, remove_duplicate: bool = True) -> Iterator[Tuple[str, torch.nn.parameter.Parameter]]\n",
|
721 |
+
" | Returns an iterator over module parameters, yielding both the\n",
|
722 |
+
" | name of the parameter as well as the parameter itself.\n",
|
723 |
+
" | \n",
|
724 |
+
" | Args:\n",
|
725 |
+
" | prefix (str): prefix to prepend to all parameter names.\n",
|
726 |
+
" | recurse (bool): if True, then yields parameters of this module\n",
|
727 |
+
" | and all submodules. Otherwise, yields only parameters that\n",
|
728 |
+
" | are direct members of this module.\n",
|
729 |
+
" | remove_duplicate (bool, optional): whether to remove the duplicated\n",
|
730 |
+
" | parameters in the result. Defaults to True.\n",
|
731 |
+
" | \n",
|
732 |
+
" | Yields:\n",
|
733 |
+
" | (str, Parameter): Tuple containing the name and parameter\n",
|
734 |
+
" | \n",
|
735 |
+
" | Example::\n",
|
736 |
+
" | \n",
|
737 |
+
" | >>> # xdoctest: +SKIP(\"undefined vars\")\n",
|
738 |
+
" | >>> for name, param in self.named_parameters():\n",
|
739 |
+
" | >>> if name in ['bias']:\n",
|
740 |
+
" | >>> print(param.size())\n",
|
741 |
+
" | \n",
|
742 |
+
" | parameters(self, recurse: bool = True) -> Iterator[torch.nn.parameter.Parameter]\n",
|
743 |
+
" | Returns an iterator over module parameters.\n",
|
744 |
+
" | \n",
|
745 |
+
" | This is typically passed to an optimizer.\n",
|
746 |
+
" | \n",
|
747 |
+
" | Args:\n",
|
748 |
+
" | recurse (bool): if True, then yields parameters of this module\n",
|
749 |
+
" | and all submodules. Otherwise, yields only parameters that\n",
|
750 |
+
" | are direct members of this module.\n",
|
751 |
+
" | \n",
|
752 |
+
" | Yields:\n",
|
753 |
+
" | Parameter: module parameter\n",
|
754 |
+
" | \n",
|
755 |
+
" | Example::\n",
|
756 |
+
" | \n",
|
757 |
+
" | >>> # xdoctest: +SKIP(\"undefined vars\")\n",
|
758 |
+
" | >>> for param in model.parameters():\n",
|
759 |
+
" | >>> print(type(param), param.size())\n",
|
760 |
+
" | <class 'torch.Tensor'> (20L,)\n",
|
761 |
+
" | <class 'torch.Tensor'> (20L, 1L, 5L, 5L)\n",
|
762 |
+
" | \n",
|
763 |
+
" | register_backward_hook(self, hook: Callable[[ForwardRef('Module'), Union[Tuple[torch.Tensor, ...], torch.Tensor], Union[Tuple[torch.Tensor, ...], torch.Tensor]], Union[NoneType, Tuple[torch.Tensor, ...], torch.Tensor]]) -> torch.utils.hooks.RemovableHandle\n",
|
764 |
+
" | Registers a backward hook on the module.\n",
|
765 |
+
" | \n",
|
766 |
+
" | This function is deprecated in favor of :meth:`~torch.nn.Module.register_full_backward_hook` and\n",
|
767 |
+
" | the behavior of this function will change in future versions.\n",
|
768 |
+
" | \n",
|
769 |
+
" | Returns:\n",
|
770 |
+
" | :class:`torch.utils.hooks.RemovableHandle`:\n",
|
771 |
+
" | a handle that can be used to remove the added hook by calling\n",
|
772 |
+
" | ``handle.remove()``\n",
|
773 |
+
" | \n",
|
774 |
+
" | register_buffer(self, name: str, tensor: Optional[torch.Tensor], persistent: bool = True) -> None\n",
|
775 |
+
" | Adds a buffer to the module.\n",
|
776 |
+
" | \n",
|
777 |
+
" | This is typically used to register a buffer that should not to be\n",
|
778 |
+
" | considered a model parameter. For example, BatchNorm's ``running_mean``\n",
|
779 |
+
" | is not a parameter, but is part of the module's state. Buffers, by\n",
|
780 |
+
" | default, are persistent and will be saved alongside parameters. This\n",
|
781 |
+
" | behavior can be changed by setting :attr:`persistent` to ``False``. The\n",
|
782 |
+
" | only difference between a persistent buffer and a non-persistent buffer\n",
|
783 |
+
" | is that the latter will not be a part of this module's\n",
|
784 |
+
" | :attr:`state_dict`.\n",
|
785 |
+
" | \n",
|
786 |
+
" | Buffers can be accessed as attributes using given names.\n",
|
787 |
+
" | \n",
|
788 |
+
" | Args:\n",
|
789 |
+
" | name (str): name of the buffer. The buffer can be accessed\n",
|
790 |
+
" | from this module using the given name\n",
|
791 |
+
" | tensor (Tensor or None): buffer to be registered. If ``None``, then operations\n",
|
792 |
+
" | that run on buffers, such as :attr:`cuda`, are ignored. If ``None``,\n",
|
793 |
+
" | the buffer is **not** included in the module's :attr:`state_dict`.\n",
|
794 |
+
" | persistent (bool): whether the buffer is part of this module's\n",
|
795 |
+
" | :attr:`state_dict`.\n",
|
796 |
+
" | \n",
|
797 |
+
" | Example::\n",
|
798 |
+
" | \n",
|
799 |
+
" | >>> # xdoctest: +SKIP(\"undefined vars\")\n",
|
800 |
+
" | >>> self.register_buffer('running_mean', torch.zeros(num_features))\n",
|
801 |
+
" | \n",
|
802 |
+
" | register_forward_hook(self, hook: Union[Callable[[~T, Tuple[Any, ...], Any], Optional[Any]], Callable[[~T, Tuple[Any, ...], Dict[str, Any], Any], Optional[Any]]], *, prepend: bool = False, with_kwargs: bool = False) -> torch.utils.hooks.RemovableHandle\n",
|
803 |
+
" | Registers a forward hook on the module.\n",
|
804 |
+
" | \n",
|
805 |
+
" | The hook will be called every time after :func:`forward` has computed an output.\n",
|
806 |
+
" | \n",
|
807 |
+
" | If ``with_kwargs`` is ``False`` or not specified, the input contains only\n",
|
808 |
+
" | the positional arguments given to the module. Keyword arguments won't be\n",
|
809 |
+
" | passed to the hooks and only to the ``forward``. The hook can modify the\n",
|
810 |
+
" | output. It can modify the input inplace but it will not have effect on\n",
|
811 |
+
" | forward since this is called after :func:`forward` is called. The hook\n",
|
812 |
+
" | should have the following signature::\n",
|
813 |
+
" | \n",
|
814 |
+
" | hook(module, args, output) -> None or modified output\n",
|
815 |
+
" | \n",
|
816 |
+
" | If ``with_kwargs`` is ``True``, the forward hook will be passed the\n",
|
817 |
+
" | ``kwargs`` given to the forward function and be expected to return the\n",
|
818 |
+
" | output possibly modified. The hook should have the following signature::\n",
|
819 |
+
" | \n",
|
820 |
+
" | hook(module, args, kwargs, output) -> None or modified output\n",
|
821 |
+
" | \n",
|
822 |
+
" | Args:\n",
|
823 |
+
" | hook (Callable): The user defined hook to be registered.\n",
|
824 |
+
" | prepend (bool): If ``True``, the provided ``hook`` will be fired\n",
|
825 |
+
" | before all existing ``forward`` hooks on this\n",
|
826 |
+
" | :class:`torch.nn.modules.Module`. Otherwise, the provided\n",
|
827 |
+
" | ``hook`` will be fired after all existing ``forward`` hooks on\n",
|
828 |
+
" | this :class:`torch.nn.modules.Module`. Note that global\n",
|
829 |
+
" | ``forward`` hooks registered with\n",
|
830 |
+
" | :func:`register_module_forward_hook` will fire before all hooks\n",
|
831 |
+
" | registered by this method.\n",
|
832 |
+
" | Default: ``False``\n",
|
833 |
+
" | with_kwargs (bool): If ``True``, the ``hook`` will be passed the\n",
|
834 |
+
" | kwargs given to the forward function.\n",
|
835 |
+
" | Default: ``False``\n",
|
836 |
+
" | \n",
|
837 |
+
" | Returns:\n",
|
838 |
+
" | :class:`torch.utils.hooks.RemovableHandle`:\n",
|
839 |
+
" | a handle that can be used to remove the added hook by calling\n",
|
840 |
+
" | ``handle.remove()``\n",
|
841 |
+
" | \n",
|
842 |
+
" | register_forward_pre_hook(self, hook: Union[Callable[[~T, Tuple[Any, ...]], Optional[Any]], Callable[[~T, Tuple[Any, ...], Dict[str, Any]], Optional[Tuple[Any, Dict[str, Any]]]]], *, prepend: bool = False, with_kwargs: bool = False) -> torch.utils.hooks.RemovableHandle\n",
|
843 |
+
" | Registers a forward pre-hook on the module.\n",
|
844 |
+
" | \n",
|
845 |
+
" | The hook will be called every time before :func:`forward` is invoked.\n",
|
846 |
+
" | \n",
|
847 |
+
" | \n",
|
848 |
+
" | If ``with_kwargs`` is false or not specified, the input contains only\n",
|
849 |
+
" | the positional arguments given to the module. Keyword arguments won't be\n",
|
850 |
+
" | passed to the hooks and only to the ``forward``. The hook can modify the\n",
|
851 |
+
" | input. User can either return a tuple or a single modified value in the\n",
|
852 |
+
" | hook. We will wrap the value into a tuple if a single value is returned\n",
|
853 |
+
" | (unless that value is already a tuple). The hook should have the\n",
|
854 |
+
" | following signature::\n",
|
855 |
+
" | \n",
|
856 |
+
" | hook(module, args) -> None or modified input\n",
|
857 |
+
" | \n",
|
858 |
+
" | If ``with_kwargs`` is true, the forward pre-hook will be passed the\n",
|
859 |
+
" | kwargs given to the forward function. And if the hook modifies the\n",
|
860 |
+
" | input, both the args and kwargs should be returned. The hook should have\n",
|
861 |
+
" | the following signature::\n",
|
862 |
+
" | \n",
|
863 |
+
" | hook(module, args, kwargs) -> None or a tuple of modified input and kwargs\n",
|
864 |
+
" | \n",
|
865 |
+
" | Args:\n",
|
866 |
+
" | hook (Callable): The user defined hook to be registered.\n",
|
867 |
+
" | prepend (bool): If true, the provided ``hook`` will be fired before\n",
|
868 |
+
" | all existing ``forward_pre`` hooks on this\n",
|
869 |
+
" | :class:`torch.nn.modules.Module`. Otherwise, the provided\n",
|
870 |
+
" | ``hook`` will be fired after all existing ``forward_pre`` hooks\n",
|
871 |
+
" | on this :class:`torch.nn.modules.Module`. Note that global\n",
|
872 |
+
" | ``forward_pre`` hooks registered with\n",
|
873 |
+
" | :func:`register_module_forward_pre_hook` will fire before all\n",
|
874 |
+
" | hooks registered by this method.\n",
|
875 |
+
" | Default: ``False``\n",
|
876 |
+
" | with_kwargs (bool): If true, the ``hook`` will be passed the kwargs\n",
|
877 |
+
" | given to the forward function.\n",
|
878 |
+
" | Default: ``False``\n",
|
879 |
+
" | \n",
|
880 |
+
" | Returns:\n",
|
881 |
+
" | :class:`torch.utils.hooks.RemovableHandle`:\n",
|
882 |
+
" | a handle that can be used to remove the added hook by calling\n",
|
883 |
+
" | ``handle.remove()``\n",
|
884 |
+
" | \n",
|
885 |
+
" | register_full_backward_hook(self, hook: Callable[[ForwardRef('Module'), Union[Tuple[torch.Tensor, ...], torch.Tensor], Union[Tuple[torch.Tensor, ...], torch.Tensor]], Union[NoneType, Tuple[torch.Tensor, ...], torch.Tensor]], prepend: bool = False) -> torch.utils.hooks.RemovableHandle\n",
|
886 |
+
" | Registers a backward hook on the module.\n",
|
887 |
+
" | \n",
|
888 |
+
" | The hook will be called every time the gradients with respect to a module\n",
|
889 |
+
" | are computed, i.e. the hook will execute if and only if the gradients with\n",
|
890 |
+
" | respect to module outputs are computed. The hook should have the following\n",
|
891 |
+
" | signature::\n",
|
892 |
+
" | \n",
|
893 |
+
" | hook(module, grad_input, grad_output) -> tuple(Tensor) or None\n",
|
894 |
+
" | \n",
|
895 |
+
" | The :attr:`grad_input` and :attr:`grad_output` are tuples that contain the gradients\n",
|
896 |
+
" | with respect to the inputs and outputs respectively. The hook should\n",
|
897 |
+
" | not modify its arguments, but it can optionally return a new gradient with\n",
|
898 |
+
" | respect to the input that will be used in place of :attr:`grad_input` in\n",
|
899 |
+
" | subsequent computations. :attr:`grad_input` will only correspond to the inputs given\n",
|
900 |
+
" | as positional arguments and all kwarg arguments are ignored. Entries\n",
|
901 |
+
" | in :attr:`grad_input` and :attr:`grad_output` will be ``None`` for all non-Tensor\n",
|
902 |
+
" | arguments.\n",
|
903 |
+
" | \n",
|
904 |
+
" | For technical reasons, when this hook is applied to a Module, its forward function will\n",
|
905 |
+
" | receive a view of each Tensor passed to the Module. Similarly the caller will receive a view\n",
|
906 |
+
" | of each Tensor returned by the Module's forward function.\n",
|
907 |
+
" | \n",
|
908 |
+
" | .. warning ::\n",
|
909 |
+
" | Modifying inputs or outputs inplace is not allowed when using backward hooks and\n",
|
910 |
+
" | will raise an error.\n",
|
911 |
+
" | \n",
|
912 |
+
" | Args:\n",
|
913 |
+
" | hook (Callable): The user-defined hook to be registered.\n",
|
914 |
+
" | prepend (bool): If true, the provided ``hook`` will be fired before\n",
|
915 |
+
" | all existing ``backward`` hooks on this\n",
|
916 |
+
" | :class:`torch.nn.modules.Module`. Otherwise, the provided\n",
|
917 |
+
" | ``hook`` will be fired after all existing ``backward`` hooks on\n",
|
918 |
+
" | this :class:`torch.nn.modules.Module`. Note that global\n",
|
919 |
+
" | ``backward`` hooks registered with\n",
|
920 |
+
" | :func:`register_module_full_backward_hook` will fire before\n",
|
921 |
+
" | all hooks registered by this method.\n",
|
922 |
+
" | \n",
|
923 |
+
" | Returns:\n",
|
924 |
+
" | :class:`torch.utils.hooks.RemovableHandle`:\n",
|
925 |
+
" | a handle that can be used to remove the added hook by calling\n",
|
926 |
+
" | ``handle.remove()``\n",
|
927 |
+
" | \n",
|
928 |
+
" | register_full_backward_pre_hook(self, hook: Callable[[ForwardRef('Module'), Union[Tuple[torch.Tensor, ...], torch.Tensor]], Union[NoneType, Tuple[torch.Tensor, ...], torch.Tensor]], prepend: bool = False) -> torch.utils.hooks.RemovableHandle\n",
|
929 |
+
" | Registers a backward pre-hook on the module.\n",
|
930 |
+
" | \n",
|
931 |
+
" | The hook will be called every time the gradients for the module are computed.\n",
|
932 |
+
" | The hook should have the following signature::\n",
|
933 |
+
" | \n",
|
934 |
+
" | hook(module, grad_output) -> Tensor or None\n",
|
935 |
+
" | \n",
|
936 |
+
" | The :attr:`grad_output` is a tuple. The hook should\n",
|
937 |
+
" | not modify its arguments, but it can optionally return a new gradient with\n",
|
938 |
+
" | respect to the output that will be used in place of :attr:`grad_output` in\n",
|
939 |
+
" | subsequent computations. Entries in :attr:`grad_output` will be ``None`` for\n",
|
940 |
+
" | all non-Tensor arguments.\n",
|
941 |
+
" | \n",
|
942 |
+
" | For technical reasons, when this hook is applied to a Module, its forward function will\n",
|
943 |
+
" | receive a view of each Tensor passed to the Module. Similarly the caller will receive a view\n",
|
944 |
+
" | of each Tensor returned by the Module's forward function.\n",
|
945 |
+
" | \n",
|
946 |
+
" | .. warning ::\n",
|
947 |
+
" | Modifying inputs inplace is not allowed when using backward hooks and\n",
|
948 |
+
" | will raise an error.\n",
|
949 |
+
" | \n",
|
950 |
+
" | Args:\n",
|
951 |
+
" | hook (Callable): The user-defined hook to be registered.\n",
|
952 |
+
" | prepend (bool): If true, the provided ``hook`` will be fired before\n",
|
953 |
+
" | all existing ``backward_pre`` hooks on this\n",
|
954 |
+
" | :class:`torch.nn.modules.Module`. Otherwise, the provided\n",
|
955 |
+
" | ``hook`` will be fired after all existing ``backward_pre`` hooks\n",
|
956 |
+
" | on this :class:`torch.nn.modules.Module`. Note that global\n",
|
957 |
+
" | ``backward_pre`` hooks registered with\n",
|
958 |
+
" | :func:`register_module_full_backward_pre_hook` will fire before\n",
|
959 |
+
" | all hooks registered by this method.\n",
|
960 |
+
" | \n",
|
961 |
+
" | Returns:\n",
|
962 |
+
" | :class:`torch.utils.hooks.RemovableHandle`:\n",
|
963 |
+
" | a handle that can be used to remove the added hook by calling\n",
|
964 |
+
" | ``handle.remove()``\n",
|
965 |
+
" | \n",
|
966 |
+
" | register_load_state_dict_post_hook(self, hook)\n",
|
967 |
+
" | Registers a post hook to be run after module's ``load_state_dict``\n",
|
968 |
+
" | is called.\n",
|
969 |
+
" | \n",
|
970 |
+
" | It should have the following signature::\n",
|
971 |
+
" | hook(module, incompatible_keys) -> None\n",
|
972 |
+
" | \n",
|
973 |
+
" | The ``module`` argument is the current module that this hook is registered\n",
|
974 |
+
" | on, and the ``incompatible_keys`` argument is a ``NamedTuple`` consisting\n",
|
975 |
+
" | of attributes ``missing_keys`` and ``unexpected_keys``. ``missing_keys``\n",
|
976 |
+
" | is a ``list`` of ``str`` containing the missing keys and\n",
|
977 |
+
" | ``unexpected_keys`` is a ``list`` of ``str`` containing the unexpected keys.\n",
|
978 |
+
" | \n",
|
979 |
+
" | The given incompatible_keys can be modified inplace if needed.\n",
|
980 |
+
" | \n",
|
981 |
+
" | Note that the checks performed when calling :func:`load_state_dict` with\n",
|
982 |
+
" | ``strict=True`` are affected by modifications the hook makes to\n",
|
983 |
+
" | ``missing_keys`` or ``unexpected_keys``, as expected. Additions to either\n",
|
984 |
+
" | set of keys will result in an error being thrown when ``strict=True``, and\n",
|
985 |
+
" | clearing out both missing and unexpected keys will avoid an error.\n",
|
986 |
+
" | \n",
|
987 |
+
" | Returns:\n",
|
988 |
+
" | :class:`torch.utils.hooks.RemovableHandle`:\n",
|
989 |
+
" | a handle that can be used to remove the added hook by calling\n",
|
990 |
+
" | ``handle.remove()``\n",
|
991 |
+
" | \n",
|
992 |
+
" | register_module(self, name: str, module: Optional[ForwardRef('Module')]) -> None\n",
|
993 |
+
" | Alias for :func:`add_module`.\n",
|
994 |
+
" | \n",
|
995 |
+
" | register_parameter(self, name: str, param: Optional[torch.nn.parameter.Parameter]) -> None\n",
|
996 |
+
" | Adds a parameter to the module.\n",
|
997 |
+
" | \n",
|
998 |
+
" | The parameter can be accessed as an attribute using given name.\n",
|
999 |
+
" | \n",
|
1000 |
+
" | Args:\n",
|
1001 |
+
" | name (str): name of the parameter. The parameter can be accessed\n",
|
1002 |
+
" | from this module using the given name\n",
|
1003 |
+
" | param (Parameter or None): parameter to be added to the module. If\n",
|
1004 |
+
" | ``None``, then operations that run on parameters, such as :attr:`cuda`,\n",
|
1005 |
+
" | are ignored. If ``None``, the parameter is **not** included in the\n",
|
1006 |
+
" | module's :attr:`state_dict`.\n",
|
1007 |
+
" | \n",
|
1008 |
+
" | register_state_dict_pre_hook(self, hook)\n",
|
1009 |
+
" | These hooks will be called with arguments: ``self``, ``prefix``,\n",
|
1010 |
+
" | and ``keep_vars`` before calling ``state_dict`` on ``self``. The registered\n",
|
1011 |
+
" | hooks can be used to perform pre-processing before the ``state_dict``\n",
|
1012 |
+
" | call is made.\n",
|
1013 |
+
" | \n",
|
1014 |
+
" | requires_grad_(self: ~T, requires_grad: bool = True) -> ~T\n",
|
1015 |
+
" | Change if autograd should record operations on parameters in this\n",
|
1016 |
+
" | module.\n",
|
1017 |
+
" | \n",
|
1018 |
+
" | This method sets the parameters' :attr:`requires_grad` attributes\n",
|
1019 |
+
" | in-place.\n",
|
1020 |
+
" | \n",
|
1021 |
+
" | This method is helpful for freezing part of the module for finetuning\n",
|
1022 |
+
" | or training parts of a model individually (e.g., GAN training).\n",
|
1023 |
+
" | \n",
|
1024 |
+
" | See :ref:`locally-disable-grad-doc` for a comparison between\n",
|
1025 |
+
" | `.requires_grad_()` and several similar mechanisms that may be confused with it.\n",
|
1026 |
+
" | \n",
|
1027 |
+
" | Args:\n",
|
1028 |
+
" | requires_grad (bool): whether autograd should record operations on\n",
|
1029 |
+
" | parameters in this module. Default: ``True``.\n",
|
1030 |
+
" | \n",
|
1031 |
+
" | Returns:\n",
|
1032 |
+
" | Module: self\n",
|
1033 |
+
" | \n",
|
1034 |
+
" | set_extra_state(self, state: Any)\n",
|
1035 |
+
" | This function is called from :func:`load_state_dict` to handle any extra state\n",
|
1036 |
+
" | found within the `state_dict`. Implement this function and a corresponding\n",
|
1037 |
+
" | :func:`get_extra_state` for your module if you need to store extra state within its\n",
|
1038 |
+
" | `state_dict`.\n",
|
1039 |
+
" | \n",
|
1040 |
+
" | Args:\n",
|
1041 |
+
" | state (dict): Extra state from the `state_dict`\n",
|
1042 |
+
" | \n",
|
1043 |
+
" | share_memory(self: ~T) -> ~T\n",
|
1044 |
+
" | See :meth:`torch.Tensor.share_memory_`\n",
|
1045 |
+
" | \n",
|
1046 |
+
" | state_dict(self, *args, destination=None, prefix='', keep_vars=False)\n",
|
1047 |
+
" | Returns a dictionary containing references to the whole state of the module.\n",
|
1048 |
+
" | \n",
|
1049 |
+
" | Both parameters and persistent buffers (e.g. running averages) are\n",
|
1050 |
+
" | included. Keys are corresponding parameter and buffer names.\n",
|
1051 |
+
" | Parameters and buffers set to ``None`` are not included.\n",
|
1052 |
+
" | \n",
|
1053 |
+
" | .. note::\n",
|
1054 |
+
" | The returned object is a shallow copy. It contains references\n",
|
1055 |
+
" | to the module's parameters and buffers.\n",
|
1056 |
+
" | \n",
|
1057 |
+
" | .. warning::\n",
|
1058 |
+
" | Currently ``state_dict()`` also accepts positional arguments for\n",
|
1059 |
+
" | ``destination``, ``prefix`` and ``keep_vars`` in order. However,\n",
|
1060 |
+
" | this is being deprecated and keyword arguments will be enforced in\n",
|
1061 |
+
" | future releases.\n",
|
1062 |
+
" | \n",
|
1063 |
+
" | .. warning::\n",
|
1064 |
+
" | Please avoid the use of argument ``destination`` as it is not\n",
|
1065 |
+
" | designed for end-users.\n",
|
1066 |
+
" | \n",
|
1067 |
+
" | Args:\n",
|
1068 |
+
" | destination (dict, optional): If provided, the state of module will\n",
|
1069 |
+
" | be updated into the dict and the same object is returned.\n",
|
1070 |
+
" | Otherwise, an ``OrderedDict`` will be created and returned.\n",
|
1071 |
+
" | Default: ``None``.\n",
|
1072 |
+
" | prefix (str, optional): a prefix added to parameter and buffer\n",
|
1073 |
+
" | names to compose the keys in state_dict. Default: ``''``.\n",
|
1074 |
+
" | keep_vars (bool, optional): by default the :class:`~torch.Tensor` s\n",
|
1075 |
+
" | returned in the state dict are detached from autograd. If it's\n",
|
1076 |
+
" | set to ``True``, detaching will not be performed.\n",
|
1077 |
+
" | Default: ``False``.\n",
|
1078 |
+
" | \n",
|
1079 |
+
" | Returns:\n",
|
1080 |
+
" | dict:\n",
|
1081 |
+
" | a dictionary containing a whole state of the module\n",
|
1082 |
+
" | \n",
|
1083 |
+
" | Example::\n",
|
1084 |
+
" | \n",
|
1085 |
+
" | >>> # xdoctest: +SKIP(\"undefined vars\")\n",
|
1086 |
+
" | >>> module.state_dict().keys()\n",
|
1087 |
+
" | ['bias', 'weight']\n",
|
1088 |
+
" | \n",
|
1089 |
+
" | to(self, *args, **kwargs)\n",
|
1090 |
+
" | Moves and/or casts the parameters and buffers.\n",
|
1091 |
+
" | \n",
|
1092 |
+
" | This can be called as\n",
|
1093 |
+
" | \n",
|
1094 |
+
" | .. function:: to(device=None, dtype=None, non_blocking=False)\n",
|
1095 |
+
" | :noindex:\n",
|
1096 |
+
" | \n",
|
1097 |
+
" | .. function:: to(dtype, non_blocking=False)\n",
|
1098 |
+
" | :noindex:\n",
|
1099 |
+
" | \n",
|
1100 |
+
" | .. function:: to(tensor, non_blocking=False)\n",
|
1101 |
+
" | :noindex:\n",
|
1102 |
+
" | \n",
|
1103 |
+
" | .. function:: to(memory_format=torch.channels_last)\n",
|
1104 |
+
" | :noindex:\n",
|
1105 |
+
" | \n",
|
1106 |
+
" | Its signature is similar to :meth:`torch.Tensor.to`, but only accepts\n",
|
1107 |
+
" | floating point or complex :attr:`dtype`\\ s. In addition, this method will\n",
|
1108 |
+
" | only cast the floating point or complex parameters and buffers to :attr:`dtype`\n",
|
1109 |
+
" | (if given). The integral parameters and buffers will be moved\n",
|
1110 |
+
" | :attr:`device`, if that is given, but with dtypes unchanged. When\n",
|
1111 |
+
" | :attr:`non_blocking` is set, it tries to convert/move asynchronously\n",
|
1112 |
+
" | with respect to the host if possible, e.g., moving CPU Tensors with\n",
|
1113 |
+
" | pinned memory to CUDA devices.\n",
|
1114 |
+
" | \n",
|
1115 |
+
" | See below for examples.\n",
|
1116 |
+
" | \n",
|
1117 |
+
" | .. note::\n",
|
1118 |
+
" | This method modifies the module in-place.\n",
|
1119 |
+
" | \n",
|
1120 |
+
" | Args:\n",
|
1121 |
+
" | device (:class:`torch.device`): the desired device of the parameters\n",
|
1122 |
+
" | and buffers in this module\n",
|
1123 |
+
" | dtype (:class:`torch.dtype`): the desired floating point or complex dtype of\n",
|
1124 |
+
" | the parameters and buffers in this module\n",
|
1125 |
+
" | tensor (torch.Tensor): Tensor whose dtype and device are the desired\n",
|
1126 |
+
" | dtype and device for all parameters and buffers in this module\n",
|
1127 |
+
" | memory_format (:class:`torch.memory_format`): the desired memory\n",
|
1128 |
+
" | format for 4D parameters and buffers in this module (keyword\n",
|
1129 |
+
" | only argument)\n",
|
1130 |
+
" | \n",
|
1131 |
+
" | Returns:\n",
|
1132 |
+
" | Module: self\n",
|
1133 |
+
" | \n",
|
1134 |
+
" | Examples::\n",
|
1135 |
+
" | \n",
|
1136 |
+
" | >>> # xdoctest: +IGNORE_WANT(\"non-deterministic\")\n",
|
1137 |
+
" | >>> linear = nn.Linear(2, 2)\n",
|
1138 |
+
" | >>> linear.weight\n",
|
1139 |
+
" | Parameter containing:\n",
|
1140 |
+
" | tensor([[ 0.1913, -0.3420],\n",
|
1141 |
+
" | [-0.5113, -0.2325]])\n",
|
1142 |
+
" | >>> linear.to(torch.double)\n",
|
1143 |
+
" | Linear(in_features=2, out_features=2, bias=True)\n",
|
1144 |
+
" | >>> linear.weight\n",
|
1145 |
+
" | Parameter containing:\n",
|
1146 |
+
" | tensor([[ 0.1913, -0.3420],\n",
|
1147 |
+
" | [-0.5113, -0.2325]], dtype=torch.float64)\n",
|
1148 |
+
" | >>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_CUDA1)\n",
|
1149 |
+
" | >>> gpu1 = torch.device(\"cuda:1\")\n",
|
1150 |
+
" | >>> linear.to(gpu1, dtype=torch.half, non_blocking=True)\n",
|
1151 |
+
" | Linear(in_features=2, out_features=2, bias=True)\n",
|
1152 |
+
" | >>> linear.weight\n",
|
1153 |
+
" | Parameter containing:\n",
|
1154 |
+
" | tensor([[ 0.1914, -0.3420],\n",
|
1155 |
+
" | [-0.5112, -0.2324]], dtype=torch.float16, device='cuda:1')\n",
|
1156 |
+
" | >>> cpu = torch.device(\"cpu\")\n",
|
1157 |
+
" | >>> linear.to(cpu)\n",
|
1158 |
+
" | Linear(in_features=2, out_features=2, bias=True)\n",
|
1159 |
+
" | >>> linear.weight\n",
|
1160 |
+
" | Parameter containing:\n",
|
1161 |
+
" | tensor([[ 0.1914, -0.3420],\n",
|
1162 |
+
" | [-0.5112, -0.2324]], dtype=torch.float16)\n",
|
1163 |
+
" | \n",
|
1164 |
+
" | >>> linear = nn.Linear(2, 2, bias=None).to(torch.cdouble)\n",
|
1165 |
+
" | >>> linear.weight\n",
|
1166 |
+
" | Parameter containing:\n",
|
1167 |
+
" | tensor([[ 0.3741+0.j, 0.2382+0.j],\n",
|
1168 |
+
" | [ 0.5593+0.j, -0.4443+0.j]], dtype=torch.complex128)\n",
|
1169 |
+
" | >>> linear(torch.ones(3, 2, dtype=torch.cdouble))\n",
|
1170 |
+
" | tensor([[0.6122+0.j, 0.1150+0.j],\n",
|
1171 |
+
" | [0.6122+0.j, 0.1150+0.j],\n",
|
1172 |
+
" | [0.6122+0.j, 0.1150+0.j]], dtype=torch.complex128)\n",
|
1173 |
+
" | \n",
|
1174 |
+
" | to_empty(self: ~T, *, device: Union[str, torch.device]) -> ~T\n",
|
1175 |
+
" | Moves the parameters and buffers to the specified device without copying storage.\n",
|
1176 |
+
" | \n",
|
1177 |
+
" | Args:\n",
|
1178 |
+
" | device (:class:`torch.device`): The desired device of the parameters\n",
|
1179 |
+
" | and buffers in this module.\n",
|
1180 |
+
" | \n",
|
1181 |
+
" | Returns:\n",
|
1182 |
+
" | Module: self\n",
|
1183 |
+
" | \n",
|
1184 |
+
" | train(self: ~T, mode: bool = True) -> ~T\n",
|
1185 |
+
" | Sets the module in training mode.\n",
|
1186 |
+
" | \n",
|
1187 |
+
" | This has any effect only on certain modules. See documentations of\n",
|
1188 |
+
" | particular modules for details of their behaviors in training/evaluation\n",
|
1189 |
+
" | mode, if they are affected, e.g. :class:`Dropout`, :class:`BatchNorm`,\n",
|
1190 |
+
" | etc.\n",
|
1191 |
+
" | \n",
|
1192 |
+
" | Args:\n",
|
1193 |
+
" | mode (bool): whether to set training mode (``True``) or evaluation\n",
|
1194 |
+
" | mode (``False``). Default: ``True``.\n",
|
1195 |
+
" | \n",
|
1196 |
+
" | Returns:\n",
|
1197 |
+
" | Module: self\n",
|
1198 |
+
" | \n",
|
1199 |
+
" | type(self: ~T, dst_type: Union[torch.dtype, str]) -> ~T\n",
|
1200 |
+
" | Casts all parameters and buffers to :attr:`dst_type`.\n",
|
1201 |
+
" | \n",
|
1202 |
+
" | .. note::\n",
|
1203 |
+
" | This method modifies the module in-place.\n",
|
1204 |
+
" | \n",
|
1205 |
+
" | Args:\n",
|
1206 |
+
" | dst_type (type or string): the desired type\n",
|
1207 |
+
" | \n",
|
1208 |
+
" | Returns:\n",
|
1209 |
+
" | Module: self\n",
|
1210 |
+
" | \n",
|
1211 |
+
" | xpu(self: ~T, device: Union[int, torch.device, NoneType] = None) -> ~T\n",
|
1212 |
+
" | Moves all model parameters and buffers to the XPU.\n",
|
1213 |
+
" | \n",
|
1214 |
+
" | This also makes associated parameters and buffers different objects. So\n",
|
1215 |
+
" | it should be called before constructing optimizer if the module will\n",
|
1216 |
+
" | live on XPU while being optimized.\n",
|
1217 |
+
" | \n",
|
1218 |
+
" | .. note::\n",
|
1219 |
+
" | This method modifies the module in-place.\n",
|
1220 |
+
" | \n",
|
1221 |
+
" | Arguments:\n",
|
1222 |
+
" | device (int, optional): if specified, all parameters will be\n",
|
1223 |
+
" | copied to that device\n",
|
1224 |
+
" | \n",
|
1225 |
+
" | Returns:\n",
|
1226 |
+
" | Module: self\n",
|
1227 |
+
" | \n",
|
1228 |
+
" | zero_grad(self, set_to_none: bool = True) -> None\n",
|
1229 |
+
" | Sets gradients of all model parameters to zero. See similar function\n",
|
1230 |
+
" | under :class:`torch.optim.Optimizer` for more context.\n",
|
1231 |
+
" | \n",
|
1232 |
+
" | Args:\n",
|
1233 |
+
" | set_to_none (bool): instead of setting to zero, set the grads to None.\n",
|
1234 |
+
" | See :meth:`torch.optim.Optimizer.zero_grad` for details.\n",
|
1235 |
+
" | \n",
|
1236 |
+
" | ----------------------------------------------------------------------\n",
|
1237 |
+
" | Data descriptors inherited from torch.nn.modules.module.Module:\n",
|
1238 |
+
" | \n",
|
1239 |
+
" | __dict__\n",
|
1240 |
+
" | dictionary for instance variables (if defined)\n",
|
1241 |
+
" | \n",
|
1242 |
+
" | __weakref__\n",
|
1243 |
+
" | list of weak references to the object (if defined)\n",
|
1244 |
+
" | \n",
|
1245 |
+
" | ----------------------------------------------------------------------\n",
|
1246 |
+
" | Data and other attributes inherited from torch.nn.modules.module.Module:\n",
|
1247 |
+
" | \n",
|
1248 |
+
" | T_destination = ~T_destination\n",
|
1249 |
+
" | \n",
|
1250 |
+
" | call_super_init = False\n",
|
1251 |
+
" | \n",
|
1252 |
+
" | dump_patches = False\n",
|
1253 |
+
"\n"
|
1254 |
+
]
|
1255 |
+
}
|
1256 |
+
],
|
1257 |
+
"source": [
|
1258 |
+
"help(eva02_model)"
|
1259 |
+
]
|
1260 |
+
},
|
1261 |
+
{
|
1262 |
+
"cell_type": "markdown",
|
1263 |
+
"id": "2f5ac1a7-6f1b-4417-8a67-1b2e32d385dd",
|
1264 |
+
"metadata": {},
|
1265 |
+
"source": [
|
1266 |
+
"# DETR"
|
1267 |
+
]
|
1268 |
+
},
|
1269 |
+
{
|
1270 |
+
"cell_type": "code",
|
1271 |
+
"execution_count": 33,
|
1272 |
+
"id": "5c3ade1b-18ea-4368-abd9-53be1fdfb610",
|
1273 |
+
"metadata": {},
|
1274 |
+
"outputs": [
|
1275 |
+
{
|
1276 |
+
"name": "stdout",
|
1277 |
+
"output_type": "stream",
|
1278 |
+
"text": [
|
1279 |
+
"[2023-08-28 01:51:14,033] [INFO] [real_accelerator.py:133:get_accelerator] Setting ds_accelerator to cuda (auto detect)\n"
|
1280 |
+
]
|
1281 |
+
},
|
1282 |
+
{
|
1283 |
+
"name": "stderr",
|
1284 |
+
"output_type": "stream",
|
1285 |
+
"text": [
|
1286 |
+
"The `max_size` parameter is deprecated and will be removed in v4.26. Please specify in `size['longest_edge'] instead`.\n"
|
1287 |
+
]
|
1288 |
+
}
|
1289 |
+
],
|
1290 |
+
"source": [
|
1291 |
+
"from transformers import DetrImageProcessor, DetrForObjectDetection\n",
|
1292 |
+
"import torch\n",
|
1293 |
+
"from PIL import Image\n",
|
1294 |
+
"import requests\n",
|
1295 |
+
"\n",
|
1296 |
+
"url = \"http://images.cocodataset.org/val2017/000000039769.jpg\"\n",
|
1297 |
+
"image = Image.open(requests.get(url, stream=True).raw)\n",
|
1298 |
+
"\n",
|
1299 |
+
"processor = DetrImageProcessor.from_pretrained(\"facebook/detr-resnet-50\", cache_dir='/fsx/proj-fmri/shared/cache')\n",
|
1300 |
+
"model = DetrForObjectDetection.from_pretrained(\"facebook/detr-resnet-50\", cache_dir='/fsx/proj-fmri/shared/cache')"
|
1301 |
+
]
|
1302 |
+
},
|
1303 |
+
{
|
1304 |
+
"cell_type": "code",
|
1305 |
+
"execution_count": 34,
|
1306 |
+
"id": "1d5aa2d7-4868-4751-8d90-7c52be028cd9",
|
1307 |
+
"metadata": {},
|
1308 |
+
"outputs": [],
|
1309 |
+
"source": [
|
1310 |
+
"inputs = processor(images=image, return_tensors=\"pt\")\n",
|
1311 |
+
"outputs = model(**inputs)"
|
1312 |
+
]
|
1313 |
+
},
|
1314 |
+
{
|
1315 |
+
"cell_type": "code",
|
1316 |
+
"execution_count": 35,
|
1317 |
+
"id": "ae6bafc6-cee4-4e59-b7ba-12efc2a65b74",
|
1318 |
+
"metadata": {},
|
1319 |
+
"outputs": [
|
1320 |
+
{
|
1321 |
+
"name": "stdout",
|
1322 |
+
"output_type": "stream",
|
1323 |
+
"text": [
|
1324 |
+
"Detected remote with confidence 0.998 at location [40.16, 70.81, 175.55, 117.98]\n",
|
1325 |
+
"Detected remote with confidence 0.996 at location [333.24, 72.55, 368.33, 187.66]\n",
|
1326 |
+
"Detected couch with confidence 0.995 at location [-0.02, 1.15, 639.73, 473.76]\n",
|
1327 |
+
"Detected cat with confidence 0.999 at location [13.24, 52.05, 314.02, 470.93]\n",
|
1328 |
+
"Detected cat with confidence 0.999 at location [345.4, 23.85, 640.37, 368.72]\n"
|
1329 |
+
]
|
1330 |
+
}
|
1331 |
+
],
|
1332 |
+
"source": [
|
1333 |
+
"# convert outputs (bounding boxes and class logits) to COCO API\n",
|
1334 |
+
"# let's only keep detections with score > 0.9\n",
|
1335 |
+
"target_sizes = torch.tensor([image.size[::-1]])\n",
|
1336 |
+
"results = processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.9)[0]\n",
|
1337 |
+
"\n",
|
1338 |
+
"for score, label, box in zip(results[\"scores\"], results[\"labels\"], results[\"boxes\"]):\n",
|
1339 |
+
" box = [round(i, 2) for i in box.tolist()]\n",
|
1340 |
+
" print(\n",
|
1341 |
+
" f\"Detected {model.config.id2label[label.item()]} with confidence \"\n",
|
1342 |
+
" f\"{round(score.item(), 3)} at location {box}\"\n",
|
1343 |
+
" )"
|
1344 |
+
]
|
1345 |
+
},
|
1346 |
+
{
|
1347 |
+
"cell_type": "code",
|
1348 |
+
"execution_count": 36,
|
1349 |
+
"id": "6dcc5934-79d4-4062-8b32-e42b3ebcdc0f",
|
1350 |
+
"metadata": {},
|
1351 |
+
"outputs": [
|
1352 |
+
{
|
1353 |
+
"data": {
|
1354 |
+
"text/plain": [
|
1355 |
+
"DetrImageProcessor {\n",
|
1356 |
+
" \"do_normalize\": true,\n",
|
1357 |
+
" \"do_pad\": true,\n",
|
1358 |
+
" \"do_rescale\": true,\n",
|
1359 |
+
" \"do_resize\": true,\n",
|
1360 |
+
" \"feature_extractor_type\": \"DetrFeatureExtractor\",\n",
|
1361 |
+
" \"format\": \"coco_detection\",\n",
|
1362 |
+
" \"image_mean\": [\n",
|
1363 |
+
" 0.485,\n",
|
1364 |
+
" 0.456,\n",
|
1365 |
+
" 0.406\n",
|
1366 |
+
" ],\n",
|
1367 |
+
" \"image_processor_type\": \"DetrImageProcessor\",\n",
|
1368 |
+
" \"image_std\": [\n",
|
1369 |
+
" 0.229,\n",
|
1370 |
+
" 0.224,\n",
|
1371 |
+
" 0.225\n",
|
1372 |
+
" ],\n",
|
1373 |
+
" \"resample\": 2,\n",
|
1374 |
+
" \"rescale_factor\": 0.00392156862745098,\n",
|
1375 |
+
" \"size\": {\n",
|
1376 |
+
" \"longest_edge\": 1333,\n",
|
1377 |
+
" \"shortest_edge\": 800\n",
|
1378 |
+
" }\n",
|
1379 |
+
"}"
|
1380 |
+
]
|
1381 |
+
},
|
1382 |
+
"execution_count": 36,
|
1383 |
+
"metadata": {},
|
1384 |
+
"output_type": "execute_result"
|
1385 |
+
}
|
1386 |
+
],
|
1387 |
+
"source": [
|
1388 |
+
"processor"
|
1389 |
+
]
|
1390 |
+
},
|
1391 |
+
{
|
1392 |
+
"cell_type": "markdown",
|
1393 |
+
"id": "db1d89cc-b432-473e-af69-d81c435ac731",
|
1394 |
+
"metadata": {},
|
1395 |
+
"source": [
|
1396 |
+
"# CLIPSeg"
|
1397 |
+
]
|
1398 |
+
},
|
1399 |
+
{
|
1400 |
+
"cell_type": "code",
|
1401 |
+
"execution_count": 37,
|
1402 |
+
"id": "15db14d1-ee4d-4429-9286-054c4498293b",
|
1403 |
+
"metadata": {},
|
1404 |
+
"outputs": [],
|
1405 |
+
"source": [
|
1406 |
+
"from transformers import CLIPSegProcessor, CLIPSegForImageSegmentation\n",
|
1407 |
+
"\n",
|
1408 |
+
"processor = CLIPSegProcessor.from_pretrained(\"CIDAS/clipseg-rd16\",cache_dir='/fsx/proj-fmri/shared/cache')\n",
|
1409 |
+
"model = CLIPSegForImageSegmentation.from_pretrained(\"CIDAS/clipseg-rd16\",cache_dir='/fsx/proj-fmri/shared/cache')"
|
1410 |
+
]
|
1411 |
+
},
|
1412 |
+
{
|
1413 |
+
"cell_type": "code",
|
1414 |
+
"execution_count": 38,
|
1415 |
+
"id": "4aa225d4-5a3b-4dbb-ae57-dea2872ff492",
|
1416 |
+
"metadata": {},
|
1417 |
+
"outputs": [
|
1418 |
+
{
|
1419 |
+
"ename": "AttributeError",
|
1420 |
+
"evalue": "'JpegImageFile' object has no attribute 'shape'",
|
1421 |
+
"output_type": "error",
|
1422 |
+
"traceback": [
|
1423 |
+
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
1424 |
+
"\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)",
|
1425 |
+
"Cell \u001b[0;32mIn[38], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[43mimage\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mshape\u001b[49m\n",
|
1426 |
+
"\u001b[0;31mAttributeError\u001b[0m: 'JpegImageFile' object has no attribute 'shape'"
|
1427 |
+
]
|
1428 |
+
}
|
1429 |
+
],
|
1430 |
+
"source": [
|
1431 |
+
"image.shape"
|
1432 |
+
]
|
1433 |
+
},
|
1434 |
+
{
|
1435 |
+
"cell_type": "code",
|
1436 |
+
"execution_count": null,
|
1437 |
+
"id": "ad7e2daf-0c7c-4fec-b29e-9ba47a037c6b",
|
1438 |
+
"metadata": {},
|
1439 |
+
"outputs": [],
|
1440 |
+
"source": [
|
1441 |
+
"from PIL import Image\n",
|
1442 |
+
"import requests\n",
|
1443 |
+
"import h5py\n",
|
1444 |
+
"\n",
|
1445 |
+
"# url = \"https://unsplash.com/photos/8Nc_oQsc2qQ/download?ixid=MnwxMjA3fDB8MXxhbGx8fHx8fHx8fHwxNjcxMjAwNzI0&force=true&w=640\"\n",
|
1446 |
+
"# image = Image.open(requests.get(url, stream=True).raw)\n",
|
1447 |
+
"\n",
|
1448 |
+
"image_path = \"/fsx/proj-fmri/shared/mindeyev2_dataset/coco_images_224_float16.hdf5\"\n",
|
1449 |
+
"with h5py.File(image_path, 'r') as file:\n",
|
1450 |
+
" image = file['images'][0]\n",
|
1451 |
+
"image = np.moveaxis(image, 0, -1).astype(np.float32)\n",
|
1452 |
+
"plt.imshow(image)\n",
|
1453 |
+
"\n",
|
1454 |
+
"prompts = [\"person\",\"animal\",\"object\",\"background\"]\n",
|
1455 |
+
"import torch\n",
|
1456 |
+
"\n",
|
1457 |
+
"# Rescale to [0, 255]\n",
|
1458 |
+
"array = (image * 255).astype(np.uint8)\n",
|
1459 |
+
"\n",
|
1460 |
+
"# Convert to PIL image\n",
|
1461 |
+
"image = Image.fromarray(array)\n",
|
1462 |
+
"\n",
|
1463 |
+
"inputs = processor(text=prompts, images=[image] * len(prompts), padding=\"max_length\", return_tensors=\"pt\")\n",
|
1464 |
+
"# predict\n",
|
1465 |
+
"with torch.no_grad():\n",
|
1466 |
+
" outputs = model(**inputs)\n",
|
1467 |
+
"preds = outputs.logits.unsqueeze(1)\n",
|
1468 |
+
"print(preds.shape)"
|
1469 |
+
]
|
1470 |
+
},
|
1471 |
+
{
|
1472 |
+
"cell_type": "code",
|
1473 |
+
"execution_count": null,
|
1474 |
+
"id": "131eb5b7-2f16-4a79-8402-edc1a1d8c348",
|
1475 |
+
"metadata": {},
|
1476 |
+
"outputs": [],
|
1477 |
+
"source": [
|
1478 |
+
"preds = ((preds[0] + preds[1] + preds[2] + preds[-1].max() - preds[-1]) / 4)[None]\n",
|
1479 |
+
"preds.shape"
|
1480 |
+
]
|
1481 |
+
},
|
1482 |
+
{
|
1483 |
+
"cell_type": "code",
|
1484 |
+
"execution_count": null,
|
1485 |
+
"id": "e2bf99e7-064d-4c22-997f-aa1a35dbab82",
|
1486 |
+
"metadata": {},
|
1487 |
+
"outputs": [],
|
1488 |
+
"source": [
|
1489 |
+
"_, ax = plt.subplots(1, len(prompts) + 1, figsize=(3*(len(prompts) + 1), 4))\n",
|
1490 |
+
"[a.axis('off') for a in ax.flatten()]\n",
|
1491 |
+
"ax[0].imshow(image)\n",
|
1492 |
+
"[ax[i+1].imshow(torch.sigmoid(preds[i][0])) for i in range(1)];\n",
|
1493 |
+
"# [ax[i+1].text(0, -15, prompt) for i, prompt in enumerate(prompts)];"
|
1494 |
+
]
|
1495 |
+
},
|
1496 |
+
{
|
1497 |
+
"cell_type": "code",
|
1498 |
+
"execution_count": null,
|
1499 |
+
"id": "b58b926f-a2b2-423b-b367-18808cf6b4f7",
|
1500 |
+
"metadata": {},
|
1501 |
+
"outputs": [],
|
1502 |
+
"source": []
|
1503 |
+
}
|
1504 |
+
],
|
1505 |
+
"metadata": {
|
1506 |
+
"kernelspec": {
|
1507 |
+
"display_name": "Python 3 (ipykernel)",
|
1508 |
+
"language": "python",
|
1509 |
+
"name": "python3"
|
1510 |
+
},
|
1511 |
+
"language_info": {
|
1512 |
+
"codemirror_mode": {
|
1513 |
+
"name": "ipython",
|
1514 |
+
"version": 3
|
1515 |
+
},
|
1516 |
+
"file_extension": ".py",
|
1517 |
+
"mimetype": "text/x-python",
|
1518 |
+
"name": "python",
|
1519 |
+
"nbconvert_exporter": "python",
|
1520 |
+
"pygments_lexer": "ipython3",
|
1521 |
+
"version": "3.10.8"
|
1522 |
+
}
|
1523 |
+
},
|
1524 |
+
"nbformat": 4,
|
1525 |
+
"nbformat_minor": 5
|
1526 |
+
}
|
src/deepspeed_config_stage1.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"bf16": {"enabled": false}, "fp16": {"enabled": true}, "zero_optimization": {"stage": 1, "contiguous_gradients": true, "stage3_gather_16bit_weights_on_model_save": true, "stage3_max_live_parameters": 1000000000.0, "stage3_max_reuse_distance": 1000000000.0, "stage3_prefetch_bucket_size": 10000000.0, "stage3_param_persistence_threshold": 100000.0, "reduce_bucket_size": 10000000.0, "sub_group_size": 1000000000.0, "offload_optimizer": {"device": "none", "nvme_path": "/scratch", "pin_memory": true}, "offload_param": {"device": "none", "nvme_path": "/scratch", "buffer_size": 4000000000.0, "pin_memory": true}}, "aio": {"block_size": 26214400, "queue_depth": 32, "thread_count": 1, "single_submit": false, "overlap_events": true}, "gradient_accumulation_steps": 1, "gradient_clipping": 1.0, "steps_per_print": 20000, "train_batch_size": 8, "train_micro_batch_size_per_gpu": 8, "wall_clock_breakdown": false, "zero_allow_untested_optimizer": true}
|
src/deepspeed_config_stage2.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"bf16": {"enabled": false}, "fp16": {"enabled": true}, "zero_optimization": {"stage": 2, "contiguous_gradients": true, "stage3_gather_16bit_weights_on_model_save": true, "stage3_max_live_parameters": 1000000000.0, "stage3_max_reuse_distance": 1000000000.0, "stage3_prefetch_bucket_size": 10000000.0, "stage3_param_persistence_threshold": 100000.0, "reduce_bucket_size": 10000000.0, "sub_group_size": 1000000000.0, "offload_optimizer": {"device": "cpu", "nvme_path": "/scratch", "pin_memory": true}, "offload_param": {"device": "none", "nvme_path": "/scratch", "buffer_size": 4000000000.0, "pin_memory": true}}, "aio": {"block_size": 26214400, "queue_depth": 32, "thread_count": 1, "single_submit": false, "overlap_events": true}, "gradient_accumulation_steps": 1, "gradient_clipping": 1.0, "steps_per_print": 20000, "train_batch_size": 256, "train_micro_batch_size_per_gpu": 32, "wall_clock_breakdown": false, "zero_allow_untested_optimizer": true}
|
src/deepspeed_config_stage2_cpuoffload.json
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bf16": {
|
3 |
+
"enabled": false
|
4 |
+
},
|
5 |
+
"fp16": {
|
6 |
+
"enabled": true
|
7 |
+
},
|
8 |
+
"zero_optimization": {
|
9 |
+
"stage": 2,
|
10 |
+
"contiguous_gradients": true,
|
11 |
+
"stage3_gather_16bit_weights_on_model_save": true,
|
12 |
+
"stage3_max_live_parameters": 1000000000.0,
|
13 |
+
"stage3_max_reuse_distance": 1000000000.0,
|
14 |
+
"stage3_prefetch_bucket_size": 10000000.0,
|
15 |
+
"stage3_param_persistence_threshold": 100000.0,
|
16 |
+
"reduce_bucket_size": 10000000.0,
|
17 |
+
"sub_group_size": 1000000000.0,
|
18 |
+
"offload_optimizer": {
|
19 |
+
"device": "cpu",
|
20 |
+
"nvme_path": "/scratch",
|
21 |
+
"pin_memory": true
|
22 |
+
},
|
23 |
+
"offload_param": {
|
24 |
+
"device": "none",
|
25 |
+
"nvme_path": "/scratch",
|
26 |
+
"buffer_size": 4000000000.0,
|
27 |
+
"pin_memory": true
|
28 |
+
}
|
29 |
+
},
|
30 |
+
"aio": {
|
31 |
+
"block_size": 26214400,
|
32 |
+
"queue_depth": 32,
|
33 |
+
"thread_count": 1,
|
34 |
+
"single_submit": false,
|
35 |
+
"overlap_events": true
|
36 |
+
},
|
37 |
+
"gradient_accumulation_steps": 1,
|
38 |
+
"gradient_clipping": 1.0,
|
39 |
+
"steps_per_print": 20000,
|
40 |
+
"train_batch_size": 256,
|
41 |
+
"train_micro_batch_size_per_gpu": 32,
|
42 |
+
"wall_clock_breakdown": false,
|
43 |
+
"zero_allow_untested_optimizer": true
|
44 |
+
}
|
src/deepspeed_config_stage3.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"fp16": {"enabled": true}, "optimizer": {"type": "AdamW", "params": {"lr": "auto", "weight_decay": "auto"}}, "scheduler": {"type": "WarmupDecayLR", "params": {"warmup_min_lr": "auto", "warmup_max_lr": "auto", "warmup_num_steps": "auto", "total_num_steps": "auto"}}, "zero_optimization": {"stage": 3, "offload_optimizer": {"device": "cpu", "pin_memory": true}, "offload_param": {"device": "cpu", "pin_memory": true}, "overlap_comm": true, "contiguous_gradients": true, "reduce_bucket_size": "auto", "stage3_prefetch_bucket_size": "auto", "stage3_param_persistence_threshold": "auto", "sub_group_size": 1000000000.0, "stage3_max_live_parameters": 1000000000.0, "stage3_max_reuse_distance": 1000000000.0, "stage3_gather_16bit_weights_on_model_save": "auto"}, "gradient_accumulation_steps": 1, "gradient_clipping": "auto", "steps_per_print": 2000, "train_batch_size": 256, "train_micro_batch_size_per_gpu": 32, "wall_clock_breakdown": false, "bf16": {"enabled": false}}
|
src/huggingface_to_s3.ipynb
ADDED
@@ -0,0 +1,422 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"id": "cf698d59-1cc2-4859-9c43-9a5d4d924ee1",
|
6 |
+
"metadata": {},
|
7 |
+
"source": [
|
8 |
+
"# Transfer huggingface mindeyev2 dataset to Stability aws s3"
|
9 |
+
]
|
10 |
+
},
|
11 |
+
{
|
12 |
+
"cell_type": "code",
|
13 |
+
"execution_count": 1,
|
14 |
+
"id": "94c7404c-7a0f-4508-a630-954bc9af11fa",
|
15 |
+
"metadata": {},
|
16 |
+
"outputs": [
|
17 |
+
{
|
18 |
+
"name": "stdout",
|
19 |
+
"output_type": "stream",
|
20 |
+
"text": [
|
21 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/shared1000.npy -O /fsx/proj-fmri/shared/mindeyev2_dataset/shared1000.npy\n",
|
22 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/betas_all_subj01.hdf5 -O /fsx/proj-fmri/shared/mindeyev2_dataset/betas_all_subj01.hdf5\n",
|
23 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/betas_all_subj02.hdf5 -O /fsx/proj-fmri/shared/mindeyev2_dataset/betas_all_subj02.hdf5\n",
|
24 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/betas_all_subj03.hdf5 -O /fsx/proj-fmri/shared/mindeyev2_dataset/betas_all_subj03.hdf5\n",
|
25 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/betas_all_subj04.hdf5 -O /fsx/proj-fmri/shared/mindeyev2_dataset/betas_all_subj04.hdf5\n",
|
26 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/betas_all_subj05.hdf5 -O /fsx/proj-fmri/shared/mindeyev2_dataset/betas_all_subj05.hdf5\n",
|
27 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/betas_all_subj06.hdf5 -O /fsx/proj-fmri/shared/mindeyev2_dataset/betas_all_subj06.hdf5\n",
|
28 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/betas_all_subj07.hdf5 -O /fsx/proj-fmri/shared/mindeyev2_dataset/betas_all_subj07.hdf5\n",
|
29 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/betas_all_subj08.hdf5 -O /fsx/proj-fmri/shared/mindeyev2_dataset/betas_all_subj08.hdf5\n",
|
30 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/coco_images_224_float16.hdf5 -O /fsx/proj-fmri/shared/mindeyev2_dataset/coco_images_224_float16.hdf5\n",
|
31 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/COCO_73k_subj_indices.hdf5 -O /fsx/proj-fmri/shared/mindeyev2_dataset/COCO_73k_subj_indices.hdf5\n",
|
32 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj01/train/0.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj01/train/0.tar\n",
|
33 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj01/train/1.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj01/train/1.tar\n",
|
34 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj01/train/2.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj01/train/2.tar\n",
|
35 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj01/train/3.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj01/train/3.tar\n",
|
36 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj01/train/4.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj01/train/4.tar\n",
|
37 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj01/train/5.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj01/train/5.tar\n",
|
38 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj01/train/6.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj01/train/6.tar\n",
|
39 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj01/train/7.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj01/train/7.tar\n",
|
40 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj01/train/8.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj01/train/8.tar\n",
|
41 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj01/train/9.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj01/train/9.tar\n",
|
42 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj01/train/10.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj01/train/10.tar\n",
|
43 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj01/train/11.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj01/train/11.tar\n",
|
44 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj01/train/12.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj01/train/12.tar\n",
|
45 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj01/train/13.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj01/train/13.tar\n",
|
46 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj01/train/14.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj01/train/14.tar\n",
|
47 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj01/train/15.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj01/train/15.tar\n",
|
48 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj01/train/16.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj01/train/16.tar\n",
|
49 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj01/train/17.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj01/train/17.tar\n",
|
50 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj01/train/18.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj01/train/18.tar\n",
|
51 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj01/train/19.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj01/train/19.tar\n",
|
52 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj01/train/20.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj01/train/20.tar\n",
|
53 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj01/train/21.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj01/train/21.tar\n",
|
54 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj01/train/22.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj01/train/22.tar\n",
|
55 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj01/train/23.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj01/train/23.tar\n",
|
56 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj01/train/24.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj01/train/24.tar\n",
|
57 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj01/train/25.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj01/train/25.tar\n",
|
58 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj01/train/26.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj01/train/26.tar\n",
|
59 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj01/train/27.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj01/train/27.tar\n",
|
60 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj01/train/28.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj01/train/28.tar\n",
|
61 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj01/train/29.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj01/train/29.tar\n",
|
62 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj01/train/30.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj01/train/30.tar\n",
|
63 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj01/train/31.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj01/train/31.tar\n",
|
64 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj01/train/32.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj01/train/32.tar\n",
|
65 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj01/train/33.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj01/train/33.tar\n",
|
66 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj01/train/34.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj01/train/34.tar\n",
|
67 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj01/train/35.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj01/train/35.tar\n",
|
68 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj01/train/36.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj01/train/36.tar\n",
|
69 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj01/test/0.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj01/test/0.tar\n",
|
70 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj02/train/0.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj02/train/0.tar\n",
|
71 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj02/train/1.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj02/train/1.tar\n",
|
72 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj02/train/2.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj02/train/2.tar\n",
|
73 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj02/train/3.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj02/train/3.tar\n",
|
74 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj02/train/4.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj02/train/4.tar\n",
|
75 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj02/train/5.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj02/train/5.tar\n",
|
76 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj02/train/6.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj02/train/6.tar\n",
|
77 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj02/train/7.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj02/train/7.tar\n",
|
78 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj02/train/8.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj02/train/8.tar\n",
|
79 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj02/train/9.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj02/train/9.tar\n",
|
80 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj02/train/10.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj02/train/10.tar\n",
|
81 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj02/train/11.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj02/train/11.tar\n",
|
82 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj02/train/12.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj02/train/12.tar\n",
|
83 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj02/train/13.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj02/train/13.tar\n",
|
84 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj02/train/14.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj02/train/14.tar\n",
|
85 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj02/train/15.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj02/train/15.tar\n",
|
86 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj02/train/16.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj02/train/16.tar\n",
|
87 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj02/train/17.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj02/train/17.tar\n",
|
88 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj02/train/18.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj02/train/18.tar\n",
|
89 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj02/train/19.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj02/train/19.tar\n",
|
90 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj02/train/20.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj02/train/20.tar\n",
|
91 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj02/train/21.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj02/train/21.tar\n",
|
92 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj02/train/22.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj02/train/22.tar\n",
|
93 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj02/train/23.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj02/train/23.tar\n",
|
94 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj02/train/24.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj02/train/24.tar\n",
|
95 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj02/train/25.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj02/train/25.tar\n",
|
96 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj02/train/26.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj02/train/26.tar\n",
|
97 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj02/train/27.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj02/train/27.tar\n",
|
98 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj02/train/28.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj02/train/28.tar\n",
|
99 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj02/train/29.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj02/train/29.tar\n",
|
100 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj02/train/30.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj02/train/30.tar\n",
|
101 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj02/train/31.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj02/train/31.tar\n",
|
102 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj02/train/32.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj02/train/32.tar\n",
|
103 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj02/train/33.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj02/train/33.tar\n",
|
104 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj02/train/34.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj02/train/34.tar\n",
|
105 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj02/train/35.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj02/train/35.tar\n",
|
106 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj02/train/36.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj02/train/36.tar\n",
|
107 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj02/test/0.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj02/test/0.tar\n",
|
108 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj03/train/0.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj03/train/0.tar\n",
|
109 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj03/train/1.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj03/train/1.tar\n",
|
110 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj03/train/2.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj03/train/2.tar\n",
|
111 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj03/train/3.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj03/train/3.tar\n",
|
112 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj03/train/4.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj03/train/4.tar\n",
|
113 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj03/train/5.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj03/train/5.tar\n",
|
114 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj03/train/6.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj03/train/6.tar\n",
|
115 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj03/train/7.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj03/train/7.tar\n",
|
116 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj03/train/8.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj03/train/8.tar\n",
|
117 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj03/train/9.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj03/train/9.tar\n",
|
118 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj03/train/10.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj03/train/10.tar\n",
|
119 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj03/train/11.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj03/train/11.tar\n",
|
120 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj03/train/12.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj03/train/12.tar\n",
|
121 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj03/train/13.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj03/train/13.tar\n",
|
122 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj03/train/14.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj03/train/14.tar\n",
|
123 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj03/train/15.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj03/train/15.tar\n",
|
124 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj03/train/16.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj03/train/16.tar\n",
|
125 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj03/train/17.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj03/train/17.tar\n",
|
126 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj03/train/18.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj03/train/18.tar\n",
|
127 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj03/train/19.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj03/train/19.tar\n",
|
128 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj03/train/20.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj03/train/20.tar\n",
|
129 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj03/train/21.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj03/train/21.tar\n",
|
130 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj03/train/22.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj03/train/22.tar\n",
|
131 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj03/train/23.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj03/train/23.tar\n",
|
132 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj03/train/24.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj03/train/24.tar\n",
|
133 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj03/train/25.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj03/train/25.tar\n",
|
134 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj03/train/26.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj03/train/26.tar\n",
|
135 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj03/train/27.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj03/train/27.tar\n",
|
136 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj03/train/28.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj03/train/28.tar\n",
|
137 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj03/train/29.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj03/train/29.tar\n",
|
138 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj03/train/30.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj03/train/30.tar\n",
|
139 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj03/train/31.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj03/train/31.tar\n",
|
140 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj03/train/32.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj03/train/32.tar\n",
|
141 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj03/train/33.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj03/train/33.tar\n",
|
142 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj03/train/34.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj03/train/34.tar\n",
|
143 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj03/train/35.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj03/train/35.tar\n",
|
144 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj03/train/36.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj03/train/36.tar\n",
|
145 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj03/test/0.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj03/test/0.tar\n",
|
146 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj04/train/0.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj04/train/0.tar\n",
|
147 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj04/train/1.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj04/train/1.tar\n",
|
148 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj04/train/2.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj04/train/2.tar\n",
|
149 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj04/train/3.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj04/train/3.tar\n",
|
150 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj04/train/4.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj04/train/4.tar\n",
|
151 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj04/train/5.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj04/train/5.tar\n",
|
152 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj04/train/6.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj04/train/6.tar\n",
|
153 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj04/train/7.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj04/train/7.tar\n",
|
154 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj04/train/8.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj04/train/8.tar\n",
|
155 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj04/train/9.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj04/train/9.tar\n",
|
156 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj04/train/10.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj04/train/10.tar\n",
|
157 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj04/train/11.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj04/train/11.tar\n",
|
158 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj04/train/12.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj04/train/12.tar\n",
|
159 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj04/train/13.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj04/train/13.tar\n",
|
160 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj04/train/14.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj04/train/14.tar\n",
|
161 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj04/train/15.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj04/train/15.tar\n",
|
162 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj04/train/16.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj04/train/16.tar\n",
|
163 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj04/train/17.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj04/train/17.tar\n",
|
164 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj04/train/18.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj04/train/18.tar\n",
|
165 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj04/train/19.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj04/train/19.tar\n",
|
166 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj04/train/20.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj04/train/20.tar\n",
|
167 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj04/train/21.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj04/train/21.tar\n",
|
168 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj04/train/22.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj04/train/22.tar\n",
|
169 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj04/train/23.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj04/train/23.tar\n",
|
170 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj04/train/24.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj04/train/24.tar\n",
|
171 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj04/train/25.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj04/train/25.tar\n",
|
172 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj04/train/26.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj04/train/26.tar\n",
|
173 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj04/train/27.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj04/train/27.tar\n",
|
174 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj04/train/28.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj04/train/28.tar\n",
|
175 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj04/train/29.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj04/train/29.tar\n",
|
176 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj04/train/30.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj04/train/30.tar\n",
|
177 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj04/train/31.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj04/train/31.tar\n",
|
178 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj04/train/32.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj04/train/32.tar\n",
|
179 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj04/train/33.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj04/train/33.tar\n",
|
180 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj04/train/34.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj04/train/34.tar\n",
|
181 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj04/train/35.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj04/train/35.tar\n",
|
182 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj04/train/36.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj04/train/36.tar\n",
|
183 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj04/test/0.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj04/test/0.tar\n",
|
184 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj05/train/0.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj05/train/0.tar\n",
|
185 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj05/train/1.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj05/train/1.tar\n",
|
186 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj05/train/2.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj05/train/2.tar\n",
|
187 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj05/train/3.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj05/train/3.tar\n",
|
188 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj05/train/4.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj05/train/4.tar\n",
|
189 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj05/train/5.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj05/train/5.tar\n",
|
190 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj05/train/6.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj05/train/6.tar\n",
|
191 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj05/train/7.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj05/train/7.tar\n",
|
192 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj05/train/8.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj05/train/8.tar\n",
|
193 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj05/train/9.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj05/train/9.tar\n",
|
194 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj05/train/10.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj05/train/10.tar\n",
|
195 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj05/train/11.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj05/train/11.tar\n",
|
196 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj05/train/12.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj05/train/12.tar\n",
|
197 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj05/train/13.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj05/train/13.tar\n",
|
198 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj05/train/14.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj05/train/14.tar\n",
|
199 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj05/train/15.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj05/train/15.tar\n",
|
200 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj05/train/16.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj05/train/16.tar\n",
|
201 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj05/train/17.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj05/train/17.tar\n",
|
202 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj05/train/18.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj05/train/18.tar\n",
|
203 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj05/train/19.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj05/train/19.tar\n",
|
204 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj05/train/20.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj05/train/20.tar\n",
|
205 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj05/train/21.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj05/train/21.tar\n",
|
206 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj05/train/22.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj05/train/22.tar\n",
|
207 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj05/train/23.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj05/train/23.tar\n",
|
208 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj05/train/24.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj05/train/24.tar\n",
|
209 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj05/train/25.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj05/train/25.tar\n",
|
210 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj05/train/26.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj05/train/26.tar\n",
|
211 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj05/train/27.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj05/train/27.tar\n",
|
212 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj05/train/28.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj05/train/28.tar\n",
|
213 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj05/train/29.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj05/train/29.tar\n",
|
214 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj05/train/30.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj05/train/30.tar\n",
|
215 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj05/train/31.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj05/train/31.tar\n",
|
216 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj05/train/32.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj05/train/32.tar\n",
|
217 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj05/train/33.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj05/train/33.tar\n",
|
218 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj05/train/34.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj05/train/34.tar\n",
|
219 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj05/train/35.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj05/train/35.tar\n",
|
220 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj05/train/36.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj05/train/36.tar\n",
|
221 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj05/test/0.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj05/test/0.tar\n",
|
222 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj06/train/0.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj06/train/0.tar\n",
|
223 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj06/train/1.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj06/train/1.tar\n",
|
224 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj06/train/2.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj06/train/2.tar\n",
|
225 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj06/train/3.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj06/train/3.tar\n",
|
226 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj06/train/4.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj06/train/4.tar\n",
|
227 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj06/train/5.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj06/train/5.tar\n",
|
228 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj06/train/6.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj06/train/6.tar\n",
|
229 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj06/train/7.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj06/train/7.tar\n",
|
230 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj06/train/8.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj06/train/8.tar\n",
|
231 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj06/train/9.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj06/train/9.tar\n",
|
232 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj06/train/10.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj06/train/10.tar\n",
|
233 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj06/train/11.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj06/train/11.tar\n",
|
234 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj06/train/12.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj06/train/12.tar\n",
|
235 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj06/train/13.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj06/train/13.tar\n",
|
236 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj06/train/14.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj06/train/14.tar\n",
|
237 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj06/train/15.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj06/train/15.tar\n",
|
238 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj06/train/16.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj06/train/16.tar\n",
|
239 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj06/train/17.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj06/train/17.tar\n",
|
240 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj06/train/18.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj06/train/18.tar\n",
|
241 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj06/train/19.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj06/train/19.tar\n",
|
242 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj06/train/20.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj06/train/20.tar\n",
|
243 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj06/train/21.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj06/train/21.tar\n",
|
244 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj06/train/22.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj06/train/22.tar\n",
|
245 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj06/train/23.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj06/train/23.tar\n",
|
246 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj06/train/24.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj06/train/24.tar\n",
|
247 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj06/train/25.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj06/train/25.tar\n",
|
248 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj06/train/26.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj06/train/26.tar\n",
|
249 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj06/train/27.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj06/train/27.tar\n",
|
250 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj06/train/28.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj06/train/28.tar\n",
|
251 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj06/train/29.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj06/train/29.tar\n",
|
252 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj06/train/30.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj06/train/30.tar\n",
|
253 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj06/train/31.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj06/train/31.tar\n",
|
254 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj06/train/32.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj06/train/32.tar\n",
|
255 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj06/train/33.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj06/train/33.tar\n",
|
256 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj06/train/34.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj06/train/34.tar\n",
|
257 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj06/train/35.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj06/train/35.tar\n",
|
258 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj06/train/36.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj06/train/36.tar\n",
|
259 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj06/test/0.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj06/test/0.tar\n",
|
260 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj07/train/0.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj07/train/0.tar\n",
|
261 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj07/train/1.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj07/train/1.tar\n",
|
262 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj07/train/2.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj07/train/2.tar\n",
|
263 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj07/train/3.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj07/train/3.tar\n",
|
264 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj07/train/4.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj07/train/4.tar\n",
|
265 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj07/train/5.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj07/train/5.tar\n",
|
266 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj07/train/6.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj07/train/6.tar\n",
|
267 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj07/train/7.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj07/train/7.tar\n",
|
268 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj07/train/8.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj07/train/8.tar\n",
|
269 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj07/train/9.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj07/train/9.tar\n",
|
270 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj07/train/10.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj07/train/10.tar\n",
|
271 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj07/train/11.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj07/train/11.tar\n",
|
272 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj07/train/12.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj07/train/12.tar\n",
|
273 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj07/train/13.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj07/train/13.tar\n",
|
274 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj07/train/14.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj07/train/14.tar\n",
|
275 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj07/train/15.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj07/train/15.tar\n",
|
276 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj07/train/16.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj07/train/16.tar\n",
|
277 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj07/train/17.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj07/train/17.tar\n",
|
278 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj07/train/18.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj07/train/18.tar\n",
|
279 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj07/train/19.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj07/train/19.tar\n",
|
280 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj07/train/20.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj07/train/20.tar\n",
|
281 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj07/train/21.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj07/train/21.tar\n",
|
282 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj07/train/22.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj07/train/22.tar\n",
|
283 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj07/train/23.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj07/train/23.tar\n",
|
284 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj07/train/24.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj07/train/24.tar\n",
|
285 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj07/train/25.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj07/train/25.tar\n",
|
286 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj07/train/26.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj07/train/26.tar\n",
|
287 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj07/train/27.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj07/train/27.tar\n",
|
288 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj07/train/28.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj07/train/28.tar\n",
|
289 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj07/train/29.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj07/train/29.tar\n",
|
290 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj07/train/30.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj07/train/30.tar\n",
|
291 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj07/train/31.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj07/train/31.tar\n",
|
292 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj07/train/32.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj07/train/32.tar\n",
|
293 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj07/train/33.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj07/train/33.tar\n",
|
294 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj07/train/34.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj07/train/34.tar\n",
|
295 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj07/train/35.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj07/train/35.tar\n",
|
296 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj07/train/36.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj07/train/36.tar\n",
|
297 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj07/test/0.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj07/test/0.tar\n",
|
298 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj08/train/0.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj08/train/0.tar\n",
|
299 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj08/train/1.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj08/train/1.tar\n",
|
300 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj08/train/2.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj08/train/2.tar\n",
|
301 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj08/train/3.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj08/train/3.tar\n",
|
302 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj08/train/4.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj08/train/4.tar\n",
|
303 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj08/train/5.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj08/train/5.tar\n",
|
304 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj08/train/6.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj08/train/6.tar\n",
|
305 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj08/train/7.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj08/train/7.tar\n",
|
306 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj08/train/8.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj08/train/8.tar\n",
|
307 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj08/train/9.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj08/train/9.tar\n",
|
308 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj08/train/10.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj08/train/10.tar\n",
|
309 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj08/train/11.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj08/train/11.tar\n",
|
310 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj08/train/12.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj08/train/12.tar\n",
|
311 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj08/train/13.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj08/train/13.tar\n",
|
312 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj08/train/14.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj08/train/14.tar\n",
|
313 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj08/train/15.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj08/train/15.tar\n",
|
314 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj08/train/16.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj08/train/16.tar\n",
|
315 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj08/train/17.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj08/train/17.tar\n",
|
316 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj08/train/18.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj08/train/18.tar\n",
|
317 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj08/train/19.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj08/train/19.tar\n",
|
318 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj08/train/20.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj08/train/20.tar\n",
|
319 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj08/train/21.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj08/train/21.tar\n",
|
320 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj08/train/22.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj08/train/22.tar\n",
|
321 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj08/train/23.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj08/train/23.tar\n",
|
322 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj08/train/24.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj08/train/24.tar\n",
|
323 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj08/train/25.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj08/train/25.tar\n",
|
324 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj08/train/26.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj08/train/26.tar\n",
|
325 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj08/train/27.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj08/train/27.tar\n",
|
326 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj08/train/28.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj08/train/28.tar\n",
|
327 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj08/train/29.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj08/train/29.tar\n",
|
328 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj08/train/30.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj08/train/30.tar\n",
|
329 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj08/train/31.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj08/train/31.tar\n",
|
330 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj08/train/32.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj08/train/32.tar\n",
|
331 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj08/train/33.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj08/train/33.tar\n",
|
332 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj08/train/34.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj08/train/34.tar\n",
|
333 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj08/train/35.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj08/train/35.tar\n",
|
334 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj08/train/36.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj08/train/36.tar\n",
|
335 |
+
"wget --show-progress https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/wds/subj08/test/0.tar -O /fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj08/test/0.tar\n",
|
336 |
+
"aws s3 sync /scratch/mindeyev2_dataset s3://proj-fmri/mindeyev2_dataset --region us-west-2\n"
|
337 |
+
]
|
338 |
+
}
|
339 |
+
],
|
340 |
+
"source": [
|
341 |
+
"import os\n",
|
342 |
+
"# from subprocess import call\n",
|
343 |
+
"# PS Note: it's faster to print the wget statements and then manually copy paste all them into terminal than to use subprocess call()\n",
|
344 |
+
"tmp = '/fsx/proj-fmri/shared/mindeyev2_dataset/' #'/scratch/mindeyev2_dataset/'\n",
|
345 |
+
"\n",
|
346 |
+
"hf_base_link = 'https://huggingface.co/datasets/pscotti/mindeyev2/resolve/main/'\n",
|
347 |
+
"\n",
|
348 |
+
"os.makedirs(tmp,exist_ok=True)\n",
|
349 |
+
"\n",
|
350 |
+
"files = [\n",
|
351 |
+
" \"shared1000.npy\",\n",
|
352 |
+
" \"betas_all_subj01.hdf5\",\n",
|
353 |
+
" \"betas_all_subj02.hdf5\",\n",
|
354 |
+
" \"betas_all_subj03.hdf5\",\n",
|
355 |
+
" \"betas_all_subj04.hdf5\",\n",
|
356 |
+
" \"betas_all_subj05.hdf5\",\n",
|
357 |
+
" \"betas_all_subj06.hdf5\",\n",
|
358 |
+
" \"betas_all_subj07.hdf5\",\n",
|
359 |
+
" \"betas_all_subj08.hdf5\",\n",
|
360 |
+
" \"coco_images_224_float16.hdf5\",\n",
|
361 |
+
" \"COCO_73k_subj_indices.hdf5\",\n",
|
362 |
+
"]\n",
|
363 |
+
"\n",
|
364 |
+
"for f in files: \n",
|
365 |
+
" command = f\"wget --show-progress {hf_base_link}{f} -O {tmp}{f}\"\n",
|
366 |
+
" print(command)\n",
|
367 |
+
" # call(command,shell=True)\n",
|
368 |
+
"\n",
|
369 |
+
"for sub in range(1,9):\n",
|
370 |
+
" subject = f'subj0{sub}'\n",
|
371 |
+
"\n",
|
372 |
+
" tmp_fol = f'{tmp}wds/{subject}/'\n",
|
373 |
+
" os.makedirs(tmp_fol,exist_ok=True)\n",
|
374 |
+
" os.makedirs(tmp_fol+'train',exist_ok=True)\n",
|
375 |
+
" os.makedirs(tmp_fol+'test',exist_ok=True)\n",
|
376 |
+
"\n",
|
377 |
+
" for i in range(37):\n",
|
378 |
+
" link = f'train/{i}.tar'\n",
|
379 |
+
" command = f\"wget --show-progress {hf_base_link}wds/{subject}/{link} -O {tmp}wds/{subject}/{link}\"\n",
|
380 |
+
" print(command)\n",
|
381 |
+
" # call(command,shell=True)\n",
|
382 |
+
"\n",
|
383 |
+
" link = f'test/0.tar'\n",
|
384 |
+
" command = f\"wget --show-progress {hf_base_link}wds/{subject}/{link} -O {tmp}wds/{subject}/{link}\"\n",
|
385 |
+
" print(command)\n",
|
386 |
+
" # call(command,shell=True)\n",
|
387 |
+
"\n",
|
388 |
+
"command = \"aws s3 sync /scratch/mindeyev2_dataset s3://proj-fmri/mindeyev2_dataset --region us-west-2\"\n",
|
389 |
+
"print(command)"
|
390 |
+
]
|
391 |
+
},
|
392 |
+
{
|
393 |
+
"cell_type": "code",
|
394 |
+
"execution_count": null,
|
395 |
+
"id": "30966082-59c2-411c-9b2e-4f4e3f9eb0f3",
|
396 |
+
"metadata": {},
|
397 |
+
"outputs": [],
|
398 |
+
"source": []
|
399 |
+
}
|
400 |
+
],
|
401 |
+
"metadata": {
|
402 |
+
"kernelspec": {
|
403 |
+
"display_name": "Python 3 (ipykernel)",
|
404 |
+
"language": "python",
|
405 |
+
"name": "python3"
|
406 |
+
},
|
407 |
+
"language_info": {
|
408 |
+
"codemirror_mode": {
|
409 |
+
"name": "ipython",
|
410 |
+
"version": 3
|
411 |
+
},
|
412 |
+
"file_extension": ".py",
|
413 |
+
"mimetype": "text/x-python",
|
414 |
+
"name": "python",
|
415 |
+
"nbconvert_exporter": "python",
|
416 |
+
"pygments_lexer": "ipython3",
|
417 |
+
"version": "3.10.8"
|
418 |
+
}
|
419 |
+
},
|
420 |
+
"nbformat": 4,
|
421 |
+
"nbformat_minor": 5
|
422 |
+
}
|
src/models.py
ADDED
@@ -0,0 +1,210 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import numpy as np
|
3 |
+
from torchvision import transforms
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
import PIL
|
7 |
+
import clip
|
8 |
+
import open_clip
|
9 |
+
from functools import partial
|
10 |
+
import random
|
11 |
+
import json
|
12 |
+
|
13 |
+
# class BrainMLP(nn.Module):
|
14 |
+
# def __init__(self, out_dim=257*768, in_dim=15724, clip_size=768, h=4096):
|
15 |
+
# super().__init__()
|
16 |
+
# self.lin0 = nn.Sequential(
|
17 |
+
# nn.Linear(in_dim, h, bias=False),
|
18 |
+
# nn.LayerNorm(h),
|
19 |
+
# nn.GELU(inplace=True),
|
20 |
+
# nn.Dropout(0.5))
|
21 |
+
# self.mlp = nn.ModuleList([
|
22 |
+
# nn.Sequential(
|
23 |
+
# nn.Linear(h, h),
|
24 |
+
# nn.LayerNorm(h),
|
25 |
+
# nn.GELU(inplace=True),
|
26 |
+
# nn.Dropout(0.15)
|
27 |
+
# ) for _ in range(4)])
|
28 |
+
# self.lin1 = nn.Linear(h, out_dim, bias=True)
|
29 |
+
# self.proj = nn.Sequential(
|
30 |
+
# nn.LayerNorm(clip_size),
|
31 |
+
# nn.GELU(),
|
32 |
+
# nn.Linear(clip_size, 2048),
|
33 |
+
# nn.LayerNorm(2048),
|
34 |
+
# nn.GELU(),
|
35 |
+
# nn.Linear(2048, 2048),
|
36 |
+
# nn.LayerNorm(2048),
|
37 |
+
# nn.GELU(),
|
38 |
+
# nn.Linear(2048, clip_size))
|
39 |
+
# def forward(self, x):
|
40 |
+
# x = self.lin0(x)
|
41 |
+
# residual = x
|
42 |
+
# for res_block in range(self.n_blocks):
|
43 |
+
# x = self.mlp[res_block](x)
|
44 |
+
# x += residual
|
45 |
+
# residual = x
|
46 |
+
# diffusion_prior_input = self.lin1(x.reshape(len(x), -1))
|
47 |
+
# disjointed_clip_fmri = self.proj(diffusion_prior_input.reshape(
|
48 |
+
# len(x),-1, self.clip_size))
|
49 |
+
# return diffusion_prior_input, disjointed_clip_fmri
|
50 |
+
|
51 |
+
|
52 |
+
|
53 |
+
class Clipper(torch.nn.Module):
|
54 |
+
def __init__(self, clip_variant, clamp_embs=False, norm_embs=False,
|
55 |
+
hidden_state=False, device=torch.device('cpu')):
|
56 |
+
super().__init__()
|
57 |
+
assert clip_variant in ("RN50", "ViT-L/14", "ViT-B/32", "RN50x64"), \
|
58 |
+
"clip_variant must be one of RN50, ViT-L/14, ViT-B/32, RN50x64"
|
59 |
+
print(clip_variant, device)
|
60 |
+
|
61 |
+
if clip_variant=="ViT-L/14" and hidden_state:
|
62 |
+
# from transformers import CLIPVisionModelWithProjection
|
63 |
+
# image_encoder = CLIPVisionModelWithProjection.from_pretrained("openai/clip-vit-large-patch14",cache_dir="/fsx/proj-medarc/fmri/cache")
|
64 |
+
from transformers import CLIPVisionModelWithProjection
|
65 |
+
sd_cache_dir = '/fsx/proj-fmri/shared/cache/models--shi-labs--versatile-diffusion/snapshots/2926f8e11ea526b562cd592b099fcf9c2985d0b7'
|
66 |
+
image_encoder = CLIPVisionModelWithProjection.from_pretrained(sd_cache_dir, subfolder='image_encoder').eval()
|
67 |
+
image_encoder = image_encoder.to(device)
|
68 |
+
for param in image_encoder.parameters():
|
69 |
+
param.requires_grad = False # dont need to calculate gradients
|
70 |
+
self.image_encoder = image_encoder
|
71 |
+
elif hidden_state:
|
72 |
+
raise Exception("hidden_state embeddings only works with ViT-L/14 right now")
|
73 |
+
|
74 |
+
clip_model, preprocess = clip.load(clip_variant, device=device)
|
75 |
+
clip_model.eval() # dont want to train model
|
76 |
+
for param in clip_model.parameters():
|
77 |
+
param.requires_grad = False # dont need to calculate gradients
|
78 |
+
|
79 |
+
self.clip = clip_model
|
80 |
+
self.clip_variant = clip_variant
|
81 |
+
if clip_variant == "RN50x64":
|
82 |
+
self.clip_size = (448,448)
|
83 |
+
else:
|
84 |
+
self.clip_size = (224,224)
|
85 |
+
|
86 |
+
preproc = transforms.Compose([
|
87 |
+
transforms.Resize(size=self.clip_size[0], interpolation=transforms.InterpolationMode.BICUBIC),
|
88 |
+
transforms.CenterCrop(size=self.clip_size),
|
89 |
+
transforms.Normalize(mean=(0.48145466, 0.4578275, 0.40821073), std=(0.26862954, 0.26130258, 0.27577711))
|
90 |
+
])
|
91 |
+
self.preprocess = preproc
|
92 |
+
self.hidden_state = hidden_state
|
93 |
+
self.mean = np.array([0.48145466, 0.4578275, 0.40821073])
|
94 |
+
self.std = np.array([0.26862954, 0.26130258, 0.27577711])
|
95 |
+
self.normalize = transforms.Normalize(self.mean, self.std)
|
96 |
+
self.denormalize = transforms.Normalize((-self.mean / self.std).tolist(), (1.0 / self.std).tolist())
|
97 |
+
self.clamp_embs = clamp_embs
|
98 |
+
self.norm_embs = norm_embs
|
99 |
+
self.device= device
|
100 |
+
|
101 |
+
def versatile_normalize_embeddings(encoder_output):
|
102 |
+
embeds = encoder_output.last_hidden_state
|
103 |
+
embeds = image_encoder.vision_model.post_layernorm(embeds)
|
104 |
+
embeds = image_encoder.visual_projection(embeds)
|
105 |
+
return embeds
|
106 |
+
self.versatile_normalize_embeddings = versatile_normalize_embeddings
|
107 |
+
|
108 |
+
def resize_image(self, image):
|
109 |
+
# note: antialias should be False if planning to use Pinkney's Image Variation SD model
|
110 |
+
return transforms.Resize(self.clip_size)(image.to(self.device))
|
111 |
+
|
112 |
+
def embed_image(self, image):
|
113 |
+
"""Expects images in -1 to 1 range"""
|
114 |
+
if self.hidden_state:
|
115 |
+
# clip_emb = self.preprocess((image/1.5+.25).to(self.device)) # for some reason the /1.5+.25 prevents oversaturation
|
116 |
+
clip_emb = self.preprocess((image).to(self.device))
|
117 |
+
clip_emb = self.image_encoder(clip_emb)
|
118 |
+
clip_emb = self.versatile_normalize_embeddings(clip_emb)
|
119 |
+
else:
|
120 |
+
clip_emb = self.preprocess(image.to(self.device))
|
121 |
+
clip_emb = self.clip.encode_image(clip_emb)
|
122 |
+
# input is now in CLIP space, but mind-reader preprint further processes embeddings:
|
123 |
+
if self.clamp_embs:
|
124 |
+
clip_emb = torch.clamp(clip_emb, -1.5, 1.5)
|
125 |
+
if self.norm_embs:
|
126 |
+
if self.hidden_state:
|
127 |
+
# normalize all tokens by cls token's norm
|
128 |
+
clip_emb = clip_emb / torch.norm(clip_emb[:, 0], dim=-1).reshape(-1, 1, 1)
|
129 |
+
else:
|
130 |
+
clip_emb = nn.functional.normalize(clip_emb, dim=-1)
|
131 |
+
return clip_emb
|
132 |
+
|
133 |
+
def embed_text(self, text_samples):
|
134 |
+
clip_text = clip.tokenize(text_samples).to(self.device)
|
135 |
+
clip_text = self.clip.encode_text(clip_text)
|
136 |
+
if self.clamp_embs:
|
137 |
+
clip_text = torch.clamp(clip_text, -1.5, 1.5)
|
138 |
+
if self.norm_embs:
|
139 |
+
clip_text = nn.functional.normalize(clip_text, dim=-1)
|
140 |
+
return clip_text
|
141 |
+
|
142 |
+
def embed_curated_annotations(self, annots):
|
143 |
+
for i,b in enumerate(annots):
|
144 |
+
t = ''
|
145 |
+
while t == '':
|
146 |
+
rand = torch.randint(5,(1,1))[0][0]
|
147 |
+
t = b[0,rand]
|
148 |
+
if i==0:
|
149 |
+
txt = np.array(t)
|
150 |
+
else:
|
151 |
+
txt = np.vstack((txt,t))
|
152 |
+
txt = txt.flatten()
|
153 |
+
return self.embed_text(txt)
|
154 |
+
|
155 |
+
class OpenClipper(torch.nn.Module):
|
156 |
+
def __init__(self, clip_variant, norm_embs=False, device=torch.device('cpu')):
|
157 |
+
super().__init__()
|
158 |
+
print(clip_variant, device)
|
159 |
+
assert clip_variant == 'ViT-H-14' # not setup for other models yet
|
160 |
+
|
161 |
+
clip_model, _, preprocess = open_clip.create_model_and_transforms('ViT-H-14',
|
162 |
+
pretrained='laion2b_s32b_b79k', device=device)
|
163 |
+
clip_model.eval() # dont want to train model
|
164 |
+
for param in clip_model.parameters():
|
165 |
+
param.requires_grad = False # dont need to calculate gradients
|
166 |
+
|
167 |
+
# overwrite preprocess to accept torch inputs instead of PIL Image
|
168 |
+
preprocess = transforms.Compose([
|
169 |
+
transforms.Resize(224, interpolation=transforms.InterpolationMode.BICUBIC, antialias=None),
|
170 |
+
transforms.CenterCrop(224),
|
171 |
+
transforms.Normalize(mean=(0.48145466, 0.4578275, 0.40821073), std=(0.26862954, 0.26130258, 0.27577711))
|
172 |
+
])
|
173 |
+
|
174 |
+
tokenizer = open_clip.get_tokenizer('ViT-H-14')
|
175 |
+
|
176 |
+
self.clip = clip_model
|
177 |
+
self.norm_embs = norm_embs
|
178 |
+
self.preprocess = preprocess
|
179 |
+
self.tokenizer = tokenizer
|
180 |
+
self.device = device
|
181 |
+
|
182 |
+
def embed_image(self, image):
|
183 |
+
"""Expects images in -1 to 1 range"""
|
184 |
+
image = self.preprocess(image).to(self.device)
|
185 |
+
with torch.no_grad(), torch.cuda.amp.autocast():
|
186 |
+
image_features = self.clip.encode_image(image)
|
187 |
+
if self.norm_embs:
|
188 |
+
image_features = nn.functional.normalize(image_features, dim=-1)
|
189 |
+
return image_features
|
190 |
+
|
191 |
+
def embed_text(self, text_samples):
|
192 |
+
text = self.tokenizer(text_samples).to(self.device)
|
193 |
+
with torch.no_grad(), torch.cuda.amp.autocast():
|
194 |
+
text_features = self.clip.encode_text(text)
|
195 |
+
if self.norm_embs:
|
196 |
+
text_features = nn.functional.normalize(text_features, dim=-1)
|
197 |
+
return text_features
|
198 |
+
|
199 |
+
def embed_curated_annotations(self, annots):
|
200 |
+
for i,b in enumerate(annots):
|
201 |
+
t = ''
|
202 |
+
while t == '':
|
203 |
+
rand = torch.randint(5,(1,1))[0][0]
|
204 |
+
t = b[0,rand]
|
205 |
+
if i==0:
|
206 |
+
txt = np.array(t)
|
207 |
+
else:
|
208 |
+
txt = np.vstack((txt,t))
|
209 |
+
txt = txt.flatten()
|
210 |
+
return self.embed_text(txt)
|
src/setup.sh
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
# Commands to setup a new conda environment and install all the necessary packages
|
3 |
+
# See the environment.yaml file for "conda env export > environment.yaml" after running this.
|
4 |
+
|
5 |
+
set -e
|
6 |
+
|
7 |
+
conda create -n fmri python=3.10.8 -y
|
8 |
+
conda activate fmri
|
9 |
+
|
10 |
+
conda install numpy matplotlib tqdm scikit-image jupyterlab -y
|
11 |
+
|
12 |
+
pip install accelerate webdataset clip pandas matplotlib ftfy regex kornia umap-learn h5py
|
13 |
+
pip install torchvision==0.15.2 torch==2.0.1
|
14 |
+
pip install diffusers
|
15 |
+
pip install deepspeed
|
src/train2-tryal.ipynb
ADDED
@@ -0,0 +1,2409 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"id": "f4d95fac-ac1d-473c-ab96-650f76e6aaf5",
|
7 |
+
"metadata": {
|
8 |
+
"tags": []
|
9 |
+
},
|
10 |
+
"outputs": [],
|
11 |
+
"source": [
|
12 |
+
"# # Code to convert this notebook to .py if you want to run it via command line or with Slurm\n",
|
13 |
+
"# from subprocess import call\n",
|
14 |
+
"# command = \"jupyter nbconvert Train.ipynb --to python\"\n",
|
15 |
+
"# call(command,shell=True)"
|
16 |
+
]
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"cell_type": "markdown",
|
20 |
+
"id": "b0f0f4f3",
|
21 |
+
"metadata": {},
|
22 |
+
"source": [
|
23 |
+
"# Import packages & functions"
|
24 |
+
]
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"cell_type": "code",
|
28 |
+
"execution_count": 2,
|
29 |
+
"id": "5bad764b-45c1-45ce-a716-8d055e09821a",
|
30 |
+
"metadata": {
|
31 |
+
"tags": []
|
32 |
+
},
|
33 |
+
"outputs": [
|
34 |
+
{
|
35 |
+
"name": "stderr",
|
36 |
+
"output_type": "stream",
|
37 |
+
"text": [
|
38 |
+
"/admin/home-ckadirt/miniconda3/envs/mindeye/lib/python3.10/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
|
39 |
+
" from .autonotebook import tqdm as notebook_tqdm\n"
|
40 |
+
]
|
41 |
+
},
|
42 |
+
{
|
43 |
+
"name": "stdout",
|
44 |
+
"output_type": "stream",
|
45 |
+
"text": [
|
46 |
+
"[2023-11-19 16:32:39,711] [INFO] [real_accelerator.py:110:get_accelerator] Setting ds_accelerator to cuda (auto detect)\n"
|
47 |
+
]
|
48 |
+
}
|
49 |
+
],
|
50 |
+
"source": [
|
51 |
+
"import os\n",
|
52 |
+
"import sys\n",
|
53 |
+
"import json\n",
|
54 |
+
"import argparse\n",
|
55 |
+
"import numpy as np\n",
|
56 |
+
"import math\n",
|
57 |
+
"from einops import rearrange\n",
|
58 |
+
"import time\n",
|
59 |
+
"import random\n",
|
60 |
+
"import h5py\n",
|
61 |
+
"from tqdm import tqdm\n",
|
62 |
+
"\n",
|
63 |
+
"import webdataset as wds\n",
|
64 |
+
"import gc\n",
|
65 |
+
"\n",
|
66 |
+
"import matplotlib.pyplot as plt\n",
|
67 |
+
"import torch\n",
|
68 |
+
"import torch.nn as nn\n",
|
69 |
+
"from torchvision import transforms\n",
|
70 |
+
"from torchvision.transforms import ToPILImage #CHANGED (added)\n",
|
71 |
+
"\n",
|
72 |
+
"from accelerate import Accelerator, DeepSpeedPlugin\n",
|
73 |
+
"\n",
|
74 |
+
"# tf32 data type is faster than standard float32\n",
|
75 |
+
"torch.backends.cuda.matmul.allow_tf32 = True\n",
|
76 |
+
"\n",
|
77 |
+
"# custom functions #\n",
|
78 |
+
"import utils\n",
|
79 |
+
"\n",
|
80 |
+
"global_batch_size = 128 #128"
|
81 |
+
]
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"cell_type": "code",
|
85 |
+
"execution_count": 3,
|
86 |
+
"id": "cc5d2e32-6027-4a19-bef4-5ca068db35bb",
|
87 |
+
"metadata": {
|
88 |
+
"tags": []
|
89 |
+
},
|
90 |
+
"outputs": [
|
91 |
+
{
|
92 |
+
"name": "stdout",
|
93 |
+
"output_type": "stream",
|
94 |
+
"text": [
|
95 |
+
"LOCAL RANK 0\n"
|
96 |
+
]
|
97 |
+
}
|
98 |
+
],
|
99 |
+
"source": [
|
100 |
+
"### Multi-GPU config ###\n",
|
101 |
+
"local_rank = os.getenv('RANK')\n",
|
102 |
+
"if local_rank is None: \n",
|
103 |
+
" local_rank = 0\n",
|
104 |
+
"else:\n",
|
105 |
+
" local_rank = int(local_rank)\n",
|
106 |
+
"print(\"LOCAL RANK \", local_rank) \n",
|
107 |
+
"\n",
|
108 |
+
"num_devices = torch.cuda.device_count()\n",
|
109 |
+
"if num_devices==0: num_devices = 1\n",
|
110 |
+
"\n",
|
111 |
+
"accelerator = Accelerator(split_batches=False)\n",
|
112 |
+
"\n",
|
113 |
+
"### UNCOMMENT BELOW STUFF TO USE DEEPSPEED (also comment out the immediately above \"accelerator = \" line) ###\n",
|
114 |
+
"\n",
|
115 |
+
"# if num_devices <= 1 and utils.is_interactive():\n",
|
116 |
+
"# # can emulate a distributed environment for deepspeed to work in jupyter notebook\n",
|
117 |
+
"# os.environ[\"MASTER_ADDR\"] = \"localhost\"\n",
|
118 |
+
"# os.environ[\"MASTER_PORT\"] = str(np.random.randint(10000)+9000)\n",
|
119 |
+
"# os.environ[\"RANK\"] = \"0\"\n",
|
120 |
+
"# os.environ[\"LOCAL_RANK\"] = \"0\"\n",
|
121 |
+
"# os.environ[\"WORLD_SIZE\"] = \"1\"\n",
|
122 |
+
"# os.environ[\"GLOBAL_BATCH_SIZE\"] = str(global_batch_size) # set this to your batch size!\n",
|
123 |
+
"# global_batch_size = os.environ[\"GLOBAL_BATCH_SIZE\"]\n",
|
124 |
+
"\n",
|
125 |
+
"# # alter the deepspeed config according to your global and local batch size\n",
|
126 |
+
"# if local_rank == 0:\n",
|
127 |
+
"# with open('deepspeed_config_stage2.json', 'r') as file:\n",
|
128 |
+
"# config = json.load(file)\n",
|
129 |
+
"# config['train_batch_size'] = int(os.environ[\"GLOBAL_BATCH_SIZE\"])\n",
|
130 |
+
"# config['train_micro_batch_size_per_gpu'] = int(os.environ[\"GLOBAL_BATCH_SIZE\"]) // num_devices\n",
|
131 |
+
"# with open('deepspeed_config_stage2.json', 'w') as file:\n",
|
132 |
+
"# json.dump(config, file)\n",
|
133 |
+
"# else:\n",
|
134 |
+
"# # give some time for the local_rank=0 gpu to prep new deepspeed config file\n",
|
135 |
+
"# time.sleep(10)\n",
|
136 |
+
"# deepspeed_plugin = DeepSpeedPlugin(\"deepspeed_config_stage2.json\")\n",
|
137 |
+
"# accelerator = Accelerator(split_batches=False, deepspeed_plugin=deepspeed_plugin)"
|
138 |
+
]
|
139 |
+
},
|
140 |
+
{
|
141 |
+
"cell_type": "code",
|
142 |
+
"execution_count": 4,
|
143 |
+
"id": "b767ab6f-d4a9-47a5-b3bf-f56bf6760c0c",
|
144 |
+
"metadata": {
|
145 |
+
"tags": []
|
146 |
+
},
|
147 |
+
"outputs": [
|
148 |
+
{
|
149 |
+
"name": "stdout",
|
150 |
+
"output_type": "stream",
|
151 |
+
"text": [
|
152 |
+
"PID of this process = 2370606\n",
|
153 |
+
"device: cuda\n",
|
154 |
+
"Distributed environment: NO\n",
|
155 |
+
"Num processes: 1\n",
|
156 |
+
"Process index: 0\n",
|
157 |
+
"Local process index: 0\n",
|
158 |
+
"Device: cuda\n",
|
159 |
+
"\n",
|
160 |
+
"Mixed precision type: no\n",
|
161 |
+
"\n",
|
162 |
+
"distributed = False num_devices = 1 local rank = 0 world size = 1\n"
|
163 |
+
]
|
164 |
+
}
|
165 |
+
],
|
166 |
+
"source": [
|
167 |
+
"print(\"PID of this process =\",os.getpid())\n",
|
168 |
+
"device = accelerator.device\n",
|
169 |
+
"print(\"device:\",device)\n",
|
170 |
+
"num_workers = num_devices\n",
|
171 |
+
"print(accelerator.state)\n",
|
172 |
+
"world_size = accelerator.state.num_processes\n",
|
173 |
+
"distributed = not accelerator.state.distributed_type == 'NO'\n",
|
174 |
+
"print(\"distributed =\",distributed, \"num_devices =\", num_devices, \"local rank =\", local_rank, \"world size =\", world_size)\n",
|
175 |
+
"print = accelerator.print # only print if local_rank=0"
|
176 |
+
]
|
177 |
+
},
|
178 |
+
{
|
179 |
+
"cell_type": "markdown",
|
180 |
+
"id": "9018b82b-c054-4463-9527-4b0c2a75bda6",
|
181 |
+
"metadata": {
|
182 |
+
"tags": []
|
183 |
+
},
|
184 |
+
"source": [
|
185 |
+
"# Configurations"
|
186 |
+
]
|
187 |
+
},
|
188 |
+
{
|
189 |
+
"cell_type": "code",
|
190 |
+
"execution_count": 5,
|
191 |
+
"id": "2b61fec7-72a0-4b67-86da-1375f1d9fbd3",
|
192 |
+
"metadata": {
|
193 |
+
"tags": []
|
194 |
+
},
|
195 |
+
"outputs": [
|
196 |
+
{
|
197 |
+
"name": "stdout",
|
198 |
+
"output_type": "stream",
|
199 |
+
"text": [
|
200 |
+
"['--data_path=/fsx/proj-fmri/shared/mindeyev2_dataset', '--model_name=captions', '--subj=1', '--batch_size=128', '--n_samples_save=0', '--max_lr=3e-1', '--mixup_pct=.66', '--num_epochs=30', '--ckpt_interval=999', '--no-use_image_aug']\n"
|
201 |
+
]
|
202 |
+
}
|
203 |
+
],
|
204 |
+
"source": [
|
205 |
+
"# if running this interactively, can specify jupyter_args here for argparser to use\n",
|
206 |
+
"if utils.is_interactive():\n",
|
207 |
+
" # Example use\n",
|
208 |
+
" jupyter_args = f\"--data_path=/fsx/proj-fmri/shared/mindeyev2_dataset \\\n",
|
209 |
+
" --model_name=captions \\\n",
|
210 |
+
" --subj=1 --batch_size={global_batch_size} --n_samples_save=0 \\\n",
|
211 |
+
" --max_lr=3e-1 --mixup_pct=.66 --num_epochs=30 --ckpt_interval=999 --no-use_image_aug\"\n",
|
212 |
+
" #max_lr=3e-5 originally\n",
|
213 |
+
" jupyter_args = jupyter_args.split()\n",
|
214 |
+
" print(jupyter_args)\n",
|
215 |
+
" \n",
|
216 |
+
" from IPython.display import clear_output # function to clear print outputs in cell\n",
|
217 |
+
" %load_ext autoreload \n",
|
218 |
+
" # this allows you to change functions in models.py or utils.py and have this notebook automatically update with your revisions\n",
|
219 |
+
" %autoreload 2 "
|
220 |
+
]
|
221 |
+
},
|
222 |
+
{
|
223 |
+
"cell_type": "code",
|
224 |
+
"execution_count": 6,
|
225 |
+
"id": "2028bdf0-2f41-46d9-b6e7-86b870dbf16c",
|
226 |
+
"metadata": {
|
227 |
+
"tags": []
|
228 |
+
},
|
229 |
+
"outputs": [
|
230 |
+
{
|
231 |
+
"name": "stdout",
|
232 |
+
"output_type": "stream",
|
233 |
+
"text": [
|
234 |
+
"global batch_size 128\n",
|
235 |
+
"batch_size 128\n"
|
236 |
+
]
|
237 |
+
}
|
238 |
+
],
|
239 |
+
"source": [
|
240 |
+
"parser = argparse.ArgumentParser(description=\"Model Training Configuration\")\n",
|
241 |
+
"parser.add_argument(\n",
|
242 |
+
" \"--model_name\", type=str, default=\"testing\",\n",
|
243 |
+
" help=\"name of model, used for ckpt saving and wandb logging (if enabled)\",\n",
|
244 |
+
")\n",
|
245 |
+
"parser.add_argument(\n",
|
246 |
+
" \"--data_path\", type=str, default=\"/fsx/proj-fmri/shared/natural-scenes-dataset\",\n",
|
247 |
+
" help=\"Path to where NSD data is stored / where to download it to\",\n",
|
248 |
+
")\n",
|
249 |
+
"parser.add_argument(\n",
|
250 |
+
" \"--subj\",type=int, default=1, choices=[1,2,5,7],\n",
|
251 |
+
")\n",
|
252 |
+
"parser.add_argument(\n",
|
253 |
+
" \"--batch_size\", type=int, default=32,\n",
|
254 |
+
" help=\"Batch size can be increased by 10x if only training v2c and not diffusion diffuser\",\n",
|
255 |
+
")\n",
|
256 |
+
"parser.add_argument(\n",
|
257 |
+
" \"--wandb_log\",action=argparse.BooleanOptionalAction,default=False,\n",
|
258 |
+
" help=\"whether to log to wandb\",\n",
|
259 |
+
")\n",
|
260 |
+
"parser.add_argument(\n",
|
261 |
+
" \"--resume_from_ckpt\",action=argparse.BooleanOptionalAction,default=False,\n",
|
262 |
+
" help=\"if not using wandb and want to resume from a ckpt\",\n",
|
263 |
+
")\n",
|
264 |
+
"parser.add_argument(\n",
|
265 |
+
" \"--wandb_project\",type=str,default=\"stability\",\n",
|
266 |
+
" help=\"wandb project name\",\n",
|
267 |
+
")\n",
|
268 |
+
"parser.add_argument(\n",
|
269 |
+
" \"--mixup_pct\",type=float,default=.33,\n",
|
270 |
+
" help=\"proportion of way through training when to switch from BiMixCo to SoftCLIP\",\n",
|
271 |
+
")\n",
|
272 |
+
"parser.add_argument(\n",
|
273 |
+
" \"--use_image_aug\",action=argparse.BooleanOptionalAction,default=True,\n",
|
274 |
+
" help=\"whether to use image augmentation\",\n",
|
275 |
+
")\n",
|
276 |
+
"parser.add_argument(\n",
|
277 |
+
" \"--num_epochs\",type=int,default=240,\n",
|
278 |
+
" help=\"number of epochs of training\",\n",
|
279 |
+
")\n",
|
280 |
+
"parser.add_argument(\n",
|
281 |
+
" \"--lr_scheduler_type\",type=str,default='cycle',choices=['cycle','linear'],\n",
|
282 |
+
")\n",
|
283 |
+
"parser.add_argument(\n",
|
284 |
+
" \"--ckpt_saving\",action=argparse.BooleanOptionalAction,default=True,\n",
|
285 |
+
")\n",
|
286 |
+
"parser.add_argument(\n",
|
287 |
+
" \"--ckpt_interval\",type=int,default=5,\n",
|
288 |
+
" help=\"save backup ckpt and reconstruct every x epochs\",\n",
|
289 |
+
")\n",
|
290 |
+
"parser.add_argument(\n",
|
291 |
+
" \"--seed\",type=int,default=42,\n",
|
292 |
+
")\n",
|
293 |
+
"parser.add_argument(\n",
|
294 |
+
" \"--max_lr\",type=float,default=3e-4,\n",
|
295 |
+
")\n",
|
296 |
+
"parser.add_argument(\n",
|
297 |
+
" \"--n_samples_save\",type=int,default=0,choices=[0,1],\n",
|
298 |
+
" help=\"Number of reconstructions for monitoring progress, 0 will speed up training\",\n",
|
299 |
+
")\n",
|
300 |
+
"\n",
|
301 |
+
"if utils.is_interactive():\n",
|
302 |
+
" args = parser.parse_args(jupyter_args)\n",
|
303 |
+
"else:\n",
|
304 |
+
" args = parser.parse_args()\n",
|
305 |
+
"\n",
|
306 |
+
"# create global variables without the args prefix\n",
|
307 |
+
"for attribute_name in vars(args).keys():\n",
|
308 |
+
" globals()[attribute_name] = getattr(args, attribute_name)\n",
|
309 |
+
"\n",
|
310 |
+
"print(\"global batch_size\", batch_size)\n",
|
311 |
+
"batch_size = int(batch_size / num_devices)\n",
|
312 |
+
"print(\"batch_size\", batch_size)"
|
313 |
+
]
|
314 |
+
},
|
315 |
+
{
|
316 |
+
"cell_type": "code",
|
317 |
+
"execution_count": 7,
|
318 |
+
"id": "60cd7f2c-37fd-426b-a0c6-633e51bc4c4d",
|
319 |
+
"metadata": {
|
320 |
+
"tags": []
|
321 |
+
},
|
322 |
+
"outputs": [],
|
323 |
+
"source": [
|
324 |
+
"outdir = os.path.abspath(f'../train_logs/{model_name}')\n",
|
325 |
+
"if not os.path.exists(outdir):\n",
|
326 |
+
" os.makedirs(outdir,exist_ok=True)\n",
|
327 |
+
"if use_image_aug:\n",
|
328 |
+
" import kornia\n",
|
329 |
+
" from kornia.augmentation.container import AugmentationSequential\n",
|
330 |
+
" img_augment = AugmentationSequential(\n",
|
331 |
+
" kornia.augmentation.RandomResizedCrop((224,224), (0.6,1), p=0.3),\n",
|
332 |
+
" kornia.augmentation.Resize((224, 224)),\n",
|
333 |
+
" kornia.augmentation.RandomHorizontalFlip(p=0.3),\n",
|
334 |
+
" kornia.augmentation.ColorJitter(brightness=0.4, contrast=0.4, saturation=0.2, hue=0.1, p=0.3),\n",
|
335 |
+
" kornia.augmentation.RandomGrayscale(p=0.3),\n",
|
336 |
+
" same_on_batch=False,\n",
|
337 |
+
" data_keys=[\"input\"],\n",
|
338 |
+
" )"
|
339 |
+
]
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"cell_type": "code",
|
343 |
+
"execution_count": 8,
|
344 |
+
"id": "e7807ba9-02b6-4bc0-873c-69869abe4091",
|
345 |
+
"metadata": {},
|
346 |
+
"outputs": [],
|
347 |
+
"source": [
|
348 |
+
"wandb_log = False"
|
349 |
+
]
|
350 |
+
},
|
351 |
+
{
|
352 |
+
"cell_type": "markdown",
|
353 |
+
"id": "42d13c25-1369-4c49-81d4-83d713586096",
|
354 |
+
"metadata": {
|
355 |
+
"tags": []
|
356 |
+
},
|
357 |
+
"source": [
|
358 |
+
"# Prep data, models, and dataloaders"
|
359 |
+
]
|
360 |
+
},
|
361 |
+
{
|
362 |
+
"cell_type": "markdown",
|
363 |
+
"id": "1c023f24-5233-4a15-a2f5-78487b3a8546",
|
364 |
+
"metadata": {},
|
365 |
+
"source": [
|
366 |
+
"## Dataloader"
|
367 |
+
]
|
368 |
+
},
|
369 |
+
{
|
370 |
+
"cell_type": "code",
|
371 |
+
"execution_count": 9,
|
372 |
+
"id": "81084834-035f-4465-ad59-59e6b806a2f5",
|
373 |
+
"metadata": {
|
374 |
+
"tags": []
|
375 |
+
},
|
376 |
+
"outputs": [
|
377 |
+
{
|
378 |
+
"name": "stdout",
|
379 |
+
"output_type": "stream",
|
380 |
+
"text": [
|
381 |
+
"/fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj01/train/{0..36}.tar\n",
|
382 |
+
"/fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj01/test/0.tar\n"
|
383 |
+
]
|
384 |
+
}
|
385 |
+
],
|
386 |
+
"source": [
|
387 |
+
"if subj==1:\n",
|
388 |
+
" num_train = 24958\n",
|
389 |
+
" num_test = 2770\n",
|
390 |
+
"test_batch_size = num_test\n",
|
391 |
+
"\n",
|
392 |
+
"def my_split_by_node(urls): return urls\n",
|
393 |
+
" \n",
|
394 |
+
"train_url = f\"{data_path}/wds/subj0{subj}/train/\" + \"{0..36}.tar\"\n",
|
395 |
+
"print(train_url)\n",
|
396 |
+
"\n",
|
397 |
+
"train_data = wds.WebDataset(train_url,resampled=False,nodesplitter=my_split_by_node)\\\n",
|
398 |
+
" .shuffle(750, initial=1500, rng=random.Random(42))\\\n",
|
399 |
+
" .decode(\"torch\")\\\n",
|
400 |
+
" .rename(behav=\"behav.npy\", past_behav=\"past_behav.npy\", future_behav=\"future_behav.npy\", olds_behav=\"olds_behav.npy\")\\\n",
|
401 |
+
" .to_tuple(*[\"behav\", \"past_behav\", \"future_behav\", \"olds_behav\"])\n",
|
402 |
+
"train_dl = torch.utils.data.DataLoader(train_data, batch_size=batch_size, shuffle=False, drop_last=False, pin_memory=True)\n",
|
403 |
+
"\n",
|
404 |
+
"test_url = f\"{data_path}/wds/subj0{subj}/test/\" + \"0.tar\"\n",
|
405 |
+
"print(test_url)\n",
|
406 |
+
"\n",
|
407 |
+
"test_data = wds.WebDataset(test_url,resampled=False,nodesplitter=my_split_by_node)\\\n",
|
408 |
+
" .shuffle(750, initial=1500, rng=random.Random(42))\\\n",
|
409 |
+
" .decode(\"torch\")\\\n",
|
410 |
+
" .rename(behav=\"behav.npy\", past_behav=\"past_behav.npy\", future_behav=\"future_behav.npy\", olds_behav=\"olds_behav.npy\")\\\n",
|
411 |
+
" .to_tuple(*[\"behav\", \"past_behav\", \"future_behav\", \"olds_behav\"])\n",
|
412 |
+
"test_dl = torch.utils.data.DataLoader(test_data, batch_size=test_batch_size, shuffle=False, drop_last=False, pin_memory=True)"
|
413 |
+
]
|
414 |
+
},
|
415 |
+
{
|
416 |
+
"cell_type": "markdown",
|
417 |
+
"id": "203b060a-2dd2-4c35-929b-c576be82eb52",
|
418 |
+
"metadata": {},
|
419 |
+
"source": [
|
420 |
+
"### check dataloaders are working"
|
421 |
+
]
|
422 |
+
},
|
423 |
+
{
|
424 |
+
"cell_type": "code",
|
425 |
+
"execution_count": 10,
|
426 |
+
"id": "e7a9c68c-c3c9-4080-bd99-067c4486dc37",
|
427 |
+
"metadata": {
|
428 |
+
"tags": []
|
429 |
+
},
|
430 |
+
"outputs": [],
|
431 |
+
"source": [
|
432 |
+
"# test_indices = []\n",
|
433 |
+
"# test_images = []\n",
|
434 |
+
"# for test_i, (behav, past_behav, future_behav, old_behav) in enumerate(test_dl):\n",
|
435 |
+
"# test_indices = np.append(test_indices, behav[:,0,5].numpy())\n",
|
436 |
+
"# test_images = np.append(test_images, behav[:,0,0].numpy())\n",
|
437 |
+
"# test_indices = test_indices.astype(np.int16)\n",
|
438 |
+
"# print(test_i, (test_i+1) * test_batch_size, len(test_indices))\n",
|
439 |
+
"# print(\"---\\n\")\n",
|
440 |
+
"\n",
|
441 |
+
"# train_indices = []\n",
|
442 |
+
"# train_images = []\n",
|
443 |
+
"# for train_i, (behav, past_behav, future_behav, old_behav) in enumerate(train_dl):\n",
|
444 |
+
"# train_indices = np.append(train_indices, behav[:,0,5].long().numpy())\n",
|
445 |
+
"# train_images = np.append(train_images, behav[:,0,0].numpy())\n",
|
446 |
+
"# train_indices = train_indices.astype(np.int16)\n",
|
447 |
+
"# print(train_i, (train_i+1) * batch_size, len(train_indices))\n",
|
448 |
+
"\n",
|
449 |
+
"# # train_images = np.hstack((train_images, test_images))\n",
|
450 |
+
"# # print(\"WARNING: ADDED TEST IMAGES TO TRAIN IMAGES\")"
|
451 |
+
]
|
452 |
+
},
|
453 |
+
{
|
454 |
+
"cell_type": "markdown",
|
455 |
+
"id": "45fad12c-f9fb-4408-8fd4-9bca324ad634",
|
456 |
+
"metadata": {},
|
457 |
+
"source": [
|
458 |
+
"## Load data and images"
|
459 |
+
]
|
460 |
+
},
|
461 |
+
{
|
462 |
+
"cell_type": "code",
|
463 |
+
"execution_count": 11,
|
464 |
+
"id": "039dd330-7339-4f88-8f00-45f95e47baa0",
|
465 |
+
"metadata": {
|
466 |
+
"tags": []
|
467 |
+
},
|
468 |
+
"outputs": [
|
469 |
+
{
|
470 |
+
"name": "stdout",
|
471 |
+
"output_type": "stream",
|
472 |
+
"text": [
|
473 |
+
"subj01 betas loaded into memory\n",
|
474 |
+
"voxels torch.Size([27750, 15729])\n",
|
475 |
+
"images torch.Size([73000, 3, 224, 224])\n"
|
476 |
+
]
|
477 |
+
}
|
478 |
+
],
|
479 |
+
"source": [
|
480 |
+
"# load betas\n",
|
481 |
+
"f = h5py.File(f'{data_path}/betas_all_subj0{subj}.hdf5', 'r')\n",
|
482 |
+
"voxels = f['betas'][:]\n",
|
483 |
+
"print(f\"subj0{subj} betas loaded into memory\")\n",
|
484 |
+
"voxels = torch.Tensor(voxels).to(\"cpu\").half()\n",
|
485 |
+
"if subj==1:\n",
|
486 |
+
" voxels = torch.hstack((voxels, torch.zeros((len(voxels), 5))))\n",
|
487 |
+
"print(\"voxels\", voxels.shape)\n",
|
488 |
+
"num_voxels = voxels.shape[-1]\n",
|
489 |
+
"\n",
|
490 |
+
"# load orig images\n",
|
491 |
+
"f = h5py.File(f'{data_path}/coco_images_224_float16.hdf5', 'r')\n",
|
492 |
+
"images = f['images'][:]\n",
|
493 |
+
"images = torch.Tensor(images).to(\"cpu\").half()\n",
|
494 |
+
"print(\"images\", images.shape)"
|
495 |
+
]
|
496 |
+
},
|
497 |
+
{
|
498 |
+
"cell_type": "markdown",
|
499 |
+
"id": "10ec4517-dbdf-4ece-98f6-4714d5de4e15",
|
500 |
+
"metadata": {},
|
501 |
+
"source": [
|
502 |
+
"## Load models"
|
503 |
+
]
|
504 |
+
},
|
505 |
+
{
|
506 |
+
"cell_type": "markdown",
|
507 |
+
"id": "48d6160e-1ee8-4da7-a755-9dbb452a6fa5",
|
508 |
+
"metadata": {},
|
509 |
+
"source": [
|
510 |
+
"### CLIP image embeddings model"
|
511 |
+
]
|
512 |
+
},
|
513 |
+
{
|
514 |
+
"cell_type": "code",
|
515 |
+
"execution_count": 12,
|
516 |
+
"id": "795e2885-bd07-4e27-bed7-181473c06df9",
|
517 |
+
"metadata": {
|
518 |
+
"tags": []
|
519 |
+
},
|
520 |
+
"outputs": [],
|
521 |
+
"source": [
|
522 |
+
"import transformers\n",
|
523 |
+
"from transformers import Blip2Processor, Blip2ForConditionalGeneration\n",
|
524 |
+
"\n",
|
525 |
+
"from PIL import Image"
|
526 |
+
]
|
527 |
+
},
|
528 |
+
{
|
529 |
+
"cell_type": "code",
|
530 |
+
"execution_count": 13,
|
531 |
+
"id": "b0420dc0-199e-4c1a-857d-b1747058b467",
|
532 |
+
"metadata": {
|
533 |
+
"tags": []
|
534 |
+
},
|
535 |
+
"outputs": [
|
536 |
+
{
|
537 |
+
"name": "stdout",
|
538 |
+
"output_type": "stream",
|
539 |
+
"text": [
|
540 |
+
"ViT-L/14 cuda:0\n"
|
541 |
+
]
|
542 |
+
}
|
543 |
+
],
|
544 |
+
"source": [
|
545 |
+
"from models import Clipper\n",
|
546 |
+
"clip_model = Clipper(\"ViT-L/14\", device=torch.device(f\"cuda:{local_rank}\"), hidden_state=True, norm_embs=True)"
|
547 |
+
]
|
548 |
+
},
|
549 |
+
{
|
550 |
+
"cell_type": "code",
|
551 |
+
"execution_count": 14,
|
552 |
+
"id": "23428fb7-2955-4295-bea1-447cebf9f72e",
|
553 |
+
"metadata": {
|
554 |
+
"tags": []
|
555 |
+
},
|
556 |
+
"outputs": [
|
557 |
+
{
|
558 |
+
"name": "stderr",
|
559 |
+
"output_type": "stream",
|
560 |
+
"text": [
|
561 |
+
"Loading checkpoint shards: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [01:08<00:00, 34.47s/it]\n"
|
562 |
+
]
|
563 |
+
},
|
564 |
+
{
|
565 |
+
"data": {
|
566 |
+
"text/plain": [
|
567 |
+
"'from lavis.models import load_model_and_preprocess\\nfrom lavis.models import model_zoo\\nblip2_model, vis_processors, _ = load_model_and_preprocess(\\n name=\"blip2_t5\", model_type=\"pretrain_flant5xl_vitL\", is_eval=True, device=device)\\n\\nclip_seq_dim = 257\\nclip_emb_dim = 1024\\nhidden_dim = 4096'"
|
568 |
+
]
|
569 |
+
},
|
570 |
+
"execution_count": 14,
|
571 |
+
"metadata": {},
|
572 |
+
"output_type": "execute_result"
|
573 |
+
}
|
574 |
+
],
|
575 |
+
"source": [
|
576 |
+
"cache_blip2 = \"/fsx/proj-fmri/shared/cache/models--Salesforce--blip2-opt-2.7b/snapshots/6e723d92ee91ebcee4ba74d7017632f11ff4217b\"\n",
|
577 |
+
"\n",
|
578 |
+
"b2_processor = Blip2Processor.from_pretrained(cache_blip2)\n",
|
579 |
+
"b2_model = Blip2ForConditionalGeneration.from_pretrained(cache_blip2, torch_dtype=torch.float16, device_map=\"auto\")\n",
|
580 |
+
"\n",
|
581 |
+
"#Load in blip2 as well\n",
|
582 |
+
"\"\"\"from lavis.models import load_model_and_preprocess\n",
|
583 |
+
"from lavis.models import model_zoo\n",
|
584 |
+
"blip2_model, vis_processors, _ = load_model_and_preprocess(\n",
|
585 |
+
" name=\"blip2_t5\", model_type=\"pretrain_flant5xl_vitL\", is_eval=True, device=device)\n",
|
586 |
+
"\n",
|
587 |
+
"clip_seq_dim = 257\n",
|
588 |
+
"clip_emb_dim = 1024\n",
|
589 |
+
"hidden_dim = 4096\"\"\""
|
590 |
+
]
|
591 |
+
},
|
592 |
+
{
|
593 |
+
"cell_type": "code",
|
594 |
+
"execution_count": 74,
|
595 |
+
"id": "b06f3de2-a8da-4ba0-94f0-99096f738d55",
|
596 |
+
"metadata": {
|
597 |
+
"tags": []
|
598 |
+
},
|
599 |
+
"outputs": [],
|
600 |
+
"source": [
|
601 |
+
"def embed_images_b2(images):\n",
|
602 |
+
" images = (images * 255).type(torch.uint8)\n",
|
603 |
+
" with torch.no_grad():\n",
|
604 |
+
" inputs_processed = b2_processor(images, return_tensors=\"pt\").to(\"cuda\", torch.float16)\n",
|
605 |
+
" enc_imgs = b2_model.vision_model.forward(inputs_processed['pixel_values'])\n",
|
606 |
+
" return enc_imgs.last_hidden_state.detach(), inputs_processed\n",
|
607 |
+
"\n",
|
608 |
+
"def embeds_to_captions_b2(embeds, sample = False, temp = 0.9):\n",
|
609 |
+
" with torch.no_grad():\n",
|
610 |
+
" input_ids = None #inputs['input_ids']\n",
|
611 |
+
" attention_mask = None\n",
|
612 |
+
" batch_size = embeds.shape[0]\n",
|
613 |
+
" image_embeds = embeds\n",
|
614 |
+
" image_attention_mask = torch.ones(image_embeds.size()[:-1], dtype=torch.long, device=image_embeds.device)\n",
|
615 |
+
"\n",
|
616 |
+
" query_tokens = b2_model.query_tokens.expand(image_embeds.shape[0], -1, -1)\n",
|
617 |
+
" query_outputs = b2_model.qformer(\n",
|
618 |
+
" query_embeds=query_tokens,\n",
|
619 |
+
" encoder_hidden_states=image_embeds,\n",
|
620 |
+
" encoder_attention_mask=image_attention_mask,\n",
|
621 |
+
" return_dict=True,\n",
|
622 |
+
" )\n",
|
623 |
+
" query_output = query_outputs.last_hidden_state\n",
|
624 |
+
"\n",
|
625 |
+
" language_model_inputs = b2_model.language_projection(query_output)\n",
|
626 |
+
" language_attention_mask = torch.ones(\n",
|
627 |
+
" language_model_inputs.size()[:-1], dtype=torch.long, device=language_model_inputs.device\n",
|
628 |
+
" )\n",
|
629 |
+
" if input_ids is None:\n",
|
630 |
+
" input_ids = (\n",
|
631 |
+
" torch.LongTensor([[b2_model.config.text_config.bos_token_id]])\n",
|
632 |
+
" .repeat(batch_size, 1)\n",
|
633 |
+
" .to(image_embeds.device)\n",
|
634 |
+
" )\n",
|
635 |
+
" if attention_mask is None:\n",
|
636 |
+
" attention_mask = torch.ones_like(input_ids)\n",
|
637 |
+
" attention_mask = torch.cat([language_attention_mask, attention_mask.to(language_attention_mask.device)], dim=1)\n",
|
638 |
+
"\n",
|
639 |
+
" # concatenate query embeddings with prompt embeddings\n",
|
640 |
+
" inputs_embeds = b2_model.get_input_embeddings()(input_ids)\n",
|
641 |
+
" inputs_embeds = torch.cat([language_model_inputs, inputs_embeds.to(language_model_inputs.device)], dim=1)\n",
|
642 |
+
"\n",
|
643 |
+
" outputs = b2_model.language_model.generate(\n",
|
644 |
+
" inputs_embeds=inputs_embeds,\n",
|
645 |
+
" attention_mask=attention_mask,\n",
|
646 |
+
" temperature=temp,\n",
|
647 |
+
" do_sample = sample\n",
|
648 |
+
" )\n",
|
649 |
+
" text = b2_processor.batch_decode(outputs, skip_special_tokens=True)\n",
|
650 |
+
" \n",
|
651 |
+
" return outputs, text\n"
|
652 |
+
]
|
653 |
+
},
|
654 |
+
{
|
655 |
+
"cell_type": "code",
|
656 |
+
"execution_count": 73,
|
657 |
+
"id": "51b29638-2c81-4e9f-b06d-525fdbac44b1",
|
658 |
+
"metadata": {
|
659 |
+
"tags": []
|
660 |
+
},
|
661 |
+
"outputs": [
|
662 |
+
{
|
663 |
+
"data": {
|
664 |
+
"text/plain": [
|
665 |
+
"tensor([[ 2, 6209, 14, 10, 205, 425, 13, 10, 7297, 1280,\n",
|
666 |
+
" 9, 418, 116, 1437, 38, 10728, 33, 117, 1114, 99]],\n",
|
667 |
+
" device='cuda:0')"
|
668 |
+
]
|
669 |
+
},
|
670 |
+
"execution_count": 73,
|
671 |
+
"metadata": {},
|
672 |
+
"output_type": "execute_result"
|
673 |
+
}
|
674 |
+
],
|
675 |
+
"source": [
|
676 |
+
"b2_model.language_model.generate(do_sample = True, temperature=1)"
|
677 |
+
]
|
678 |
+
},
|
679 |
+
{
|
680 |
+
"cell_type": "code",
|
681 |
+
"execution_count": 16,
|
682 |
+
"id": "ec0a34d3-76e0-4a47-a9ab-6131ab2ccecd",
|
683 |
+
"metadata": {
|
684 |
+
"tags": []
|
685 |
+
},
|
686 |
+
"outputs": [],
|
687 |
+
"source": [
|
688 |
+
"image_test = images[1:20].permute(0,2,3,1)\n",
|
689 |
+
"#raw_image = Image.open('/fsx/proj-fmri/shared/controlNetData/target/img_t1.jpg').convert('RGB')\n",
|
690 |
+
"# Convert the image to a NumPy array\n",
|
691 |
+
"#image_test = np.array(raw_image)\n"
|
692 |
+
]
|
693 |
+
},
|
694 |
+
{
|
695 |
+
"cell_type": "code",
|
696 |
+
"execution_count": 17,
|
697 |
+
"id": "e04876a4-45c7-4015-8255-8574c8f50f14",
|
698 |
+
"metadata": {
|
699 |
+
"tags": []
|
700 |
+
},
|
701 |
+
"outputs": [
|
702 |
+
{
|
703 |
+
"data": {
|
704 |
+
"text/plain": [
|
705 |
+
"\"import matplotlib.pyplot as plt\\n# Plotting one of the images (taking the first image as an example)\\nimg_to_plot = inputs_rec['pixel_values'][-1]\\n\\n# Transpose the image for correct display (PyTorch: [C, H, W], Matplotlib: [H, W, C])\\nimg_to_plot = img_to_plot.permute(1, 2, 0).to(torch.float32).to('cpu')\\nprint(img_to_plot.shape)\\n\\nplt.imshow(img_to_plot)\\nplt.show()\""
|
706 |
+
]
|
707 |
+
},
|
708 |
+
"execution_count": 17,
|
709 |
+
"metadata": {},
|
710 |
+
"output_type": "execute_result"
|
711 |
+
}
|
712 |
+
],
|
713 |
+
"source": [
|
714 |
+
"\"\"\"import matplotlib.pyplot as plt\n",
|
715 |
+
"# Plotting one of the images (taking the first image as an example)\n",
|
716 |
+
"img_to_plot = inputs_rec['pixel_values'][-1]\n",
|
717 |
+
"\n",
|
718 |
+
"# Transpose the image for correct display (PyTorch: [C, H, W], Matplotlib: [H, W, C])\n",
|
719 |
+
"img_to_plot = img_to_plot.permute(1, 2, 0).to(torch.float32).to('cpu')\n",
|
720 |
+
"print(img_to_plot.shape)\n",
|
721 |
+
"\n",
|
722 |
+
"plt.imshow(img_to_plot)\n",
|
723 |
+
"plt.show()\"\"\""
|
724 |
+
]
|
725 |
+
},
|
726 |
+
{
|
727 |
+
"cell_type": "code",
|
728 |
+
"execution_count": 18,
|
729 |
+
"id": "328a17d0-593b-4d1e-812a-10a3b6efea6a",
|
730 |
+
"metadata": {
|
731 |
+
"tags": []
|
732 |
+
},
|
733 |
+
"outputs": [],
|
734 |
+
"source": [
|
735 |
+
"embeds_test, inputs_rec = embed_images_b2(image_test)"
|
736 |
+
]
|
737 |
+
},
|
738 |
+
{
|
739 |
+
"cell_type": "code",
|
740 |
+
"execution_count": 19,
|
741 |
+
"id": "abe5f8a8-fca9-4083-8596-a913bdb57de7",
|
742 |
+
"metadata": {
|
743 |
+
"tags": []
|
744 |
+
},
|
745 |
+
"outputs": [],
|
746 |
+
"source": [
|
747 |
+
"#inputs_rec['pixel_values'].shape"
|
748 |
+
]
|
749 |
+
},
|
750 |
+
{
|
751 |
+
"cell_type": "code",
|
752 |
+
"execution_count": 20,
|
753 |
+
"id": "c5f3ca7e-b880-421e-b354-7b6c3df565e9",
|
754 |
+
"metadata": {
|
755 |
+
"tags": []
|
756 |
+
},
|
757 |
+
"outputs": [],
|
758 |
+
"source": [
|
759 |
+
"#out = b2_model.generate(**inputs_rec)\n",
|
760 |
+
"#print(b2_processor.decode(out[0], skip_special_tokens=True).strip())"
|
761 |
+
]
|
762 |
+
},
|
763 |
+
{
|
764 |
+
"cell_type": "code",
|
765 |
+
"execution_count": 21,
|
766 |
+
"id": "fb462016-78d7-46ea-8058-0d608f17ea65",
|
767 |
+
"metadata": {
|
768 |
+
"tags": []
|
769 |
+
},
|
770 |
+
"outputs": [
|
771 |
+
{
|
772 |
+
"name": "stderr",
|
773 |
+
"output_type": "stream",
|
774 |
+
"text": [
|
775 |
+
"/admin/home-ckadirt/miniconda3/envs/mindeye/lib/python3.10/site-packages/transformers/generation/utils.py:1260: UserWarning: Using the model-agnostic default `max_length` (=20) to control thegeneration length. We recommend setting `max_new_tokens` to control the maximum length of the generation.\n",
|
776 |
+
" warnings.warn(\n"
|
777 |
+
]
|
778 |
+
}
|
779 |
+
],
|
780 |
+
"source": [
|
781 |
+
"outputs_test, text_test = embeds_to_captions_b2(embeds_test)"
|
782 |
+
]
|
783 |
+
},
|
784 |
+
{
|
785 |
+
"cell_type": "code",
|
786 |
+
"execution_count": 22,
|
787 |
+
"id": "6a95fcdf-db87-4c02-9728-09f85605fb1c",
|
788 |
+
"metadata": {
|
789 |
+
"tags": []
|
790 |
+
},
|
791 |
+
"outputs": [
|
792 |
+
{
|
793 |
+
"data": {
|
794 |
+
"text/plain": [
|
795 |
+
"['a cat sitting on a toilet seat\\n',\n",
|
796 |
+
" 'a person cutting a pizza on a cutting board\\n',\n",
|
797 |
+
" 'a sandwich and a drink on a table\\n',\n",
|
798 |
+
" 'a man crossing the street in front of a truck\\n',\n",
|
799 |
+
" 'a giraffe standing in front of trees\\n',\n",
|
800 |
+
" 'three men standing together\\n',\n",
|
801 |
+
" 'a bird standing on a rock next to a body of water\\n',\n",
|
802 |
+
" 'two men sitting on a street corner in asia\\n',\n",
|
803 |
+
" 'a woman and two children playing tennis on a court\\n',\n",
|
804 |
+
" 'a tall brick building with a clock on the side\\n',\n",
|
805 |
+
" 'a train is on the tracks\\n',\n",
|
806 |
+
" 'a man and woman in the water with a surfboard\\n',\n",
|
807 |
+
" 'a living room with a desk and a chair\\n',\n",
|
808 |
+
" 'a group of men on a basketball court\\n',\n",
|
809 |
+
" 'a man holding an umbrella\\n',\n",
|
810 |
+
" 'a man in a red shirt\\n',\n",
|
811 |
+
" 'a group of people holding cell phones and wine glasses\\n',\n",
|
812 |
+
" 'a laptop computer sitting on a table in front of a television\\n',\n",
|
813 |
+
" 'a baseball player is swinging a bat on a field\\n']"
|
814 |
+
]
|
815 |
+
},
|
816 |
+
"execution_count": 22,
|
817 |
+
"metadata": {},
|
818 |
+
"output_type": "execute_result"
|
819 |
+
}
|
820 |
+
],
|
821 |
+
"source": [
|
822 |
+
"text_test"
|
823 |
+
]
|
824 |
+
},
|
825 |
+
{
|
826 |
+
"cell_type": "code",
|
827 |
+
"execution_count": 23,
|
828 |
+
"id": "9ac69fbd-55db-435b-bed6-5ae9186450e3",
|
829 |
+
"metadata": {
|
830 |
+
"tags": []
|
831 |
+
},
|
832 |
+
"outputs": [],
|
833 |
+
"source": [
|
834 |
+
"#inputss['pixel_values'].shape"
|
835 |
+
]
|
836 |
+
},
|
837 |
+
{
|
838 |
+
"cell_type": "code",
|
839 |
+
"execution_count": 24,
|
840 |
+
"id": "0524f498-c8da-4e8a-8970-d75d2d0f6b8b",
|
841 |
+
"metadata": {
|
842 |
+
"tags": []
|
843 |
+
},
|
844 |
+
"outputs": [],
|
845 |
+
"source": [
|
846 |
+
"#image_test.shape"
|
847 |
+
]
|
848 |
+
},
|
849 |
+
{
|
850 |
+
"cell_type": "code",
|
851 |
+
"execution_count": 25,
|
852 |
+
"id": "5417541b-49eb-4e43-a3e2-d937d9653e04",
|
853 |
+
"metadata": {
|
854 |
+
"tags": []
|
855 |
+
},
|
856 |
+
"outputs": [],
|
857 |
+
"source": [
|
858 |
+
"max_lr = 1e-4"
|
859 |
+
]
|
860 |
+
},
|
861 |
+
{
|
862 |
+
"cell_type": "code",
|
863 |
+
"execution_count": 26,
|
864 |
+
"id": "da0ce190-1b3e-4c12-9e9f-91cbc076d044",
|
865 |
+
"metadata": {
|
866 |
+
"tags": []
|
867 |
+
},
|
868 |
+
"outputs": [],
|
869 |
+
"source": [
|
870 |
+
"clip_seq_dim = 257 #blip2 image encoder shapes\n",
|
871 |
+
"clip_emb_dim = 1408 #blip2 image encoder shapes\n",
|
872 |
+
"hidden_dim = 2048"
|
873 |
+
]
|
874 |
+
},
|
875 |
+
{
|
876 |
+
"cell_type": "markdown",
|
877 |
+
"id": "5b79bd38-6990-4504-8d45-4a68d57d8885",
|
878 |
+
"metadata": {},
|
879 |
+
"source": [
|
880 |
+
"### SD VAE (blurry images)"
|
881 |
+
]
|
882 |
+
},
|
883 |
+
{
|
884 |
+
"cell_type": "code",
|
885 |
+
"execution_count": 40,
|
886 |
+
"id": "01baff79-8114-482b-b115-6f05aa8ad691",
|
887 |
+
"metadata": {
|
888 |
+
"tags": []
|
889 |
+
},
|
890 |
+
"outputs": [
|
891 |
+
{
|
892 |
+
"name": "stdout",
|
893 |
+
"output_type": "stream",
|
894 |
+
"text": [
|
895 |
+
"param counts:\n",
|
896 |
+
"83,653,863 total\n",
|
897 |
+
"0 trainable\n"
|
898 |
+
]
|
899 |
+
}
|
900 |
+
],
|
901 |
+
"source": [
|
902 |
+
"from diffusers import AutoencoderKL\n",
|
903 |
+
"autoenc = AutoencoderKL.from_pretrained(\"madebyollin/sdxl-vae-fp16-fix\", torch_dtype=torch.float16, cache_dir=\"/fsx/proj-fmri/shared/cache\")\n",
|
904 |
+
"# autoenc.load_state_dict(torch.load('../train_logs/sdxl_vae_normed/best.pth')[\"model_state_dict\"])\n",
|
905 |
+
"autoenc.eval()\n",
|
906 |
+
"autoenc.requires_grad_(False)\n",
|
907 |
+
"autoenc.to(device)\n",
|
908 |
+
"utils.count_params(autoenc)"
|
909 |
+
]
|
910 |
+
},
|
911 |
+
{
|
912 |
+
"cell_type": "markdown",
|
913 |
+
"id": "260e5e4a-f697-4b2c-88fc-01f6a54886c0",
|
914 |
+
"metadata": {},
|
915 |
+
"source": [
|
916 |
+
"### MindEye modules"
|
917 |
+
]
|
918 |
+
},
|
919 |
+
{
|
920 |
+
"cell_type": "code",
|
921 |
+
"execution_count": 41,
|
922 |
+
"id": "c44c271b-173f-472e-b059-a2eda0f4c4c5",
|
923 |
+
"metadata": {
|
924 |
+
"tags": []
|
925 |
+
},
|
926 |
+
"outputs": [
|
927 |
+
{
|
928 |
+
"data": {
|
929 |
+
"text/plain": [
|
930 |
+
"MindEyeModule()"
|
931 |
+
]
|
932 |
+
},
|
933 |
+
"execution_count": 41,
|
934 |
+
"metadata": {},
|
935 |
+
"output_type": "execute_result"
|
936 |
+
}
|
937 |
+
],
|
938 |
+
"source": [
|
939 |
+
"class MindEyeModule(nn.Module):\n",
|
940 |
+
" def __init__(self):\n",
|
941 |
+
" super(MindEyeModule, self).__init__()\n",
|
942 |
+
" def forward(self, x):\n",
|
943 |
+
" return x\n",
|
944 |
+
" \n",
|
945 |
+
"model = MindEyeModule()\n",
|
946 |
+
"model"
|
947 |
+
]
|
948 |
+
},
|
949 |
+
{
|
950 |
+
"cell_type": "code",
|
951 |
+
"execution_count": 42,
|
952 |
+
"id": "038a5d61-4769-40b9-a004-f4e7b5b38bb0",
|
953 |
+
"metadata": {
|
954 |
+
"tags": []
|
955 |
+
},
|
956 |
+
"outputs": [
|
957 |
+
{
|
958 |
+
"name": "stdout",
|
959 |
+
"output_type": "stream",
|
960 |
+
"text": [
|
961 |
+
"param counts:\n",
|
962 |
+
"32,215,040 total\n",
|
963 |
+
"32,215,040 trainable\n",
|
964 |
+
"param counts:\n",
|
965 |
+
"32,215,040 total\n",
|
966 |
+
"32,215,040 trainable\n",
|
967 |
+
"torch.Size([2, 1, 15729]) torch.Size([2, 1, 2048])\n"
|
968 |
+
]
|
969 |
+
}
|
970 |
+
],
|
971 |
+
"source": [
|
972 |
+
"class RidgeRegression(torch.nn.Module):\n",
|
973 |
+
" # make sure to add weight_decay when initializing optimizer\n",
|
974 |
+
" def __init__(self, input_size, out_features): \n",
|
975 |
+
" super(RidgeRegression, self).__init__()\n",
|
976 |
+
" self.out_features = out_features\n",
|
977 |
+
" self.linear = torch.nn.Linear(input_size, out_features)\n",
|
978 |
+
" def forward(self, x):\n",
|
979 |
+
" return self.linear(x)\n",
|
980 |
+
" \n",
|
981 |
+
"model.ridge = RidgeRegression(voxels.shape[1], out_features=hidden_dim)\n",
|
982 |
+
"utils.count_params(model.ridge)\n",
|
983 |
+
"utils.count_params(model)\n",
|
984 |
+
"\n",
|
985 |
+
"b = torch.randn((2,1,voxels.shape[1]))\n",
|
986 |
+
"print(b.shape, model.ridge(b).shape)"
|
987 |
+
]
|
988 |
+
},
|
989 |
+
{
|
990 |
+
"cell_type": "code",
|
991 |
+
"execution_count": 43,
|
992 |
+
"id": "3602c333-d029-465c-8fb4-c3ccffdba6fd",
|
993 |
+
"metadata": {
|
994 |
+
"tags": []
|
995 |
+
},
|
996 |
+
"outputs": [
|
997 |
+
{
|
998 |
+
"name": "stdout",
|
999 |
+
"output_type": "stream",
|
1000 |
+
"text": [
|
1001 |
+
"param counts:\n",
|
1002 |
+
"772,419,072 total\n",
|
1003 |
+
"772,419,072 trainable\n",
|
1004 |
+
"param counts:\n",
|
1005 |
+
"804,634,112 total\n",
|
1006 |
+
"804,634,112 trainable\n",
|
1007 |
+
"torch.Size([4, 2048])\n",
|
1008 |
+
"torch.Size([4, 257, 1408])\n"
|
1009 |
+
]
|
1010 |
+
}
|
1011 |
+
],
|
1012 |
+
"source": [
|
1013 |
+
"from functools import partial\n",
|
1014 |
+
"from diffusers.models.vae import Decoder\n",
|
1015 |
+
"class BrainNetwork(nn.Module):\n",
|
1016 |
+
" def __init__(self, out_dim=768, in_dim=15724, clip_size=768, h=4096, n_blocks=4, norm_type='ln', act_first=False, drop=.15, blurry_dim=16):\n",
|
1017 |
+
" super().__init__()\n",
|
1018 |
+
" self.blurry_dim = blurry_dim\n",
|
1019 |
+
" norm_func = partial(nn.BatchNorm1d, num_features=h) if norm_type == 'bn' else partial(nn.LayerNorm, normalized_shape=h)\n",
|
1020 |
+
" act_fn = partial(nn.ReLU, inplace=True) if norm_type == 'bn' else nn.GELU\n",
|
1021 |
+
" act_and_norm = (act_fn, norm_func) if act_first else (norm_func, act_fn)\n",
|
1022 |
+
" self.lin0 = nn.Linear(in_dim, h)\n",
|
1023 |
+
" self.mlp = nn.ModuleList([\n",
|
1024 |
+
" nn.Sequential(\n",
|
1025 |
+
" nn.Linear(h, h),\n",
|
1026 |
+
" *[item() for item in act_and_norm],\n",
|
1027 |
+
" nn.Dropout(drop)\n",
|
1028 |
+
" ) for _ in range(n_blocks)\n",
|
1029 |
+
" ])\n",
|
1030 |
+
" self.lin1 = nn.Linear(h, out_dim, bias=True)\n",
|
1031 |
+
" # self.blin1 = nn.Linear(out_dim, blurry_dim, bias=True)\n",
|
1032 |
+
" self.n_blocks = n_blocks\n",
|
1033 |
+
" self.clip_size = clip_size\n",
|
1034 |
+
" self.clip_proj = nn.Sequential(\n",
|
1035 |
+
" nn.LayerNorm(clip_size),\n",
|
1036 |
+
" nn.GELU(),\n",
|
1037 |
+
" nn.Linear(clip_size, 2048),\n",
|
1038 |
+
" nn.LayerNorm(2048),\n",
|
1039 |
+
" nn.GELU(),\n",
|
1040 |
+
" nn.Linear(2048, 2048),\n",
|
1041 |
+
" nn.LayerNorm(2048),\n",
|
1042 |
+
" nn.GELU(),\n",
|
1043 |
+
" nn.Linear(2048, clip_size)\n",
|
1044 |
+
" )\n",
|
1045 |
+
" # self.upsampler = Decoder(\n",
|
1046 |
+
" # in_channels=64,\n",
|
1047 |
+
" # out_channels=4,\n",
|
1048 |
+
" # up_block_types=[\"UpDecoderBlock2D\",\"UpDecoderBlock2D\",\"UpDecoderBlock2D\"],\n",
|
1049 |
+
" # block_out_channels=[64, 128, 256],\n",
|
1050 |
+
" # layers_per_block=1,\n",
|
1051 |
+
" # )\n",
|
1052 |
+
" \n",
|
1053 |
+
" def forward(self, x):\n",
|
1054 |
+
" x = self.lin0(x)\n",
|
1055 |
+
" residual = x\n",
|
1056 |
+
" for res_block in range(self.n_blocks):\n",
|
1057 |
+
" x = self.mlp[res_block](x)\n",
|
1058 |
+
" x += residual\n",
|
1059 |
+
" residual = x\n",
|
1060 |
+
" x = x.reshape(len(x), -1)\n",
|
1061 |
+
" x = self.lin1(x)\n",
|
1062 |
+
" # b = self.blin1(x)\n",
|
1063 |
+
" # b = self.upsampler(b.reshape(len(b), -1, 7, 7))\n",
|
1064 |
+
" c = self.clip_proj(x.reshape(len(x), -1, self.clip_size))\n",
|
1065 |
+
" # return c, b\n",
|
1066 |
+
" return c\n",
|
1067 |
+
"\n",
|
1068 |
+
"model.backbone = BrainNetwork(h=2048, in_dim=hidden_dim, clip_size=clip_emb_dim, out_dim=clip_emb_dim*clip_seq_dim, blurry_dim=64*7*7) \n",
|
1069 |
+
"utils.count_params(model.backbone)\n",
|
1070 |
+
"utils.count_params(model)\n",
|
1071 |
+
"\n",
|
1072 |
+
"b = torch.randn((4,hidden_dim))\n",
|
1073 |
+
"print(b.shape)\n",
|
1074 |
+
"clip_ = model.backbone(b)\n",
|
1075 |
+
"print(clip_.shape)"
|
1076 |
+
]
|
1077 |
+
},
|
1078 |
+
{
|
1079 |
+
"cell_type": "code",
|
1080 |
+
"execution_count": 44,
|
1081 |
+
"id": "e14d0482-dc42-43b9-9ce1-953c32f2c9c1",
|
1082 |
+
"metadata": {
|
1083 |
+
"tags": []
|
1084 |
+
},
|
1085 |
+
"outputs": [
|
1086 |
+
{
|
1087 |
+
"name": "stdout",
|
1088 |
+
"output_type": "stream",
|
1089 |
+
"text": [
|
1090 |
+
"\n",
|
1091 |
+
"Done with model preparations!\n",
|
1092 |
+
"param counts:\n",
|
1093 |
+
"804,634,112 total\n",
|
1094 |
+
"804,634,112 trainable\n"
|
1095 |
+
]
|
1096 |
+
}
|
1097 |
+
],
|
1098 |
+
"source": [
|
1099 |
+
"no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']\n",
|
1100 |
+
"opt_grouped_parameters = [\n",
|
1101 |
+
" {'params': [p for n, p in model.ridge.named_parameters()], 'weight_decay': 1e-2},\n",
|
1102 |
+
" {'params': [p for n, p in model.backbone.named_parameters() if not any(nd in n for nd in no_decay)], 'weight_decay': 1e-2},\n",
|
1103 |
+
" {'params': [p for n, p in model.backbone.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0},\n",
|
1104 |
+
"]\n",
|
1105 |
+
"\n",
|
1106 |
+
"optimizer = torch.optim.AdamW(opt_grouped_parameters, lr=max_lr, betas=(0.9, 0.95))\n",
|
1107 |
+
"\n",
|
1108 |
+
"if lr_scheduler_type == 'linear':\n",
|
1109 |
+
" lr_scheduler = torch.optim.lr_scheduler.LinearLR(\n",
|
1110 |
+
" optimizer,\n",
|
1111 |
+
" total_iters=int(num_epochs*(num_train*num_devices//batch_size)),\n",
|
1112 |
+
" last_epoch=-1\n",
|
1113 |
+
" )\n",
|
1114 |
+
"elif lr_scheduler_type == 'cycle':\n",
|
1115 |
+
" total_steps=int(num_epochs*(num_train*num_devices//batch_size))\n",
|
1116 |
+
" lr_scheduler = torch.optim.lr_scheduler.OneCycleLR(\n",
|
1117 |
+
" optimizer, \n",
|
1118 |
+
" max_lr=max_lr,\n",
|
1119 |
+
" total_steps=total_steps,\n",
|
1120 |
+
" final_div_factor=1000,\n",
|
1121 |
+
" last_epoch=-1, pct_start=2/num_epochs\n",
|
1122 |
+
" )\n",
|
1123 |
+
" \n",
|
1124 |
+
"def save_ckpt(tag): \n",
|
1125 |
+
" ckpt_path = outdir+f'/{tag}.pth'\n",
|
1126 |
+
" print(f'saving {ckpt_path}',flush=True)\n",
|
1127 |
+
" unwrapped_model = accelerator.unwrap_model(model)\n",
|
1128 |
+
" try:\n",
|
1129 |
+
" torch.save({\n",
|
1130 |
+
" 'epoch': epoch,\n",
|
1131 |
+
" 'model_state_dict': unwrapped_model.state_dict(),\n",
|
1132 |
+
" 'optimizer_state_dict': optimizer.state_dict(),\n",
|
1133 |
+
" 'lr_scheduler': lr_scheduler.state_dict(),\n",
|
1134 |
+
" 'train_losses': losses,\n",
|
1135 |
+
" 'test_losses': test_losses,\n",
|
1136 |
+
" 'lrs': lrs,\n",
|
1137 |
+
" }, ckpt_path)\n",
|
1138 |
+
" except:\n",
|
1139 |
+
" print(\"Couldn't save... moving on to prevent crashing.\")\n",
|
1140 |
+
" del unwrapped_model\n",
|
1141 |
+
" \n",
|
1142 |
+
"print(\"\\nDone with model preparations!\")\n",
|
1143 |
+
"utils.count_params(model)"
|
1144 |
+
]
|
1145 |
+
},
|
1146 |
+
{
|
1147 |
+
"cell_type": "markdown",
|
1148 |
+
"id": "983f458b-35b8-49f2-b6db-80296cece730",
|
1149 |
+
"metadata": {},
|
1150 |
+
"source": [
|
1151 |
+
"# Weights and Biases"
|
1152 |
+
]
|
1153 |
+
},
|
1154 |
+
{
|
1155 |
+
"cell_type": "code",
|
1156 |
+
"execution_count": 32,
|
1157 |
+
"id": "0a25a662-daa8-4de9-9233-8364800fcb6b",
|
1158 |
+
"metadata": {
|
1159 |
+
"tags": []
|
1160 |
+
},
|
1161 |
+
"outputs": [
|
1162 |
+
{
|
1163 |
+
"name": "stdout",
|
1164 |
+
"output_type": "stream",
|
1165 |
+
"text": [
|
1166 |
+
"wandb mindeyev2 run captions\n"
|
1167 |
+
]
|
1168 |
+
},
|
1169 |
+
{
|
1170 |
+
"name": "stderr",
|
1171 |
+
"output_type": "stream",
|
1172 |
+
"text": [
|
1173 |
+
"\u001b[34m\u001b[1mwandb\u001b[0m: Currently logged in as: \u001b[33mckadirt\u001b[0m. Use \u001b[1m`wandb login --relogin`\u001b[0m to force relogin\n"
|
1174 |
+
]
|
1175 |
+
},
|
1176 |
+
{
|
1177 |
+
"name": "stdout",
|
1178 |
+
"output_type": "stream",
|
1179 |
+
"text": [
|
1180 |
+
"wandb_config:\n",
|
1181 |
+
" {'model_name': 'captions', 'batch_size': 128, 'num_epochs': 30, 'use_image_aug': False, 'max_lr': 0.0001, 'lr_scheduler_type': 'cycle', 'mixup_pct': 0.66, 'num_train': 24958, 'num_test': 2770, 'seed': 42, 'distributed': False, 'num_devices': 1, 'world_size': 1}\n"
|
1182 |
+
]
|
1183 |
+
},
|
1184 |
+
{
|
1185 |
+
"data": {
|
1186 |
+
"text/html": [
|
1187 |
+
"wandb version 0.16.0 is available! To upgrade, please run:\n",
|
1188 |
+
" $ pip install wandb --upgrade"
|
1189 |
+
],
|
1190 |
+
"text/plain": [
|
1191 |
+
"<IPython.core.display.HTML object>"
|
1192 |
+
]
|
1193 |
+
},
|
1194 |
+
"metadata": {},
|
1195 |
+
"output_type": "display_data"
|
1196 |
+
},
|
1197 |
+
{
|
1198 |
+
"data": {
|
1199 |
+
"text/html": [
|
1200 |
+
"Tracking run with wandb version 0.15.5"
|
1201 |
+
],
|
1202 |
+
"text/plain": [
|
1203 |
+
"<IPython.core.display.HTML object>"
|
1204 |
+
]
|
1205 |
+
},
|
1206 |
+
"metadata": {},
|
1207 |
+
"output_type": "display_data"
|
1208 |
+
},
|
1209 |
+
{
|
1210 |
+
"data": {
|
1211 |
+
"text/html": [
|
1212 |
+
"Run data is saved locally in <code>/fsx/proj-fmri/ckadirt/MindEyeV2/src/wandb/run-20231119_163615-o1xwsqre</code>"
|
1213 |
+
],
|
1214 |
+
"text/plain": [
|
1215 |
+
"<IPython.core.display.HTML object>"
|
1216 |
+
]
|
1217 |
+
},
|
1218 |
+
"metadata": {},
|
1219 |
+
"output_type": "display_data"
|
1220 |
+
},
|
1221 |
+
{
|
1222 |
+
"data": {
|
1223 |
+
"text/html": [
|
1224 |
+
"Syncing run <strong><a href='https://stability.wandb.io/ckadirt/mindeyev2/runs/o1xwsqre' target=\"_blank\">captions</a></strong> to <a href='https://stability.wandb.io/ckadirt/mindeyev2' target=\"_blank\">Weights & Biases</a> (<a href='https://wandb.me/run' target=\"_blank\">docs</a>)<br/>"
|
1225 |
+
],
|
1226 |
+
"text/plain": [
|
1227 |
+
"<IPython.core.display.HTML object>"
|
1228 |
+
]
|
1229 |
+
},
|
1230 |
+
"metadata": {},
|
1231 |
+
"output_type": "display_data"
|
1232 |
+
},
|
1233 |
+
{
|
1234 |
+
"data": {
|
1235 |
+
"text/html": [
|
1236 |
+
" View project at <a href='https://stability.wandb.io/ckadirt/mindeyev2' target=\"_blank\">https://stability.wandb.io/ckadirt/mindeyev2</a>"
|
1237 |
+
],
|
1238 |
+
"text/plain": [
|
1239 |
+
"<IPython.core.display.HTML object>"
|
1240 |
+
]
|
1241 |
+
},
|
1242 |
+
"metadata": {},
|
1243 |
+
"output_type": "display_data"
|
1244 |
+
},
|
1245 |
+
{
|
1246 |
+
"data": {
|
1247 |
+
"text/html": [
|
1248 |
+
" View run at <a href='https://stability.wandb.io/ckadirt/mindeyev2/runs/o1xwsqre' target=\"_blank\">https://stability.wandb.io/ckadirt/mindeyev2/runs/o1xwsqre</a>"
|
1249 |
+
],
|
1250 |
+
"text/plain": [
|
1251 |
+
"<IPython.core.display.HTML object>"
|
1252 |
+
]
|
1253 |
+
},
|
1254 |
+
"metadata": {},
|
1255 |
+
"output_type": "display_data"
|
1256 |
+
}
|
1257 |
+
],
|
1258 |
+
"source": [
|
1259 |
+
"# params for wandb\n",
|
1260 |
+
"if local_rank==0 and True: # only use main process for wandb logging\n",
|
1261 |
+
" import wandb\n",
|
1262 |
+
" \n",
|
1263 |
+
" wandb_project = 'mindeyev2'\n",
|
1264 |
+
" wandb_run = model_name\n",
|
1265 |
+
" wandb_notes = ''\n",
|
1266 |
+
" \n",
|
1267 |
+
" print(f\"wandb {wandb_project} run {wandb_run}\")\n",
|
1268 |
+
" wandb.login(host='https://stability.wandb.io')#, relogin=True)\n",
|
1269 |
+
" wandb_config = {\n",
|
1270 |
+
" \"model_name\": model_name,\n",
|
1271 |
+
" \"batch_size\": batch_size,\n",
|
1272 |
+
" \"num_epochs\": num_epochs,\n",
|
1273 |
+
" \"use_image_aug\": use_image_aug,\n",
|
1274 |
+
" \"max_lr\": max_lr,\n",
|
1275 |
+
" \"lr_scheduler_type\": lr_scheduler_type,\n",
|
1276 |
+
" \"mixup_pct\": mixup_pct,\n",
|
1277 |
+
" \"num_train\": num_train,\n",
|
1278 |
+
" \"num_test\": num_test,\n",
|
1279 |
+
" \"seed\": seed,\n",
|
1280 |
+
" \"distributed\": distributed,\n",
|
1281 |
+
" \"num_devices\": num_devices,\n",
|
1282 |
+
" \"world_size\": world_size,\n",
|
1283 |
+
" }\n",
|
1284 |
+
" print(\"wandb_config:\\n\",wandb_config)\n",
|
1285 |
+
" if False: # wandb_auto_resume\n",
|
1286 |
+
" print(\"wandb_id:\",model_name)\n",
|
1287 |
+
" wandb.init(\n",
|
1288 |
+
" id = model_name,\n",
|
1289 |
+
" project=wandb_project,\n",
|
1290 |
+
" name=wandb_run,\n",
|
1291 |
+
" config=wandb_config,\n",
|
1292 |
+
" notes=wandb_notes,\n",
|
1293 |
+
" resume=\"allow\",\n",
|
1294 |
+
" )\n",
|
1295 |
+
" else:\n",
|
1296 |
+
" wandb.init(\n",
|
1297 |
+
" project=wandb_project,\n",
|
1298 |
+
" name=wandb_run,\n",
|
1299 |
+
" config=wandb_config,\n",
|
1300 |
+
" notes=wandb_notes,\n",
|
1301 |
+
" )\n",
|
1302 |
+
"else:\n",
|
1303 |
+
" wandb_log = False"
|
1304 |
+
]
|
1305 |
+
},
|
1306 |
+
{
|
1307 |
+
"cell_type": "code",
|
1308 |
+
"execution_count": 33,
|
1309 |
+
"id": "4e5de216-5318-4b45-ac02-113f03105adc",
|
1310 |
+
"metadata": {},
|
1311 |
+
"outputs": [
|
1312 |
+
{
|
1313 |
+
"data": {
|
1314 |
+
"text/html": [
|
1315 |
+
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"color: #ff0000; text-decoration-color: #ff0000\">╭──────────────────────────────────────────────────────────────────────────────────────────────────╮</span>\n",
|
1316 |
+
"<span style=\"color: #ff0000; text-decoration-color: #ff0000\">│</span> n++ <span style=\"color: #ff0000; text-decoration-color: #ff0000\">│</span>\n",
|
1317 |
+
"<span style=\"color: #ff0000; text-decoration-color: #ff0000\">│</span> <span style=\"color: #ff0000; text-decoration-color: #ff0000; font-weight: bold\">▲</span> <span style=\"color: #ff0000; text-decoration-color: #ff0000\">│</span>\n",
|
1318 |
+
"<span style=\"color: #ff0000; text-decoration-color: #ff0000\">╰───────────────────────────────────────────────────────────────────────────────���──────────────────╯</span>\n",
|
1319 |
+
"<span style=\"color: #ff0000; text-decoration-color: #ff0000; font-weight: bold\">SyntaxError: </span>invalid syntax\n",
|
1320 |
+
"</pre>\n"
|
1321 |
+
],
|
1322 |
+
"text/plain": [
|
1323 |
+
"\u001b[91m╭──────────────────────────────────────────────────────────────────────────────────────────────────╮\u001b[0m\n",
|
1324 |
+
"\u001b[91m│\u001b[0m n++ \u001b[91m│\u001b[0m\n",
|
1325 |
+
"\u001b[91m│\u001b[0m \u001b[1;91m▲\u001b[0m \u001b[91m│\u001b[0m\n",
|
1326 |
+
"\u001b[91m╰──────────────────────────────────────────────────────────────────────────────────────────────────╯\u001b[0m\n",
|
1327 |
+
"\u001b[1;91mSyntaxError: \u001b[0minvalid syntax\n"
|
1328 |
+
]
|
1329 |
+
},
|
1330 |
+
"metadata": {},
|
1331 |
+
"output_type": "display_data"
|
1332 |
+
}
|
1333 |
+
],
|
1334 |
+
"source": []
|
1335 |
+
},
|
1336 |
+
{
|
1337 |
+
"cell_type": "markdown",
|
1338 |
+
"id": "5b0ae095-3203-4eb8-8606-acc2db6ccf20",
|
1339 |
+
"metadata": {},
|
1340 |
+
"source": [
|
1341 |
+
"# More custom functions"
|
1342 |
+
]
|
1343 |
+
},
|
1344 |
+
{
|
1345 |
+
"cell_type": "code",
|
1346 |
+
"execution_count": 34,
|
1347 |
+
"id": "827ead88-7eb3-47cc-82da-31565063b927",
|
1348 |
+
"metadata": {
|
1349 |
+
"tags": []
|
1350 |
+
},
|
1351 |
+
"outputs": [],
|
1352 |
+
"source": [
|
1353 |
+
"# using the same preprocessing as was used in MindEye + BrainDiffuser\n",
|
1354 |
+
"pixcorr_preprocess = transforms.Compose([\n",
|
1355 |
+
" transforms.Resize(425, interpolation=transforms.InterpolationMode.BILINEAR),\n",
|
1356 |
+
"])\n",
|
1357 |
+
"def pixcorr(images,brains):\n",
|
1358 |
+
" # Flatten images while keeping the batch dimension\n",
|
1359 |
+
" all_images_flattened = pixcorr_preprocess(images).reshape(len(images), -1)\n",
|
1360 |
+
" all_brain_recons_flattened = pixcorr_preprocess(brains).view(len(brains), -1)\n",
|
1361 |
+
" corrmean = torch.diag(utils.batchwise_pearson_correlation(all_images_flattened, all_brain_recons_flattened)).mean()\n",
|
1362 |
+
" return corrmean"
|
1363 |
+
]
|
1364 |
+
},
|
1365 |
+
{
|
1366 |
+
"cell_type": "markdown",
|
1367 |
+
"id": "d5690151-2131-4918-b750-e869cbd1a8a8",
|
1368 |
+
"metadata": {},
|
1369 |
+
"source": [
|
1370 |
+
"# Main"
|
1371 |
+
]
|
1372 |
+
},
|
1373 |
+
{
|
1374 |
+
"cell_type": "code",
|
1375 |
+
"execution_count": 51,
|
1376 |
+
"id": "12de6387-6e18-4e4b-b5ce-a847d625330a",
|
1377 |
+
"metadata": {
|
1378 |
+
"tags": []
|
1379 |
+
},
|
1380 |
+
"outputs": [],
|
1381 |
+
"source": [
|
1382 |
+
"epoch = 0\n",
|
1383 |
+
"losses, test_losses, lrs = [], [], []\n",
|
1384 |
+
"best_test_loss = 1e9\n",
|
1385 |
+
"soft_loss_temps = utils.cosine_anneal(0.004, 0.0075, num_epochs - int(mixup_pct * num_epochs))\n",
|
1386 |
+
"\n",
|
1387 |
+
"# Optionally resume from checkpoint #\n",
|
1388 |
+
"if resume_from_ckpt:\n",
|
1389 |
+
" print(\"\\n---resuming from last.pth ckpt---\\n\")\n",
|
1390 |
+
" try:\n",
|
1391 |
+
" checkpoint = torch.load(outdir+'/last.pth', map_location='cpu')\n",
|
1392 |
+
" except:\n",
|
1393 |
+
" print('last.pth failed... trying last_backup.pth')\n",
|
1394 |
+
" checkpoint = torch.load(outdir+'/last_backup.pth', map_location='cpu')\n",
|
1395 |
+
" epoch = checkpoint['epoch']\n",
|
1396 |
+
" print(\"Epoch\",epoch)\n",
|
1397 |
+
" optimizer.load_state_dict(checkpoint['optimizer_state_dict'])\n",
|
1398 |
+
" lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])\n",
|
1399 |
+
" diffusion_diffuser.load_state_dict(checkpoint['model_state_dict'])\n",
|
1400 |
+
" del checkpoint\n",
|
1401 |
+
"elif wandb_log:\n",
|
1402 |
+
" if wandb.run.resumed:\n",
|
1403 |
+
" print(\"\\n---resuming from last.pth ckpt---\\n\")\n",
|
1404 |
+
" try:\n",
|
1405 |
+
" checkpoint = torch.load(outdir+'/last.pth', map_location='cpu')\n",
|
1406 |
+
" except:\n",
|
1407 |
+
" print('last.pth failed... trying last_backup.pth')\n",
|
1408 |
+
" checkpoint = torch.load(outdir+'/last_backup.pth', map_location='cpu')\n",
|
1409 |
+
" epoch = checkpoint['epoch']\n",
|
1410 |
+
" print(\"Epoch\",epoch)\n",
|
1411 |
+
" optimizer.load_state_dict(checkpoint['optimizer_state_dict'])\n",
|
1412 |
+
" lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])\n",
|
1413 |
+
" diffusion_diffuser.load_state_dict(checkpoint['model_state_dict'])\n",
|
1414 |
+
" del checkpoint\n",
|
1415 |
+
"torch.cuda.empty_cache()"
|
1416 |
+
]
|
1417 |
+
},
|
1418 |
+
{
|
1419 |
+
"cell_type": "code",
|
1420 |
+
"execution_count": 36,
|
1421 |
+
"id": "b4755749-2d99-4e98-ad98-3df661746058",
|
1422 |
+
"metadata": {
|
1423 |
+
"tags": []
|
1424 |
+
},
|
1425 |
+
"outputs": [],
|
1426 |
+
"source": [
|
1427 |
+
"checkpoint = torch.load('/fsx/proj-fmri/ckadirt/MindEyeV2/train_logs/caption_clip_0.5_bz/last.pth', map_location='cpu')"
|
1428 |
+
]
|
1429 |
+
},
|
1430 |
+
{
|
1431 |
+
"cell_type": "code",
|
1432 |
+
"execution_count": 45,
|
1433 |
+
"id": "cd3dc793-5a20-4b48-959c-bc64430c8c02",
|
1434 |
+
"metadata": {
|
1435 |
+
"tags": []
|
1436 |
+
},
|
1437 |
+
"outputs": [
|
1438 |
+
{
|
1439 |
+
"data": {
|
1440 |
+
"text/plain": [
|
1441 |
+
"<All keys matched successfully>"
|
1442 |
+
]
|
1443 |
+
},
|
1444 |
+
"execution_count": 45,
|
1445 |
+
"metadata": {},
|
1446 |
+
"output_type": "execute_result"
|
1447 |
+
}
|
1448 |
+
],
|
1449 |
+
"source": [
|
1450 |
+
"model.load_state_dict(checkpoint['model_state_dict'])"
|
1451 |
+
]
|
1452 |
+
},
|
1453 |
+
{
|
1454 |
+
"cell_type": "code",
|
1455 |
+
"execution_count": 46,
|
1456 |
+
"id": "0faa2c6a-00da-4b66-b5e5-8c4864768805",
|
1457 |
+
"metadata": {
|
1458 |
+
"tags": []
|
1459 |
+
},
|
1460 |
+
"outputs": [
|
1461 |
+
{
|
1462 |
+
"data": {
|
1463 |
+
"text/plain": [
|
1464 |
+
"MindEyeModule(\n",
|
1465 |
+
" (ridge): RidgeRegression(\n",
|
1466 |
+
" (linear): Linear(in_features=15729, out_features=2048, bias=True)\n",
|
1467 |
+
" )\n",
|
1468 |
+
" (backbone): BrainNetwork(\n",
|
1469 |
+
" (lin0): Linear(in_features=2048, out_features=2048, bias=True)\n",
|
1470 |
+
" (mlp): ModuleList(\n",
|
1471 |
+
" (0-3): 4 x Sequential(\n",
|
1472 |
+
" (0): Linear(in_features=2048, out_features=2048, bias=True)\n",
|
1473 |
+
" (1): LayerNorm((2048,), eps=1e-05, elementwise_affine=True)\n",
|
1474 |
+
" (2): GELU(approximate='none')\n",
|
1475 |
+
" (3): Dropout(p=0.15, inplace=False)\n",
|
1476 |
+
" )\n",
|
1477 |
+
" )\n",
|
1478 |
+
" (lin1): Linear(in_features=2048, out_features=361856, bias=True)\n",
|
1479 |
+
" (clip_proj): Sequential(\n",
|
1480 |
+
" (0): LayerNorm((1408,), eps=1e-05, elementwise_affine=True)\n",
|
1481 |
+
" (1): GELU(approximate='none')\n",
|
1482 |
+
" (2): Linear(in_features=1408, out_features=2048, bias=True)\n",
|
1483 |
+
" (3): LayerNorm((2048,), eps=1e-05, elementwise_affine=True)\n",
|
1484 |
+
" (4): GELU(approximate='none')\n",
|
1485 |
+
" (5): Linear(in_features=2048, out_features=2048, bias=True)\n",
|
1486 |
+
" (6): LayerNorm((2048,), eps=1e-05, elementwise_affine=True)\n",
|
1487 |
+
" (7): GELU(approximate='none')\n",
|
1488 |
+
" (8): Linear(in_features=2048, out_features=1408, bias=True)\n",
|
1489 |
+
" )\n",
|
1490 |
+
" )\n",
|
1491 |
+
")"
|
1492 |
+
]
|
1493 |
+
},
|
1494 |
+
"execution_count": 46,
|
1495 |
+
"metadata": {},
|
1496 |
+
"output_type": "execute_result"
|
1497 |
+
}
|
1498 |
+
],
|
1499 |
+
"source": [
|
1500 |
+
"model"
|
1501 |
+
]
|
1502 |
+
},
|
1503 |
+
{
|
1504 |
+
"cell_type": "code",
|
1505 |
+
"execution_count": 47,
|
1506 |
+
"id": "99f09f76-4481-4133-b09a-a22b10dbc0c4",
|
1507 |
+
"metadata": {
|
1508 |
+
"tags": []
|
1509 |
+
},
|
1510 |
+
"outputs": [],
|
1511 |
+
"source": [
|
1512 |
+
"model, optimizer, train_dl, test_dl, lr_scheduler = accelerator.prepare(\n",
|
1513 |
+
"model, optimizer, train_dl, test_dl, lr_scheduler\n",
|
1514 |
+
")"
|
1515 |
+
]
|
1516 |
+
},
|
1517 |
+
{
|
1518 |
+
"cell_type": "code",
|
1519 |
+
"execution_count": null,
|
1520 |
+
"id": "bfeeda32-82ca-4364-bce1-eaa41b4f3e25",
|
1521 |
+
"metadata": {
|
1522 |
+
"tags": []
|
1523 |
+
},
|
1524 |
+
"outputs": [],
|
1525 |
+
"source": [
|
1526 |
+
"\"\"\"transform = transforms.Compose(\n",
|
1527 |
+
" [\n",
|
1528 |
+
" transforms.Resize(\n",
|
1529 |
+
" (224, 224),\n",
|
1530 |
+
" ),\n",
|
1531 |
+
" transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)),\n",
|
1532 |
+
" ]\n",
|
1533 |
+
" )\n",
|
1534 |
+
"\n",
|
1535 |
+
"def tensor_2_embed(image): \n",
|
1536 |
+
" image_for_blip2 = transform(image)\n",
|
1537 |
+
" \n",
|
1538 |
+
" #Generate embeddings\n",
|
1539 |
+
" with blip2_model.maybe_autocast():\n",
|
1540 |
+
" blip2_target = blip2_model.ln_vision(blip2_model.visual_encoder(image_for_blip2))\n",
|
1541 |
+
" \n",
|
1542 |
+
" return blip2_target\n",
|
1543 |
+
"\n",
|
1544 |
+
"def embed_2_caption(image_embeds, model):\n",
|
1545 |
+
" image_embeds = image_embeds.float()\n",
|
1546 |
+
" image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(\n",
|
1547 |
+
" image.device)\n",
|
1548 |
+
"\n",
|
1549 |
+
" query_tokens = model.query_tokens.expand(image_embeds.shape[0], -1, -1)\n",
|
1550 |
+
" query_output = model.Qformer.bert(\n",
|
1551 |
+
" query_embeds=query_tokens,\n",
|
1552 |
+
" encoder_hidden_states=image_embeds,\n",
|
1553 |
+
" encoder_attention_mask=image_atts,\n",
|
1554 |
+
" return_dict=True)\n",
|
1555 |
+
"\n",
|
1556 |
+
" inputs_t5 = model.t5_proj(query_output.last_hidden_state)\n",
|
1557 |
+
" atts_t5 = torch.ones(inputs_t5.size()[:-1], dtype=torch.long).to(image.device)\n",
|
1558 |
+
" prompt = model.prompt\n",
|
1559 |
+
" input_tokens = model.t5_tokenizer(\n",
|
1560 |
+
" prompt, padding=\"longest\", return_tensors=\"pt\"\n",
|
1561 |
+
" ).to(image.device)\n",
|
1562 |
+
" encoder_atts = torch.cat([atts_t5, input_tokens.attention_mask], dim=1)\n",
|
1563 |
+
" \n",
|
1564 |
+
" with model.maybe_autocast(dtype=torch.bfloat16):\n",
|
1565 |
+
" inputs_embeds = model.t5_model.encoder.embed_tokens(input_tokens.input_ids)\n",
|
1566 |
+
" inputs_embeds = torch.cat([inputs_t5, inputs_embeds], dim=1)\n",
|
1567 |
+
"\n",
|
1568 |
+
" outputs = model.t5_model.generate(\n",
|
1569 |
+
" inputs_embeds=inputs_embeds,\n",
|
1570 |
+
" attention_mask=encoder_atts)\n",
|
1571 |
+
" output_text = model.t5_tokenizer.batch_decode(\n",
|
1572 |
+
" outputs, skip_special_tokens=True)\n",
|
1573 |
+
" \n",
|
1574 |
+
" return output_text\"\"\""
|
1575 |
+
]
|
1576 |
+
},
|
1577 |
+
{
|
1578 |
+
"cell_type": "code",
|
1579 |
+
"execution_count": 48,
|
1580 |
+
"id": "636b4684-df9a-4e29-8683-86fb035ba690",
|
1581 |
+
"metadata": {
|
1582 |
+
"tags": []
|
1583 |
+
},
|
1584 |
+
"outputs": [],
|
1585 |
+
"source": [
|
1586 |
+
"wandb_log = False"
|
1587 |
+
]
|
1588 |
+
},
|
1589 |
+
{
|
1590 |
+
"cell_type": "code",
|
1591 |
+
"execution_count": 49,
|
1592 |
+
"id": "0847b380-2edb-4a56-9b33-fdc4c0c3f8d3",
|
1593 |
+
"metadata": {
|
1594 |
+
"tags": []
|
1595 |
+
},
|
1596 |
+
"outputs": [],
|
1597 |
+
"source": [
|
1598 |
+
"predicted_embeddings = None"
|
1599 |
+
]
|
1600 |
+
},
|
1601 |
+
{
|
1602 |
+
"cell_type": "code",
|
1603 |
+
"execution_count": 52,
|
1604 |
+
"id": "60be0d5f-3e94-4612-9373-61b53d836393",
|
1605 |
+
"metadata": {
|
1606 |
+
"tags": []
|
1607 |
+
},
|
1608 |
+
"outputs": [
|
1609 |
+
{
|
1610 |
+
"name": "stdout",
|
1611 |
+
"output_type": "stream",
|
1612 |
+
"text": [
|
1613 |
+
"captions starting with epoch 0 / 30\n"
|
1614 |
+
]
|
1615 |
+
},
|
1616 |
+
{
|
1617 |
+
"name": "stderr",
|
1618 |
+
"output_type": "stream",
|
1619 |
+
"text": [
|
1620 |
+
" 0%| | 0/30 [00:17<?, ?it/s]"
|
1621 |
+
]
|
1622 |
+
},
|
1623 |
+
{
|
1624 |
+
"name": "stdout",
|
1625 |
+
"output_type": "stream",
|
1626 |
+
"text": [
|
1627 |
+
"\n",
|
1628 |
+
"===Finished!===\n",
|
1629 |
+
"\n",
|
1630 |
+
"saving /fsx/proj-fmri/ckadirt/MindEyeV2/train_logs/captions/last.pth\n"
|
1631 |
+
]
|
1632 |
+
},
|
1633 |
+
{
|
1634 |
+
"name": "stderr",
|
1635 |
+
"output_type": "stream",
|
1636 |
+
"text": [
|
1637 |
+
"\n"
|
1638 |
+
]
|
1639 |
+
}
|
1640 |
+
],
|
1641 |
+
"source": [
|
1642 |
+
"print(f\"{model_name} starting with epoch {epoch} / {num_epochs}\")\n",
|
1643 |
+
"progress_bar = tqdm(range(epoch,num_epochs), ncols=1200, disable=(local_rank!=0))\n",
|
1644 |
+
"test_image, test_voxel = None, None\n",
|
1645 |
+
"mse = nn.MSELoss()\n",
|
1646 |
+
"for epoch in progress_bar:\n",
|
1647 |
+
" model.train()\n",
|
1648 |
+
" \n",
|
1649 |
+
" fwd_percent_correct = 0.\n",
|
1650 |
+
" bwd_percent_correct = 0.\n",
|
1651 |
+
" test_fwd_percent_correct = 0.\n",
|
1652 |
+
" test_bwd_percent_correct = 0.\n",
|
1653 |
+
"\n",
|
1654 |
+
" loss_clip_total = 0.\n",
|
1655 |
+
" loss_blurry_total = 0.\n",
|
1656 |
+
" test_loss_clip_total = 0.\n",
|
1657 |
+
" test_loss_blurry_total = 0.\n",
|
1658 |
+
"\n",
|
1659 |
+
" blurry_pixcorr = 0.\n",
|
1660 |
+
" test_blurry_pixcorr = 0. # needs >.456 to beat low-level subj01 results in mindeye v1\n",
|
1661 |
+
" \n",
|
1662 |
+
" \"\"\"for train_i, (behav, past_behav, future_behav, old_behav) in enumerate(train_dl):\n",
|
1663 |
+
" if epoch == 0:\n",
|
1664 |
+
" lrs.append(0)\n",
|
1665 |
+
" break\n",
|
1666 |
+
" with torch.cuda.amp.autocast():\n",
|
1667 |
+
" optimizer.zero_grad()\n",
|
1668 |
+
"\n",
|
1669 |
+
" voxel = voxels[behav[:,0,5].cpu().long()].to(device)\n",
|
1670 |
+
" \n",
|
1671 |
+
" image = images[behav[:,0,0].cpu().long()].to(device).float()\n",
|
1672 |
+
"\n",
|
1673 |
+
" # blurry_image_enc = autoenc.encode(image).latent_dist.mode()\n",
|
1674 |
+
" \n",
|
1675 |
+
" if use_image_aug: image = img_augment(image)\n",
|
1676 |
+
" # clip_target = clip_model.embed_image(image)\n",
|
1677 |
+
" clip_target = embed_images_b2(image)[0].to(device) #####CHANGED\n",
|
1678 |
+
" assert not torch.any(torch.isnan(clip_target))\n",
|
1679 |
+
" \n",
|
1680 |
+
" if epoch < int(mixup_pct * num_epochs):\n",
|
1681 |
+
" voxel, perm, betas, select = utils.mixco(voxel)\n",
|
1682 |
+
"\n",
|
1683 |
+
" voxel_ridge = model.ridge(voxel)\n",
|
1684 |
+
" \n",
|
1685 |
+
" # clip_voxels, blurry_image_enc_ = model.backbone(voxel_ridge)\n",
|
1686 |
+
" clip_voxels = model.backbone(voxel_ridge)\n",
|
1687 |
+
" \n",
|
1688 |
+
" clip_voxels_norm = nn.functional.normalize(clip_voxels.flatten(1), dim=-1)\n",
|
1689 |
+
" clip_target_norm = nn.functional.normalize(clip_target.flatten(1), dim=-1)\n",
|
1690 |
+
"\n",
|
1691 |
+
" if epoch < int(mixup_pct * num_epochs): \n",
|
1692 |
+
" loss_clip = utils.mixco_nce(\n",
|
1693 |
+
" clip_voxels_norm,\n",
|
1694 |
+
" clip_target_norm,\n",
|
1695 |
+
" temp=.006, \n",
|
1696 |
+
" perm=perm, betas=betas, select=select)\n",
|
1697 |
+
" else:\n",
|
1698 |
+
" epoch_temp = soft_loss_temps[epoch-int(mixup_pct*num_epochs)]\n",
|
1699 |
+
" loss_clip = utils.soft_clip_loss(\n",
|
1700 |
+
" clip_voxels_norm,\n",
|
1701 |
+
" clip_target_norm,\n",
|
1702 |
+
" temp=epoch_temp)\n",
|
1703 |
+
" \n",
|
1704 |
+
" loss_mse= mse(clip_voxels, clip_target)\n",
|
1705 |
+
"\n",
|
1706 |
+
" # loss_blurry = mse(blurry_image_enc_, blurry_image_enc) \n",
|
1707 |
+
"\n",
|
1708 |
+
" loss_clip_total += loss_clip.item()\n",
|
1709 |
+
" # loss_blurry_total += loss_blurry.item()\n",
|
1710 |
+
"\n",
|
1711 |
+
" # loss = loss_blurry + loss_clip\n",
|
1712 |
+
" loss = 0.7 * loss_clip + 0.3 * loss_mse\n",
|
1713 |
+
" if (train_i % 10 == 0):\n",
|
1714 |
+
" print(train_i, loss)\n",
|
1715 |
+
" # print(batch_size)\n",
|
1716 |
+
" utils.check_loss(loss)\n",
|
1717 |
+
" accelerator.backward(loss)\n",
|
1718 |
+
" optimizer.step()\n",
|
1719 |
+
" \n",
|
1720 |
+
" losses.append(loss.item())\n",
|
1721 |
+
" lrs.append(optimizer.param_groups[0]['lr'])\n",
|
1722 |
+
" \n",
|
1723 |
+
" # forward and backward top 1 accuracy \n",
|
1724 |
+
" labels = torch.arange(len(clip_target_norm)).to(clip_voxels_norm.device) \n",
|
1725 |
+
" fwd_percent_correct += utils.topk(utils.batchwise_cosine_similarity(clip_voxels_norm, clip_target_norm), labels, k=1)\n",
|
1726 |
+
" bwd_percent_correct += utils.topk(utils.batchwise_cosine_similarity(clip_target_norm, clip_voxels_norm), labels, k=1)\n",
|
1727 |
+
"\n",
|
1728 |
+
" # with torch.no_grad():\n",
|
1729 |
+
" # # only doing pixcorr eval on a subset (8) of the samples per batch because its costly & slow to compute autoenc.decode()\n",
|
1730 |
+
" # random_samps = np.random.choice(np.arange(len(voxel)), size=8, replace=False)\n",
|
1731 |
+
" # blurry_recon_images = autoenc.decode(blurry_image_enc_[random_samps]).sample.clamp(0,1)\n",
|
1732 |
+
" # blurry_pixcorr += pixcorr(image[random_samps], blurry_recon_images)\n",
|
1733 |
+
"\n",
|
1734 |
+
" if lr_scheduler_type is not None:\n",
|
1735 |
+
" lr_scheduler.step()\"\"\"\n",
|
1736 |
+
" \n",
|
1737 |
+
" model.eval()\n",
|
1738 |
+
" for test_i, (behav, past_behav, future_behav, old_behav) in enumerate(test_dl):\n",
|
1739 |
+
" with torch.cuda.amp.autocast():\n",
|
1740 |
+
" with torch.no_grad(): \n",
|
1741 |
+
" # all test samples should be loaded per batch such that test_i should never exceed 0\n",
|
1742 |
+
" if len(behav) != num_test: print(\"!\",len(behav),num_test)\n",
|
1743 |
+
" \n",
|
1744 |
+
" ## Average same-image repeats ##\n",
|
1745 |
+
" if test_image is None:\n",
|
1746 |
+
" voxel = voxels[behav[:,0,5].cpu().long()].to(device)\n",
|
1747 |
+
" \n",
|
1748 |
+
" image = behav[:,0,0].cpu().long()\n",
|
1749 |
+
" \n",
|
1750 |
+
" unique_image, sort_indices = torch.unique(image, return_inverse=True)\n",
|
1751 |
+
" for im in unique_image:\n",
|
1752 |
+
" locs = torch.where(im == image)[0]\n",
|
1753 |
+
" if test_image is None:\n",
|
1754 |
+
" test_image = images[im][None]\n",
|
1755 |
+
" test_voxel = torch.mean(voxel[locs],axis=0)[None]\n",
|
1756 |
+
" else:\n",
|
1757 |
+
" test_image = torch.vstack((test_image, images[im][None]))\n",
|
1758 |
+
" test_voxel = torch.vstack((test_voxel, torch.mean(voxel[locs],axis=0)[None]))\n",
|
1759 |
+
" \n",
|
1760 |
+
" # sample of batch_size\n",
|
1761 |
+
" random_indices = torch.arange(len(test_voxel))[:batch_size] #torch.randperm(len(test_voxel))[:300]\n",
|
1762 |
+
" voxel = test_voxel[random_indices].to(device)\n",
|
1763 |
+
" image = test_image[random_indices].to(device)\n",
|
1764 |
+
" assert len(image) == batch_size\n",
|
1765 |
+
" \n",
|
1766 |
+
" # blurry_image_enc = autoenc.encode(image).latent_dist.mode()\n",
|
1767 |
+
" \n",
|
1768 |
+
" # clip_target = clip_model.embed_image(image.float())\n",
|
1769 |
+
" clip_target = embed_images_b2(image)[0].to(device) #####CHANGED\n",
|
1770 |
+
" \n",
|
1771 |
+
" voxel_ridge = model.ridge(voxel)\n",
|
1772 |
+
" \n",
|
1773 |
+
" # clip_voxels, blurry_image_enc_ = model.backbone(voxel_ridge)\n",
|
1774 |
+
" clip_voxels = model.backbone(voxel_ridge)\n",
|
1775 |
+
" \n",
|
1776 |
+
" predicted_embeddings = clip_voxels\n",
|
1777 |
+
" break\n",
|
1778 |
+
" \n",
|
1779 |
+
" clip_voxels_norm = nn.functional.normalize(clip_voxels.flatten(1), dim=-1)\n",
|
1780 |
+
" clip_target_norm = nn.functional.normalize(clip_target.flatten(1), dim=-1)\n",
|
1781 |
+
" \n",
|
1782 |
+
" # loss_clip = utils.soft_clip_loss(\n",
|
1783 |
+
" # clip_voxels_norm,\n",
|
1784 |
+
" # clip_target_norm,\n",
|
1785 |
+
" # temp=.006)\n",
|
1786 |
+
" \n",
|
1787 |
+
" loss_clip = mse(clip_voxels, clip_target)\n",
|
1788 |
+
"\n",
|
1789 |
+
" # loss_blurry = mse(blurry_image_enc_, blurry_image_enc)\n",
|
1790 |
+
" \n",
|
1791 |
+
" # loss = loss_blurry + loss_clip\n",
|
1792 |
+
" loss = loss_clip\n",
|
1793 |
+
" \n",
|
1794 |
+
" utils.check_loss(loss)\n",
|
1795 |
+
" \n",
|
1796 |
+
" test_losses.append(loss.item())\n",
|
1797 |
+
" \n",
|
1798 |
+
" # forward and backward top 1 accuracy \n",
|
1799 |
+
" labels = torch.arange(len(clip_target_norm)).to(clip_voxels_norm.device) \n",
|
1800 |
+
" test_fwd_percent_correct += utils.topk(utils.batchwise_cosine_similarity(clip_voxels_norm, clip_target_norm), labels, k=1)\n",
|
1801 |
+
" test_bwd_percent_correct += utils.topk(utils.batchwise_cosine_similarity(clip_target_norm, clip_voxels_norm), labels, k=1)\n",
|
1802 |
+
"\n",
|
1803 |
+
" # # halving the batch size because the decoder is computationally heavy\n",
|
1804 |
+
" # blurry_recon_images = autoenc.decode(blurry_image_enc_[:len(voxel)//2]).sample.clamp(0,1)\n",
|
1805 |
+
" # blurry_recon_images = torch.vstack((blurry_recon_images, autoenc.decode(blurry_image_enc_[len(voxel)//2:]).sample.clamp(0,1)))\n",
|
1806 |
+
" # test_blurry_pixcorr += pixcorr(image, blurry_recon_images)\n",
|
1807 |
+
"\n",
|
1808 |
+
" #Find captions and print next to images\n",
|
1809 |
+
" #caption1 = embed_2_caption(clip_voxels[[0]], blip2_model)\n",
|
1810 |
+
" #caption2 = embed_2_caption(clip_voxels[[1]], blip2_model)\n",
|
1811 |
+
"\n",
|
1812 |
+
" #true_embed1 = tensor_2_embed(image[[0]])\n",
|
1813 |
+
" #true_embed2 = tensor_2_embed(image[[1]])\n",
|
1814 |
+
"\n",
|
1815 |
+
" # print(clip_voxels[[0]].shape)\n",
|
1816 |
+
" # print(true_embed1.shape)\n",
|
1817 |
+
" \n",
|
1818 |
+
" #true_caption1 = embed_2_caption(true_embed1, blip2_model)\n",
|
1819 |
+
" #true_caption2 = embed_2_caption(true_embed2, blip2_model)\n",
|
1820 |
+
" \n",
|
1821 |
+
" # transform blurry recon latents to images and plot it\n",
|
1822 |
+
" #fig, axes = plt.subplots(2, 2, figsize=(8, 4))\n",
|
1823 |
+
" #axes[0,0].imshow(utils.torch_to_Image(image[[0]]))\n",
|
1824 |
+
" #axes[0,1].imshow(utils.torch_to_Image(image[[1]]))\n",
|
1825 |
+
" #axes[0,0].axis('off'); axes[0,1].axis('off'); axes[1,0].axis('off'); axes[1,1].axis('off')\n",
|
1826 |
+
" #axes[0,0].set_title(caption1)\n",
|
1827 |
+
" #axes[0,1].set_title(caption2)\n",
|
1828 |
+
" #axes[1,0].set_title(true_caption1)\n",
|
1829 |
+
" #axes[1,1].set_title(true_caption2)\n",
|
1830 |
+
"\n",
|
1831 |
+
" #plt.show()\n",
|
1832 |
+
" \n",
|
1833 |
+
" # # transform blurry recon latents to images and plot it\n",
|
1834 |
+
" # fig, axes = plt.subplots(1, 4, figsize=(8, 4))\n",
|
1835 |
+
" # axes[0].imshow(utils.torch_to_Image(image[[0]]))\n",
|
1836 |
+
" # axes[1].imshow(utils.torch_to_Image(autoenc.decode(blurry_image_enc_[[0]]).sample.clamp(0,1)))\n",
|
1837 |
+
" # axes[2].imshow(utils.torch_to_Image(image[[1]]))\n",
|
1838 |
+
" # axes[3].imshow(utils.torch_to_Image(autoenc.decode(blurry_image_enc_[[1]]).sample.clamp(0,1)))\n",
|
1839 |
+
" # axes[0].axis('off'); axes[1].axis('off'); axes[2].axis('off'); axes[3].axis('off')\n",
|
1840 |
+
" # axes[0].set_title(caption1)\n",
|
1841 |
+
" # axes[3].set_title(caption2)\n",
|
1842 |
+
" # plt.show()\n",
|
1843 |
+
" \n",
|
1844 |
+
" break\n",
|
1845 |
+
" if local_rank==0: \n",
|
1846 |
+
" # if utils.is_interactive(): clear_output(wait=True)\n",
|
1847 |
+
" assert (test_i+1) == 1\n",
|
1848 |
+
" logs = {\"train/loss\": np.mean(losses[-(train_i+1):]),\n",
|
1849 |
+
" \"test/loss\": np.mean(test_losses[-(test_i+1):]),\n",
|
1850 |
+
" \"train/lr\": lrs[-1],\n",
|
1851 |
+
" \"train/num_steps\": len(losses),\n",
|
1852 |
+
" \"test/num_steps\": len(test_losses),\n",
|
1853 |
+
" \"train/fwd_pct_correct\": fwd_percent_correct / (train_i + 1),\n",
|
1854 |
+
" \"train/bwd_pct_correct\": bwd_percent_correct / (train_i + 1),\n",
|
1855 |
+
" \"test/test_fwd_pct_correct\": test_fwd_percent_correct / (test_i + 1),\n",
|
1856 |
+
" \"test/test_bwd_pct_correct\": test_bwd_percent_correct / (test_i + 1),\n",
|
1857 |
+
" \"train/loss_clip_total\": loss_clip_total / (train_i + 1),\n",
|
1858 |
+
" \"train/loss_blurry_total\": loss_blurry_total / (train_i + 1),\n",
|
1859 |
+
" \"test/loss_clip_total\": test_loss_clip_total / (test_i + 1),\n",
|
1860 |
+
" \"test/loss_blurry_total\": test_loss_blurry_total / (test_i + 1),\n",
|
1861 |
+
" \"train/blurry_pixcorr\": blurry_pixcorr / (train_i + 1),\n",
|
1862 |
+
" \"test/blurry_pixcorr\": test_blurry_pixcorr / (test_i + 1),\n",
|
1863 |
+
" }\n",
|
1864 |
+
" progress_bar.set_postfix(**logs)\n",
|
1865 |
+
" \n",
|
1866 |
+
" fig, axes = plt.subplots(1, 8, figsize=(10, 4))\n",
|
1867 |
+
" jj=-1\n",
|
1868 |
+
" for j in [0,1,2,3,4,5,6,7]:\n",
|
1869 |
+
" jj+=1\n",
|
1870 |
+
" axes[jj].imshow(utils.torch_to_Image(image[j]))\n",
|
1871 |
+
" axes[jj].axis('off')\n",
|
1872 |
+
"\n",
|
1873 |
+
" if wandb_log:\n",
|
1874 |
+
" generated_captions = embeds_to_captions_b2(clip_voxels[0:8])\n",
|
1875 |
+
" print(generated_captions[1])\n",
|
1876 |
+
" logs[f\"test/recons\"] = wandb.Image(fig, caption=f\"epoch{epoch:03d}\" + \"\\n\".join(generated_captions[1]))\n",
|
1877 |
+
" plt.close()\n",
|
1878 |
+
" # Save model checkpoint and reconstruct\n",
|
1879 |
+
" if epoch % ckpt_interval == 0:\n",
|
1880 |
+
" if not utils.is_interactive():\n",
|
1881 |
+
" save_ckpt(f'last')\n",
|
1882 |
+
" \n",
|
1883 |
+
" if wandb_log: wandb.log(logs)\n",
|
1884 |
+
"\n",
|
1885 |
+
" # wait for other GPUs to catch up if needed\n",
|
1886 |
+
" accelerator.wait_for_everyone()\n",
|
1887 |
+
" torch.cuda.empty_cache()\n",
|
1888 |
+
" gc.collect()\n",
|
1889 |
+
"\n",
|
1890 |
+
"print(\"\\n===Finished!===\\n\")\n",
|
1891 |
+
"if ckpt_saving:\n",
|
1892 |
+
" save_ckpt(f'last')\n",
|
1893 |
+
"if not utils.is_interactive():\n",
|
1894 |
+
" sys.exit(0)"
|
1895 |
+
]
|
1896 |
+
},
|
1897 |
+
{
|
1898 |
+
"cell_type": "code",
|
1899 |
+
"execution_count": 54,
|
1900 |
+
"id": "f5b47c76-a97a-48ee-b4b3-051c17aebac4",
|
1901 |
+
"metadata": {
|
1902 |
+
"tags": []
|
1903 |
+
},
|
1904 |
+
"outputs": [
|
1905 |
+
{
|
1906 |
+
"data": {
|
1907 |
+
"text/plain": [
|
1908 |
+
"torch.Size([128, 257, 1408])"
|
1909 |
+
]
|
1910 |
+
},
|
1911 |
+
"execution_count": 54,
|
1912 |
+
"metadata": {},
|
1913 |
+
"output_type": "execute_result"
|
1914 |
+
}
|
1915 |
+
],
|
1916 |
+
"source": [
|
1917 |
+
"predicted_embeddings.shape"
|
1918 |
+
]
|
1919 |
+
},
|
1920 |
+
{
|
1921 |
+
"cell_type": "code",
|
1922 |
+
"execution_count": 55,
|
1923 |
+
"id": "92d0029f-079f-4710-bf43-bc9e3fd08d5e",
|
1924 |
+
"metadata": {
|
1925 |
+
"tags": []
|
1926 |
+
},
|
1927 |
+
"outputs": [
|
1928 |
+
{
|
1929 |
+
"name": "stderr",
|
1930 |
+
"output_type": "stream",
|
1931 |
+
"text": [
|
1932 |
+
"/admin/home-ckadirt/miniconda3/envs/mindeye/lib/python3.10/site-packages/transformers/generation/utils.py:1260: UserWarning: Using the model-agnostic default `max_length` (=20) to control thegeneration length. We recommend setting `max_new_tokens` to control the maximum length of the generation.\n",
|
1933 |
+
" warnings.warn(\n"
|
1934 |
+
]
|
1935 |
+
},
|
1936 |
+
{
|
1937 |
+
"name": "stdout",
|
1938 |
+
"output_type": "stream",
|
1939 |
+
"text": [
|
1940 |
+
"['a group of people are sitting around a table\\n', 'a man is holding a glass of water in front of a television\\n', 'a man is riding a skateboard on a hill\\n', 'a group of people standing around a bike\\n', 'a building with a sign that says \"the house\"\\n', 'a plate of food with vegetables and meat\\n', 'a white cup with a small bottle of wine\\n', 'a group of people playing baseball and one is holding a ball\\n']\n"
|
1941 |
+
]
|
1942 |
+
}
|
1943 |
+
],
|
1944 |
+
"source": [
|
1945 |
+
"generated_captions = embeds_to_captions_b2(predicted_embeddings[0:8])\n",
|
1946 |
+
"print(generated_captions[1])"
|
1947 |
+
]
|
1948 |
+
},
|
1949 |
+
{
|
1950 |
+
"cell_type": "code",
|
1951 |
+
"execution_count": 75,
|
1952 |
+
"id": "88750a6d-0b61-4943-a7e5-1d675bbb4f8f",
|
1953 |
+
"metadata": {
|
1954 |
+
"tags": []
|
1955 |
+
},
|
1956 |
+
"outputs": [
|
1957 |
+
{
|
1958 |
+
"name": "stdout",
|
1959 |
+
"output_type": "stream",
|
1960 |
+
"text": [
|
1961 |
+
"['a group of people are sitting at a table with food and drinks\\n', 'a man in a kitchen with a large screen\\n', 'a man on a surfboard with his legs in the air\\n', 'a group of people are standing on the beach in front of a boat\\n', 'a building with a sign that says \"home of the person\"\\n', 'a vegetable salad with a variety of vegetables and other ingredients\\n', 'a white cup with a small amount of coffee and a bottle of wine\\n', 'a group of people playing baseball and soccer\\n']\n"
|
1962 |
+
]
|
1963 |
+
}
|
1964 |
+
],
|
1965 |
+
"source": [
|
1966 |
+
"generated_captions = embeds_to_captions_b2(predicted_embeddings[0:8], sample = True, temp = 0.3)\n",
|
1967 |
+
"print(generated_captions[1])"
|
1968 |
+
]
|
1969 |
+
},
|
1970 |
+
{
|
1971 |
+
"cell_type": "code",
|
1972 |
+
"execution_count": 95,
|
1973 |
+
"id": "d99e7583-0f26-41c1-8035-a1aa3b1c2d55",
|
1974 |
+
"metadata": {
|
1975 |
+
"tags": []
|
1976 |
+
},
|
1977 |
+
"outputs": [],
|
1978 |
+
"source": [
|
1979 |
+
"def concatenate_lists_any_depth(list1, list2):\n",
|
1980 |
+
" \"\"\"\n",
|
1981 |
+
" Concatenates two lists of potentially varying depths, forming a new list of lists.\n",
|
1982 |
+
"\n",
|
1983 |
+
" Args:\n",
|
1984 |
+
" list1 (list): The first list to concatenate. Elements can be of any type.\n",
|
1985 |
+
" list2 (list): The second list to concatenate. Elements can be of any type.\n",
|
1986 |
+
"\n",
|
1987 |
+
" Returns:\n",
|
1988 |
+
" list: A new list containing lists of elements from the original lists.\n",
|
1989 |
+
" \"\"\"\n",
|
1990 |
+
" # Ensure that both lists have the same length\n",
|
1991 |
+
" if len(list1) != len(list2):\n",
|
1992 |
+
" raise ValueError(\"Lists must be of the same length\")\n",
|
1993 |
+
"\n",
|
1994 |
+
" concatenated_list = []\n",
|
1995 |
+
"\n",
|
1996 |
+
" for a, b in zip(list1, list2):\n",
|
1997 |
+
" # If the elements are not lists, convert them to lists\n",
|
1998 |
+
" if not isinstance(a, list):\n",
|
1999 |
+
" a = [a]\n",
|
2000 |
+
" if not isinstance(b, list):\n",
|
2001 |
+
" b = [b]\n",
|
2002 |
+
"\n",
|
2003 |
+
" # Concatenate the lists\n",
|
2004 |
+
" concatenated_list.append(a + b)\n",
|
2005 |
+
"\n",
|
2006 |
+
" return concatenated_list"
|
2007 |
+
]
|
2008 |
+
},
|
2009 |
+
{
|
2010 |
+
"cell_type": "code",
|
2011 |
+
"execution_count": 96,
|
2012 |
+
"id": "ed8167ea-a3ab-438a-aa85-f1309047199c",
|
2013 |
+
"metadata": {
|
2014 |
+
"tags": []
|
2015 |
+
},
|
2016 |
+
"outputs": [],
|
2017 |
+
"source": [
|
2018 |
+
"def sample_several(embeddings, num=10, temp=0.3):\n",
|
2019 |
+
" # embeddings shape = batch, 257, 1408\n",
|
2020 |
+
" results = None # Initialize results as None\n",
|
2021 |
+
"\n",
|
2022 |
+
" for i in range(num): # Iterate from 0 to num-1\n",
|
2023 |
+
" if results is None:\n",
|
2024 |
+
" # For the first iteration, assign the results directly\n",
|
2025 |
+
" results = embeds_to_captions_b2(embeddings, sample=True, temp=temp)[1]\n",
|
2026 |
+
" else:\n",
|
2027 |
+
" # For subsequent iterations, combine the new results with the existing ones\n",
|
2028 |
+
" new_results = embeds_to_captions_b2(embeddings, sample=True, temp=temp)[1]\n",
|
2029 |
+
" results = concatenate_lists_any_depth(results, new_results)\n",
|
2030 |
+
"\n",
|
2031 |
+
" return results # Return the combined results\n"
|
2032 |
+
]
|
2033 |
+
},
|
2034 |
+
{
|
2035 |
+
"cell_type": "code",
|
2036 |
+
"execution_count": 77,
|
2037 |
+
"id": "6700e130-8ae4-4475-a5b4-972fd8b9717a",
|
2038 |
+
"metadata": {
|
2039 |
+
"tags": []
|
2040 |
+
},
|
2041 |
+
"outputs": [
|
2042 |
+
{
|
2043 |
+
"name": "stdout",
|
2044 |
+
"output_type": "stream",
|
2045 |
+
"text": [
|
2046 |
+
"['a group of people sitting on a bench in front of a building\\n', 'a woman is using a computer to make a video\\n', 'a man in a black shirt is sitting on a surfboard\\n', 'a group of people on the beach with a bike and some other things\\n', 'a large building with a sign that says \"the old farmhouse\"\\n', 'a plate with many different types of vegetables\\n', 'a white cup with a bottle of wine and a small bottle of wine\\n', 'a group of people are playing baseball in a field\\n']\n"
|
2047 |
+
]
|
2048 |
+
}
|
2049 |
+
],
|
2050 |
+
"source": [
|
2051 |
+
"generated_captions = embeds_to_captions_b2(predicted_embeddings[0:8], sample = True, temp = 0.3)\n",
|
2052 |
+
"print(generated_captions[1])"
|
2053 |
+
]
|
2054 |
+
},
|
2055 |
+
{
|
2056 |
+
"cell_type": "code",
|
2057 |
+
"execution_count": 99,
|
2058 |
+
"id": "f0e111e3-6134-4a63-a6d7-17b3441be8c8",
|
2059 |
+
"metadata": {
|
2060 |
+
"tags": []
|
2061 |
+
},
|
2062 |
+
"outputs": [
|
2063 |
+
{
|
2064 |
+
"data": {
|
2065 |
+
"text/plain": [
|
2066 |
+
"[['people are sitting at a table with a bunch of chairs\\n',\n",
|
2067 |
+
" 'several people in the yard with some food\\n',\n",
|
2068 |
+
" 'people sitting on a bench near a water fountain\\n',\n",
|
2069 |
+
" 'a group of people are sitting around a table\\n',\n",
|
2070 |
+
" 'a group of people in a room with several people in the foreground\\n',\n",
|
2071 |
+
" 'a group of people sitting around a table with food\\n',\n",
|
2072 |
+
" 'the people in the background are sitting on the edge of a table\\n',\n",
|
2073 |
+
" 'beverages and food are served at a family picnic\\n',\n",
|
2074 |
+
" 'a group of people eating in a restaurant\\n',\n",
|
2075 |
+
" 'a group of people sitting around a table\\n',\n",
|
2076 |
+
" 'people are sitting at a table next to a tree\\n',\n",
|
2077 |
+
" 'people are sitting around a table with a lot of food\\n'],\n",
|
2078 |
+
" ['a person is holding a newspaper in a restaurant\\n',\n",
|
2079 |
+
" 'the man is holding a cup of coffee in front of a television\\n',\n",
|
2080 |
+
" 'a woman is preparing to cook in a kitchen\\n',\n",
|
2081 |
+
" 'a man working in an office setting with a computer and a man in a chair\\n',\n",
|
2082 |
+
" 'a person is using a smartphone in a restaurant\\n',\n",
|
2083 |
+
" 'a man is holding a glass of water in front of a television\\n',\n",
|
2084 |
+
" 'a man in a kitchen with a knife and a cup of coffee\\n',\n",
|
2085 |
+
" 'the kitchen at the new york times\\n',\n",
|
2086 |
+
" 'a man is holding a knife and cutting a piece of pizza\\n',\n",
|
2087 |
+
" 'a man is reading a book while another is working on a computer\\n',\n",
|
2088 |
+
" 'a person is using a computer to make a presentation\\n',\n",
|
2089 |
+
" 'a man is holding up a box of food\\n'],\n",
|
2090 |
+
" ['a man in a suit and a woman wearing a helmet on a surfboard\\n',\n",
|
2091 |
+
" 'a person is on the ground while holding onto a skateboard\\n',\n",
|
2092 |
+
" 'a man in a beach chair riding a skateboard\\n',\n",
|
2093 |
+
" 'a woman is standing on a surfboard in the ocean while holding a skateboard\\n',\n",
|
2094 |
+
" 'a man is riding on a surfboard\\n',\n",
|
2095 |
+
" 'a man on his knees in a surfboard with his leg up\\n',\n",
|
2096 |
+
" 'a man is doing a trick on a skateboard\\n',\n",
|
2097 |
+
" 'a man is riding a skateboard on a wave\\n',\n",
|
2098 |
+
" 'a person is sitting on a surfboard while another person is riding on it\\n',\n",
|
2099 |
+
" 'a man in a jumpsuit is holding onto a surfboard\\n',\n",
|
2100 |
+
" 'a man is jumping on a surfboard while another is sitting on it\\n',\n",
|
2101 |
+
" 'a man is sitting on a surfboard while he is riding\\n'],\n",
|
2102 |
+
" ['a picture of a man riding a bike next to a bike\\n',\n",
|
2103 |
+
" 'a group of people standing on a street with a bike\\n',\n",
|
2104 |
+
" 'people are sitting around a picnic table and a bike is being ridden\\n',\n",
|
2105 |
+
" 'a group of people are on a beach with a bike and a car\\n',\n",
|
2106 |
+
" \"the world's largest boat race is underway in the bay of britain\\n\",\n",
|
2107 |
+
" 'a man and his bike standing on the side of a road\\n',\n",
|
2108 |
+
" 'a motorcycle is sitting on top of a hill with a boat and a bicycle\\n',\n",
|
2109 |
+
" 'a bunch of people are standing around a large park\\n',\n",
|
2110 |
+
" 'a group of people standing around a table with bicycles\\n',\n",
|
2111 |
+
" 'a man with his bike and helmet in the air\\n',\n",
|
2112 |
+
" 'the sun is shining brightly and there are people walking around\\n',\n",
|
2113 |
+
" 'a group of people standing on a beach next to a boat\\n'],\n",
|
2114 |
+
" ['the home has a large yellow sign\\n',\n",
|
2115 |
+
" 'the building has two small windows and a sign\\n',\n",
|
2116 |
+
" 'a view of a home with a building in the background\\n',\n",
|
2117 |
+
" 'the house has been built in the style of a traditional english cottage\\n',\n",
|
2118 |
+
" 'the house is on the corner of a street\\n',\n",
|
2119 |
+
" 'the home is an old style building with a white door\\n',\n",
|
2120 |
+
" 'the house is in a residential area with many buildings\\n',\n",
|
2121 |
+
" 'the building is white and has a red roof\\n',\n",
|
2122 |
+
" 'the old building is now a park and recreation center\\n',\n",
|
2123 |
+
" 'a large building with a lot of windows and a lot of people\\n',\n",
|
2124 |
+
" 'a large house with a white door and a blue sign\\n',\n",
|
2125 |
+
" 'the house is in a residential area with a front and back door\\n'],\n",
|
2126 |
+
" ['the vegetables are arranged in a square shape on the table\\n',\n",
|
2127 |
+
" 'a plate full of vegetables and fruit with a knife and fork\\n',\n",
|
2128 |
+
" 'a plate of various vegetables with a knife\\n',\n",
|
2129 |
+
" 'a plate with several different types of food\\n',\n",
|
2130 |
+
" 'a plate of food with various vegetables and meat\\n',\n",
|
2131 |
+
" 'a picture of some vegetables and a plate of food\\n',\n",
|
2132 |
+
" 'a close up of several types of food on a table\\n',\n",
|
2133 |
+
" 'a plate of food with a variety of vegetables\\n',\n",
|
2134 |
+
" 'a large plate with many different types of food\\n',\n",
|
2135 |
+
" 'a plate of vegetables and meat on a table\\n',\n",
|
2136 |
+
" 'a plate with lots of different types of vegetables\\n',\n",
|
2137 |
+
" 'a close up of some food with a knife\\n'],\n",
|
2138 |
+
" ['a white cup with a green tea bag and a small bottle of alcohol\\n',\n",
|
2139 |
+
" 'a bottle of wine with two glasses and a spoon\\n',\n",
|
2140 |
+
" 'the chocolate bar is sitting next to the bottle of wine\\n',\n",
|
2141 |
+
" 'a white and black cup and a bottle of wine\\n',\n",
|
2142 |
+
" 'a white cup sitting next to some drinks\\n',\n",
|
2143 |
+
" 'a bottle of wine and a bottle of champagne on a table\\n',\n",
|
2144 |
+
" 'a white cup with two pills and a small bottle of wine\\n',\n",
|
2145 |
+
" 'a bottle of wine and a cup of coffee next to a bottle of wine\\n',\n",
|
2146 |
+
" 'a bottle of wine and a bottle of beer in a glass\\n',\n",
|
2147 |
+
" 'a bottle of wine, a bottle of beer and a wine bottle\\n',\n",
|
2148 |
+
" 'a bottle of wine and a cup with some food\\n',\n",
|
2149 |
+
" 'a glass of wine and a pair of glasses on a table\\n'],\n",
|
2150 |
+
" ['a group of people in white and blue uniforms playing baseball\\n',\n",
|
2151 |
+
" 'a group of people playing baseball in a field\\n',\n",
|
2152 |
+
" 'a group of people playing a game of baseball\\n',\n",
|
2153 |
+
" 'a group of people standing on a field and one is holding a tennis ball\\n',\n",
|
2154 |
+
" 'a group of people in uniform playing baseball\\n',\n",
|
2155 |
+
" 'two men and a woman in the middle of a game\\n',\n",
|
2156 |
+
" 'a group of people playing baseball in the grass\\n',\n",
|
2157 |
+
" 'a group of men and women are playing baseball\\n',\n",
|
2158 |
+
" 'july 15th, 2011 - june 20th, 2012 - june 17th,',\n",
|
2159 |
+
" 'the team is playing soccer and one is holding a ball\\n',\n",
|
2160 |
+
" 'people are playing baseball with each other and one is holding a ball\\n',\n",
|
2161 |
+
" 'the women are laughing and the man is running\\n']]"
|
2162 |
+
]
|
2163 |
+
},
|
2164 |
+
"execution_count": 99,
|
2165 |
+
"metadata": {},
|
2166 |
+
"output_type": "execute_result"
|
2167 |
+
}
|
2168 |
+
],
|
2169 |
+
"source": [
|
2170 |
+
"several = sample_several(predicted_embeddings[0:8], num = 12, temp = 0.5)\n",
|
2171 |
+
"several"
|
2172 |
+
]
|
2173 |
+
},
|
2174 |
+
{
|
2175 |
+
"cell_type": "code",
|
2176 |
+
"execution_count": 100,
|
2177 |
+
"id": "7ced031a-f259-4797-afd7-876fa62cdcfd",
|
2178 |
+
"metadata": {
|
2179 |
+
"tags": []
|
2180 |
+
},
|
2181 |
+
"outputs": [
|
2182 |
+
{
|
2183 |
+
"data": {
|
2184 |
+
"text/plain": [
|
2185 |
+
"[['a group of people are sitting around a table\\n',\n",
|
2186 |
+
" 'a group of people are sitting around a table with food\\n',\n",
|
2187 |
+
" 'a group of people sitting at a table with food\\n',\n",
|
2188 |
+
" 'a group of people are sitting on the ground in front of a table\\n',\n",
|
2189 |
+
" 'a group of people sitting around a table with a person and a dog\\n',\n",
|
2190 |
+
" 'a group of people are sitting on the ground and eating\\n',\n",
|
2191 |
+
" 'the group is sitting around a table with food\\n',\n",
|
2192 |
+
" 'people are sitting around a table with food\\n',\n",
|
2193 |
+
" 'a group of people sitting around a table with food\\n',\n",
|
2194 |
+
" 'the people are eating in front of a table\\n',\n",
|
2195 |
+
" 'a group of people are sitting on a bench in a field\\n',\n",
|
2196 |
+
" 'a group of people are sitting on a bench\\n'],\n",
|
2197 |
+
" ['a man is using a computer and a phone\\n',\n",
|
2198 |
+
" 'a person in a kitchen with a large screen\\n',\n",
|
2199 |
+
" 'a man is preparing food in a kitchen\\n',\n",
|
2200 |
+
" 'a man is standing in front of a computer and a woman is sitting behind him\\n',\n",
|
2201 |
+
" 'a man is using a computer to play a game\\n',\n",
|
2202 |
+
" 'a man is using a computer to play a game\\n',\n",
|
2203 |
+
" 'a man in a kitchen with a large television\\n',\n",
|
2204 |
+
" 'a man is holding a glass of water in front of a television\\n',\n",
|
2205 |
+
" 'the man is holding a bottle of water and a glass\\n',\n",
|
2206 |
+
" 'a man is using a computer to make a video\\n',\n",
|
2207 |
+
" 'a man is serving food at a restaurant\\n',\n",
|
2208 |
+
" 'a man is holding a drink in his hand\\n'],\n",
|
2209 |
+
" ['a man with a skateboard is riding on a wave\\n',\n",
|
2210 |
+
" 'a man is riding a skateboard on a hill\\n',\n",
|
2211 |
+
" 'a man is riding a skateboard on a hill\\n',\n",
|
2212 |
+
" 'a person is sitting on a surfboard while another person is riding on it\\n',\n",
|
2213 |
+
" 'a man is riding a surfboard on a wave\\n',\n",
|
2214 |
+
" 'a man with a skateboard is on top of a hill\\n',\n",
|
2215 |
+
" 'a person in a surfboard is riding a wave\\n',\n",
|
2216 |
+
" 'a man on a surfboard is riding on a wave\\n',\n",
|
2217 |
+
" 'a man in a suit and a woman in a bikini are playing on a surf board\\n',\n",
|
2218 |
+
" 'a man is riding a skateboard while wearing a helmet\\n',\n",
|
2219 |
+
" 'a man on the surf board with his legs in the air\\n',\n",
|
2220 |
+
" 'a man in a suit is playing a game with a skateboard\\n'],\n",
|
2221 |
+
" ['a group of people standing on a beach with a bike\\n',\n",
|
2222 |
+
" 'a group of people standing on a beach with a bike\\n',\n",
|
2223 |
+
" 'a group of people standing on a road with a bike and a car\\n',\n",
|
2224 |
+
" 'a group of people in the water with two bikes\\n',\n",
|
2225 |
+
" 'the bike is in the middle of the road and there are two people on the side of the',\n",
|
2226 |
+
" 'a group of people standing around a car with a bike\\n',\n",
|
2227 |
+
" 'a man is standing on a bike with a skateboard\\n',\n",
|
2228 |
+
" 'a group of people riding bicycles on a road\\n',\n",
|
2229 |
+
" 'a bicycle is in the middle of a field with a person on it\\n',\n",
|
2230 |
+
" 'a man is standing on a bicycle with a helmet and a skateboard\\n',\n",
|
2231 |
+
" 'a photo of a bicycle with a man on it\\n',\n",
|
2232 |
+
" 'a group of people riding bicycles on a road\\n'],\n",
|
2233 |
+
" ['a building with a sign that says \"the old man\"\\n',\n",
|
2234 |
+
" 'a house with a sign that says \"the house that james bond built\"\\n',\n",
|
2235 |
+
" 'a building with a sign that says \"the house\"\\n',\n",
|
2236 |
+
" 'a house with a sign that says \"museum\"\\n',\n",
|
2237 |
+
" 'a building with a sign that says \"the home of the person\"\\n',\n",
|
2238 |
+
" 'a building with a sign that says \"the museum of american history\"\\n',\n",
|
2239 |
+
" 'a white building with a sign on the side\\n',\n",
|
2240 |
+
" 'a brown house with a white roof and a green sign\\n',\n",
|
2241 |
+
" 'a house with a large sign on the side\\n',\n",
|
2242 |
+
" 'a building with a sign that says \"the building\"\\n',\n",
|
2243 |
+
" 'the building is in the middle of the street\\n',\n",
|
2244 |
+
" 'the front of an old building with a sign\\n'],\n",
|
2245 |
+
" ['a plate of different types of vegetables and meat\\n',\n",
|
2246 |
+
" 'a close up of some vegetables and meat\\n',\n",
|
2247 |
+
" 'a plate with a variety of different foods on it\\n',\n",
|
2248 |
+
" 'a plate of vegetables and meat with a green border\\n',\n",
|
2249 |
+
" 'a plate of vegetables with a variety of toppings\\n',\n",
|
2250 |
+
" 'a plate of food with different types of vegetables\\n',\n",
|
2251 |
+
" 'a plate of food with various vegetables and meat\\n',\n",
|
2252 |
+
" 'a plate of vegetables with some green leaves on it\\n',\n",
|
2253 |
+
" 'a bunch of vegetables and mushrooms on a plate\\n',\n",
|
2254 |
+
" 'a bunch of vegetables and fruit on a table\\n',\n",
|
2255 |
+
" 'a plate of vegetables and other items on a table\\n',\n",
|
2256 |
+
" 'a close up of some vegetables and meat\\n'],\n",
|
2257 |
+
" ['a white cup with a spoon and a spoon\\n',\n",
|
2258 |
+
" 'a bottle of wine and a bottle of champagne\\n',\n",
|
2259 |
+
" 'a white cup with a small bottle and a small bottle of wine\\n',\n",
|
2260 |
+
" 'a white cup with a small bottle of wine and a small bottle of water\\n',\n",
|
2261 |
+
" 'the bottle is open and the bottle is next to a cup\\n',\n",
|
2262 |
+
" 'the white cup with a small bottle of wine and a small bottle of wine\\n',\n",
|
2263 |
+
" 'a white cup with a black handle and a pair of scissors\\n',\n",
|
2264 |
+
" 'a bottle of wine and a bottle of wine glasses\\n',\n",
|
2265 |
+
" 'a bottle of wine and a bottle of champagne\\n',\n",
|
2266 |
+
" 'a white and black cup with a small spoon next to it\\n',\n",
|
2267 |
+
" 'a white cup with a small bottle of wine\\n',\n",
|
2268 |
+
" 'a white cup with a spoon and a bottle of wine\\n'],\n",
|
2269 |
+
" ['a group of people playing baseball and soccer\\n',\n",
|
2270 |
+
" 'a group of people are playing baseball in the grass\\n',\n",
|
2271 |
+
" 'a group of people playing baseball and running\\n',\n",
|
2272 |
+
" 'a group of people playing baseball and soccer\\n',\n",
|
2273 |
+
" 'a group of people playing soccer on a field\\n',\n",
|
2274 |
+
" 'a group of people are playing baseball in the grass\\n',\n",
|
2275 |
+
" 'a group of people playing baseball with a man in the background\\n',\n",
|
2276 |
+
" 'a group of people playing baseball and one is holding a ball\\n',\n",
|
2277 |
+
" 'a group of people playing baseball in front of a field\\n',\n",
|
2278 |
+
" 'a group of people playing baseball on a field\\n',\n",
|
2279 |
+
" 'a group of people playing baseball with one person in the background\\n',\n",
|
2280 |
+
" 'a group of people are playing baseball and one is holding a ball\\n']]"
|
2281 |
+
]
|
2282 |
+
},
|
2283 |
+
"execution_count": 100,
|
2284 |
+
"metadata": {},
|
2285 |
+
"output_type": "execute_result"
|
2286 |
+
}
|
2287 |
+
],
|
2288 |
+
"source": [
|
2289 |
+
"several = sample_several(predicted_embeddings[0:8], num = 12, temp = 0.3)\n",
|
2290 |
+
"several"
|
2291 |
+
]
|
2292 |
+
},
|
2293 |
+
{
|
2294 |
+
"cell_type": "code",
|
2295 |
+
"execution_count": null,
|
2296 |
+
"id": "93e87fde-815d-4452-9915-f5f5dacf7c2a",
|
2297 |
+
"metadata": {
|
2298 |
+
"tags": []
|
2299 |
+
},
|
2300 |
+
"outputs": [],
|
2301 |
+
"source": [
|
2302 |
+
"plt.plot(losses)\n",
|
2303 |
+
"plt.show()\n",
|
2304 |
+
"plt.plot(test_losses)\n",
|
2305 |
+
"plt.show()"
|
2306 |
+
]
|
2307 |
+
},
|
2308 |
+
{
|
2309 |
+
"cell_type": "code",
|
2310 |
+
"execution_count": null,
|
2311 |
+
"id": "ccfccd4f-764d-4624-842c-f931676eb43b",
|
2312 |
+
"metadata": {},
|
2313 |
+
"outputs": [],
|
2314 |
+
"source": [
|
2315 |
+
"print('test')"
|
2316 |
+
]
|
2317 |
+
},
|
2318 |
+
{
|
2319 |
+
"cell_type": "code",
|
2320 |
+
"execution_count": null,
|
2321 |
+
"id": "f1a60e19-c440-4c9c-a634-30186209012f",
|
2322 |
+
"metadata": {},
|
2323 |
+
"outputs": [],
|
2324 |
+
"source": [
|
2325 |
+
"def tensor_2_embed_old(tensor):\n",
|
2326 |
+
" embed_array = torch.zeros((tensor.shape[0],257, 1024)) \n",
|
2327 |
+
" to_pil = ToPILImage()\n",
|
2328 |
+
" for sample in range(tensor.shape[0]):\n",
|
2329 |
+
" PIL_image = to_pil(tensor[sample])\n",
|
2330 |
+
" image_for_blip2 = vis_processors[\"eval\"](PIL_image).unsqueeze(0).to(device)\n",
|
2331 |
+
" #Generate embeddings\n",
|
2332 |
+
" with blip2_model.maybe_autocast():\n",
|
2333 |
+
" blip2_target = blip2_model.ln_vision(blip2_model.visual_encoder(image_for_blip2))\n",
|
2334 |
+
" embed_array[sample] = blip2_target\n",
|
2335 |
+
" \n",
|
2336 |
+
" return embed_array"
|
2337 |
+
]
|
2338 |
+
},
|
2339 |
+
{
|
2340 |
+
"cell_type": "code",
|
2341 |
+
"execution_count": null,
|
2342 |
+
"id": "d39ddada-47f7-4111-92fa-0dd98e8a83d6",
|
2343 |
+
"metadata": {},
|
2344 |
+
"outputs": [],
|
2345 |
+
"source": []
|
2346 |
+
},
|
2347 |
+
{
|
2348 |
+
"cell_type": "code",
|
2349 |
+
"execution_count": null,
|
2350 |
+
"id": "ec8ed96a-61fa-4c20-8da2-fcd9d0a2ed38",
|
2351 |
+
"metadata": {},
|
2352 |
+
"outputs": [],
|
2353 |
+
"source": []
|
2354 |
+
},
|
2355 |
+
{
|
2356 |
+
"cell_type": "code",
|
2357 |
+
"execution_count": null,
|
2358 |
+
"id": "6228eb1a-e8e7-4500-b7bc-d0c57bcac4c6",
|
2359 |
+
"metadata": {},
|
2360 |
+
"outputs": [],
|
2361 |
+
"source": []
|
2362 |
+
}
|
2363 |
+
],
|
2364 |
+
"metadata": {
|
2365 |
+
"kernelspec": {
|
2366 |
+
"display_name": "Python 3 (ipykernel)",
|
2367 |
+
"language": "python",
|
2368 |
+
"name": "python3"
|
2369 |
+
},
|
2370 |
+
"language_info": {
|
2371 |
+
"codemirror_mode": {
|
2372 |
+
"name": "ipython",
|
2373 |
+
"version": 3
|
2374 |
+
},
|
2375 |
+
"file_extension": ".py",
|
2376 |
+
"mimetype": "text/x-python",
|
2377 |
+
"name": "python",
|
2378 |
+
"nbconvert_exporter": "python",
|
2379 |
+
"pygments_lexer": "ipython3",
|
2380 |
+
"version": "3.10.8"
|
2381 |
+
},
|
2382 |
+
"toc": {
|
2383 |
+
"base_numbering": 1,
|
2384 |
+
"nav_menu": {},
|
2385 |
+
"number_sections": true,
|
2386 |
+
"sideBar": true,
|
2387 |
+
"skip_h1_title": false,
|
2388 |
+
"title_cell": "Table of Contents",
|
2389 |
+
"title_sidebar": "Contents",
|
2390 |
+
"toc_cell": false,
|
2391 |
+
"toc_position": {
|
2392 |
+
"height": "calc(100% - 180px)",
|
2393 |
+
"left": "10px",
|
2394 |
+
"top": "150px",
|
2395 |
+
"width": "165px"
|
2396 |
+
},
|
2397 |
+
"toc_section_display": true,
|
2398 |
+
"toc_window_display": true
|
2399 |
+
},
|
2400 |
+
"toc-autonumbering": true,
|
2401 |
+
"vscode": {
|
2402 |
+
"interpreter": {
|
2403 |
+
"hash": "62aae01ef0cf7b6af841ab1c8ce59175c4332e693ab3d00bc32ceffb78a35376"
|
2404 |
+
}
|
2405 |
+
}
|
2406 |
+
},
|
2407 |
+
"nbformat": 4,
|
2408 |
+
"nbformat_minor": 5
|
2409 |
+
}
|
src/train2.ipynb
ADDED
@@ -0,0 +1,1856 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"id": "f4d95fac-ac1d-473c-ab96-650f76e6aaf5",
|
7 |
+
"metadata": {
|
8 |
+
"tags": []
|
9 |
+
},
|
10 |
+
"outputs": [],
|
11 |
+
"source": [
|
12 |
+
"# # Code to convert this notebook to .py if you want to run it via command line or with Slurm\n",
|
13 |
+
"# from subprocess import call\n",
|
14 |
+
"# command = \"jupyter nbconvert Train.ipynb --to python\"\n",
|
15 |
+
"# call(command,shell=True)"
|
16 |
+
]
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"cell_type": "markdown",
|
20 |
+
"id": "b0f0f4f3",
|
21 |
+
"metadata": {},
|
22 |
+
"source": [
|
23 |
+
"# Import packages & functions"
|
24 |
+
]
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"cell_type": "code",
|
28 |
+
"execution_count": 2,
|
29 |
+
"id": "5bad764b-45c1-45ce-a716-8d055e09821a",
|
30 |
+
"metadata": {
|
31 |
+
"tags": []
|
32 |
+
},
|
33 |
+
"outputs": [
|
34 |
+
{
|
35 |
+
"name": "stderr",
|
36 |
+
"output_type": "stream",
|
37 |
+
"text": [
|
38 |
+
"/admin/home-ckadirt/miniconda3/envs/mindeye/lib/python3.10/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
|
39 |
+
" from .autonotebook import tqdm as notebook_tqdm\n"
|
40 |
+
]
|
41 |
+
},
|
42 |
+
{
|
43 |
+
"name": "stdout",
|
44 |
+
"output_type": "stream",
|
45 |
+
"text": [
|
46 |
+
"[2023-11-19 16:32:39,711] [INFO] [real_accelerator.py:110:get_accelerator] Setting ds_accelerator to cuda (auto detect)\n"
|
47 |
+
]
|
48 |
+
}
|
49 |
+
],
|
50 |
+
"source": [
|
51 |
+
"import os\n",
|
52 |
+
"import sys\n",
|
53 |
+
"import json\n",
|
54 |
+
"import argparse\n",
|
55 |
+
"import numpy as np\n",
|
56 |
+
"import math\n",
|
57 |
+
"from einops import rearrange\n",
|
58 |
+
"import time\n",
|
59 |
+
"import random\n",
|
60 |
+
"import h5py\n",
|
61 |
+
"from tqdm import tqdm\n",
|
62 |
+
"\n",
|
63 |
+
"import webdataset as wds\n",
|
64 |
+
"import gc\n",
|
65 |
+
"\n",
|
66 |
+
"import matplotlib.pyplot as plt\n",
|
67 |
+
"import torch\n",
|
68 |
+
"import torch.nn as nn\n",
|
69 |
+
"from torchvision import transforms\n",
|
70 |
+
"from torchvision.transforms import ToPILImage #CHANGED (added)\n",
|
71 |
+
"\n",
|
72 |
+
"from accelerate import Accelerator, DeepSpeedPlugin\n",
|
73 |
+
"\n",
|
74 |
+
"# tf32 data type is faster than standard float32\n",
|
75 |
+
"torch.backends.cuda.matmul.allow_tf32 = True\n",
|
76 |
+
"\n",
|
77 |
+
"# custom functions #\n",
|
78 |
+
"import utils\n",
|
79 |
+
"\n",
|
80 |
+
"global_batch_size = 128 #128"
|
81 |
+
]
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"cell_type": "code",
|
85 |
+
"execution_count": 3,
|
86 |
+
"id": "cc5d2e32-6027-4a19-bef4-5ca068db35bb",
|
87 |
+
"metadata": {
|
88 |
+
"tags": []
|
89 |
+
},
|
90 |
+
"outputs": [
|
91 |
+
{
|
92 |
+
"name": "stdout",
|
93 |
+
"output_type": "stream",
|
94 |
+
"text": [
|
95 |
+
"LOCAL RANK 0\n"
|
96 |
+
]
|
97 |
+
}
|
98 |
+
],
|
99 |
+
"source": [
|
100 |
+
"### Multi-GPU config ###\n",
|
101 |
+
"local_rank = os.getenv('RANK')\n",
|
102 |
+
"if local_rank is None: \n",
|
103 |
+
" local_rank = 0\n",
|
104 |
+
"else:\n",
|
105 |
+
" local_rank = int(local_rank)\n",
|
106 |
+
"print(\"LOCAL RANK \", local_rank) \n",
|
107 |
+
"\n",
|
108 |
+
"num_devices = torch.cuda.device_count()\n",
|
109 |
+
"if num_devices==0: num_devices = 1\n",
|
110 |
+
"\n",
|
111 |
+
"accelerator = Accelerator(split_batches=False)\n",
|
112 |
+
"\n",
|
113 |
+
"### UNCOMMENT BELOW STUFF TO USE DEEPSPEED (also comment out the immediately above \"accelerator = \" line) ###\n",
|
114 |
+
"\n",
|
115 |
+
"# if num_devices <= 1 and utils.is_interactive():\n",
|
116 |
+
"# # can emulate a distributed environment for deepspeed to work in jupyter notebook\n",
|
117 |
+
"# os.environ[\"MASTER_ADDR\"] = \"localhost\"\n",
|
118 |
+
"# os.environ[\"MASTER_PORT\"] = str(np.random.randint(10000)+9000)\n",
|
119 |
+
"# os.environ[\"RANK\"] = \"0\"\n",
|
120 |
+
"# os.environ[\"LOCAL_RANK\"] = \"0\"\n",
|
121 |
+
"# os.environ[\"WORLD_SIZE\"] = \"1\"\n",
|
122 |
+
"# os.environ[\"GLOBAL_BATCH_SIZE\"] = str(global_batch_size) # set this to your batch size!\n",
|
123 |
+
"# global_batch_size = os.environ[\"GLOBAL_BATCH_SIZE\"]\n",
|
124 |
+
"\n",
|
125 |
+
"# # alter the deepspeed config according to your global and local batch size\n",
|
126 |
+
"# if local_rank == 0:\n",
|
127 |
+
"# with open('deepspeed_config_stage2.json', 'r') as file:\n",
|
128 |
+
"# config = json.load(file)\n",
|
129 |
+
"# config['train_batch_size'] = int(os.environ[\"GLOBAL_BATCH_SIZE\"])\n",
|
130 |
+
"# config['train_micro_batch_size_per_gpu'] = int(os.environ[\"GLOBAL_BATCH_SIZE\"]) // num_devices\n",
|
131 |
+
"# with open('deepspeed_config_stage2.json', 'w') as file:\n",
|
132 |
+
"# json.dump(config, file)\n",
|
133 |
+
"# else:\n",
|
134 |
+
"# # give some time for the local_rank=0 gpu to prep new deepspeed config file\n",
|
135 |
+
"# time.sleep(10)\n",
|
136 |
+
"# deepspeed_plugin = DeepSpeedPlugin(\"deepspeed_config_stage2.json\")\n",
|
137 |
+
"# accelerator = Accelerator(split_batches=False, deepspeed_plugin=deepspeed_plugin)"
|
138 |
+
]
|
139 |
+
},
|
140 |
+
{
|
141 |
+
"cell_type": "code",
|
142 |
+
"execution_count": 4,
|
143 |
+
"id": "b767ab6f-d4a9-47a5-b3bf-f56bf6760c0c",
|
144 |
+
"metadata": {
|
145 |
+
"tags": []
|
146 |
+
},
|
147 |
+
"outputs": [
|
148 |
+
{
|
149 |
+
"name": "stdout",
|
150 |
+
"output_type": "stream",
|
151 |
+
"text": [
|
152 |
+
"PID of this process = 2370606\n",
|
153 |
+
"device: cuda\n",
|
154 |
+
"Distributed environment: NO\n",
|
155 |
+
"Num processes: 1\n",
|
156 |
+
"Process index: 0\n",
|
157 |
+
"Local process index: 0\n",
|
158 |
+
"Device: cuda\n",
|
159 |
+
"\n",
|
160 |
+
"Mixed precision type: no\n",
|
161 |
+
"\n",
|
162 |
+
"distributed = False num_devices = 1 local rank = 0 world size = 1\n"
|
163 |
+
]
|
164 |
+
}
|
165 |
+
],
|
166 |
+
"source": [
|
167 |
+
"print(\"PID of this process =\",os.getpid())\n",
|
168 |
+
"device = accelerator.device\n",
|
169 |
+
"print(\"device:\",device)\n",
|
170 |
+
"num_workers = num_devices\n",
|
171 |
+
"print(accelerator.state)\n",
|
172 |
+
"world_size = accelerator.state.num_processes\n",
|
173 |
+
"distributed = not accelerator.state.distributed_type == 'NO'\n",
|
174 |
+
"print(\"distributed =\",distributed, \"num_devices =\", num_devices, \"local rank =\", local_rank, \"world size =\", world_size)\n",
|
175 |
+
"print = accelerator.print # only print if local_rank=0"
|
176 |
+
]
|
177 |
+
},
|
178 |
+
{
|
179 |
+
"cell_type": "markdown",
|
180 |
+
"id": "9018b82b-c054-4463-9527-4b0c2a75bda6",
|
181 |
+
"metadata": {
|
182 |
+
"tags": []
|
183 |
+
},
|
184 |
+
"source": [
|
185 |
+
"# Configurations"
|
186 |
+
]
|
187 |
+
},
|
188 |
+
{
|
189 |
+
"cell_type": "code",
|
190 |
+
"execution_count": 5,
|
191 |
+
"id": "2b61fec7-72a0-4b67-86da-1375f1d9fbd3",
|
192 |
+
"metadata": {
|
193 |
+
"tags": []
|
194 |
+
},
|
195 |
+
"outputs": [
|
196 |
+
{
|
197 |
+
"name": "stdout",
|
198 |
+
"output_type": "stream",
|
199 |
+
"text": [
|
200 |
+
"['--data_path=/fsx/proj-fmri/shared/mindeyev2_dataset', '--model_name=captions', '--subj=1', '--batch_size=128', '--n_samples_save=0', '--max_lr=3e-1', '--mixup_pct=.66', '--num_epochs=30', '--ckpt_interval=999', '--no-use_image_aug']\n"
|
201 |
+
]
|
202 |
+
}
|
203 |
+
],
|
204 |
+
"source": [
|
205 |
+
"# if running this interactively, can specify jupyter_args here for argparser to use\n",
|
206 |
+
"if utils.is_interactive():\n",
|
207 |
+
" # Example use\n",
|
208 |
+
" jupyter_args = f\"--data_path=/fsx/proj-fmri/shared/mindeyev2_dataset \\\n",
|
209 |
+
" --model_name=captions \\\n",
|
210 |
+
" --subj=1 --batch_size={global_batch_size} --n_samples_save=0 \\\n",
|
211 |
+
" --max_lr=3e-1 --mixup_pct=.66 --num_epochs=30 --ckpt_interval=999 --no-use_image_aug\"\n",
|
212 |
+
" #max_lr=3e-5 originally\n",
|
213 |
+
" jupyter_args = jupyter_args.split()\n",
|
214 |
+
" print(jupyter_args)\n",
|
215 |
+
" \n",
|
216 |
+
" from IPython.display import clear_output # function to clear print outputs in cell\n",
|
217 |
+
" %load_ext autoreload \n",
|
218 |
+
" # this allows you to change functions in models.py or utils.py and have this notebook automatically update with your revisions\n",
|
219 |
+
" %autoreload 2 "
|
220 |
+
]
|
221 |
+
},
|
222 |
+
{
|
223 |
+
"cell_type": "code",
|
224 |
+
"execution_count": 6,
|
225 |
+
"id": "2028bdf0-2f41-46d9-b6e7-86b870dbf16c",
|
226 |
+
"metadata": {
|
227 |
+
"tags": []
|
228 |
+
},
|
229 |
+
"outputs": [
|
230 |
+
{
|
231 |
+
"name": "stdout",
|
232 |
+
"output_type": "stream",
|
233 |
+
"text": [
|
234 |
+
"global batch_size 128\n",
|
235 |
+
"batch_size 128\n"
|
236 |
+
]
|
237 |
+
}
|
238 |
+
],
|
239 |
+
"source": [
|
240 |
+
"parser = argparse.ArgumentParser(description=\"Model Training Configuration\")\n",
|
241 |
+
"parser.add_argument(\n",
|
242 |
+
" \"--model_name\", type=str, default=\"testing\",\n",
|
243 |
+
" help=\"name of model, used for ckpt saving and wandb logging (if enabled)\",\n",
|
244 |
+
")\n",
|
245 |
+
"parser.add_argument(\n",
|
246 |
+
" \"--data_path\", type=str, default=\"/fsx/proj-fmri/shared/natural-scenes-dataset\",\n",
|
247 |
+
" help=\"Path to where NSD data is stored / where to download it to\",\n",
|
248 |
+
")\n",
|
249 |
+
"parser.add_argument(\n",
|
250 |
+
" \"--subj\",type=int, default=1, choices=[1,2,5,7],\n",
|
251 |
+
")\n",
|
252 |
+
"parser.add_argument(\n",
|
253 |
+
" \"--batch_size\", type=int, default=32,\n",
|
254 |
+
" help=\"Batch size can be increased by 10x if only training v2c and not diffusion diffuser\",\n",
|
255 |
+
")\n",
|
256 |
+
"parser.add_argument(\n",
|
257 |
+
" \"--wandb_log\",action=argparse.BooleanOptionalAction,default=False,\n",
|
258 |
+
" help=\"whether to log to wandb\",\n",
|
259 |
+
")\n",
|
260 |
+
"parser.add_argument(\n",
|
261 |
+
" \"--resume_from_ckpt\",action=argparse.BooleanOptionalAction,default=False,\n",
|
262 |
+
" help=\"if not using wandb and want to resume from a ckpt\",\n",
|
263 |
+
")\n",
|
264 |
+
"parser.add_argument(\n",
|
265 |
+
" \"--wandb_project\",type=str,default=\"stability\",\n",
|
266 |
+
" help=\"wandb project name\",\n",
|
267 |
+
")\n",
|
268 |
+
"parser.add_argument(\n",
|
269 |
+
" \"--mixup_pct\",type=float,default=.33,\n",
|
270 |
+
" help=\"proportion of way through training when to switch from BiMixCo to SoftCLIP\",\n",
|
271 |
+
")\n",
|
272 |
+
"parser.add_argument(\n",
|
273 |
+
" \"--use_image_aug\",action=argparse.BooleanOptionalAction,default=True,\n",
|
274 |
+
" help=\"whether to use image augmentation\",\n",
|
275 |
+
")\n",
|
276 |
+
"parser.add_argument(\n",
|
277 |
+
" \"--num_epochs\",type=int,default=240,\n",
|
278 |
+
" help=\"number of epochs of training\",\n",
|
279 |
+
")\n",
|
280 |
+
"parser.add_argument(\n",
|
281 |
+
" \"--lr_scheduler_type\",type=str,default='cycle',choices=['cycle','linear'],\n",
|
282 |
+
")\n",
|
283 |
+
"parser.add_argument(\n",
|
284 |
+
" \"--ckpt_saving\",action=argparse.BooleanOptionalAction,default=True,\n",
|
285 |
+
")\n",
|
286 |
+
"parser.add_argument(\n",
|
287 |
+
" \"--ckpt_interval\",type=int,default=5,\n",
|
288 |
+
" help=\"save backup ckpt and reconstruct every x epochs\",\n",
|
289 |
+
")\n",
|
290 |
+
"parser.add_argument(\n",
|
291 |
+
" \"--seed\",type=int,default=42,\n",
|
292 |
+
")\n",
|
293 |
+
"parser.add_argument(\n",
|
294 |
+
" \"--max_lr\",type=float,default=3e-4,\n",
|
295 |
+
")\n",
|
296 |
+
"parser.add_argument(\n",
|
297 |
+
" \"--n_samples_save\",type=int,default=0,choices=[0,1],\n",
|
298 |
+
" help=\"Number of reconstructions for monitoring progress, 0 will speed up training\",\n",
|
299 |
+
")\n",
|
300 |
+
"\n",
|
301 |
+
"if utils.is_interactive():\n",
|
302 |
+
" args = parser.parse_args(jupyter_args)\n",
|
303 |
+
"else:\n",
|
304 |
+
" args = parser.parse_args()\n",
|
305 |
+
"\n",
|
306 |
+
"# create global variables without the args prefix\n",
|
307 |
+
"for attribute_name in vars(args).keys():\n",
|
308 |
+
" globals()[attribute_name] = getattr(args, attribute_name)\n",
|
309 |
+
"\n",
|
310 |
+
"print(\"global batch_size\", batch_size)\n",
|
311 |
+
"batch_size = int(batch_size / num_devices)\n",
|
312 |
+
"print(\"batch_size\", batch_size)"
|
313 |
+
]
|
314 |
+
},
|
315 |
+
{
|
316 |
+
"cell_type": "code",
|
317 |
+
"execution_count": 7,
|
318 |
+
"id": "60cd7f2c-37fd-426b-a0c6-633e51bc4c4d",
|
319 |
+
"metadata": {
|
320 |
+
"tags": []
|
321 |
+
},
|
322 |
+
"outputs": [],
|
323 |
+
"source": [
|
324 |
+
"outdir = os.path.abspath(f'../train_logs/{model_name}')\n",
|
325 |
+
"if not os.path.exists(outdir):\n",
|
326 |
+
" os.makedirs(outdir,exist_ok=True)\n",
|
327 |
+
"if use_image_aug:\n",
|
328 |
+
" import kornia\n",
|
329 |
+
" from kornia.augmentation.container import AugmentationSequential\n",
|
330 |
+
" img_augment = AugmentationSequential(\n",
|
331 |
+
" kornia.augmentation.RandomResizedCrop((224,224), (0.6,1), p=0.3),\n",
|
332 |
+
" kornia.augmentation.Resize((224, 224)),\n",
|
333 |
+
" kornia.augmentation.RandomHorizontalFlip(p=0.3),\n",
|
334 |
+
" kornia.augmentation.ColorJitter(brightness=0.4, contrast=0.4, saturation=0.2, hue=0.1, p=0.3),\n",
|
335 |
+
" kornia.augmentation.RandomGrayscale(p=0.3),\n",
|
336 |
+
" same_on_batch=False,\n",
|
337 |
+
" data_keys=[\"input\"],\n",
|
338 |
+
" )"
|
339 |
+
]
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"cell_type": "code",
|
343 |
+
"execution_count": 8,
|
344 |
+
"id": "e7807ba9-02b6-4bc0-873c-69869abe4091",
|
345 |
+
"metadata": {},
|
346 |
+
"outputs": [],
|
347 |
+
"source": [
|
348 |
+
"wandb_log = False"
|
349 |
+
]
|
350 |
+
},
|
351 |
+
{
|
352 |
+
"cell_type": "markdown",
|
353 |
+
"id": "42d13c25-1369-4c49-81d4-83d713586096",
|
354 |
+
"metadata": {
|
355 |
+
"tags": []
|
356 |
+
},
|
357 |
+
"source": [
|
358 |
+
"# Prep data, models, and dataloaders"
|
359 |
+
]
|
360 |
+
},
|
361 |
+
{
|
362 |
+
"cell_type": "markdown",
|
363 |
+
"id": "1c023f24-5233-4a15-a2f5-78487b3a8546",
|
364 |
+
"metadata": {},
|
365 |
+
"source": [
|
366 |
+
"## Dataloader"
|
367 |
+
]
|
368 |
+
},
|
369 |
+
{
|
370 |
+
"cell_type": "code",
|
371 |
+
"execution_count": 9,
|
372 |
+
"id": "81084834-035f-4465-ad59-59e6b806a2f5",
|
373 |
+
"metadata": {
|
374 |
+
"tags": []
|
375 |
+
},
|
376 |
+
"outputs": [
|
377 |
+
{
|
378 |
+
"name": "stdout",
|
379 |
+
"output_type": "stream",
|
380 |
+
"text": [
|
381 |
+
"/fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj01/train/{0..36}.tar\n",
|
382 |
+
"/fsx/proj-fmri/shared/mindeyev2_dataset/wds/subj01/test/0.tar\n"
|
383 |
+
]
|
384 |
+
}
|
385 |
+
],
|
386 |
+
"source": [
|
387 |
+
"if subj==1:\n",
|
388 |
+
" num_train = 24958\n",
|
389 |
+
" num_test = 2770\n",
|
390 |
+
"test_batch_size = num_test\n",
|
391 |
+
"\n",
|
392 |
+
"def my_split_by_node(urls): return urls\n",
|
393 |
+
" \n",
|
394 |
+
"train_url = f\"{data_path}/wds/subj0{subj}/train/\" + \"{0..36}.tar\"\n",
|
395 |
+
"print(train_url)\n",
|
396 |
+
"\n",
|
397 |
+
"train_data = wds.WebDataset(train_url,resampled=False,nodesplitter=my_split_by_node)\\\n",
|
398 |
+
" .shuffle(750, initial=1500, rng=random.Random(42))\\\n",
|
399 |
+
" .decode(\"torch\")\\\n",
|
400 |
+
" .rename(behav=\"behav.npy\", past_behav=\"past_behav.npy\", future_behav=\"future_behav.npy\", olds_behav=\"olds_behav.npy\")\\\n",
|
401 |
+
" .to_tuple(*[\"behav\", \"past_behav\", \"future_behav\", \"olds_behav\"])\n",
|
402 |
+
"train_dl = torch.utils.data.DataLoader(train_data, batch_size=batch_size, shuffle=False, drop_last=False, pin_memory=True)\n",
|
403 |
+
"\n",
|
404 |
+
"test_url = f\"{data_path}/wds/subj0{subj}/test/\" + \"0.tar\"\n",
|
405 |
+
"print(test_url)\n",
|
406 |
+
"\n",
|
407 |
+
"test_data = wds.WebDataset(test_url,resampled=False,nodesplitter=my_split_by_node)\\\n",
|
408 |
+
" .shuffle(750, initial=1500, rng=random.Random(42))\\\n",
|
409 |
+
" .decode(\"torch\")\\\n",
|
410 |
+
" .rename(behav=\"behav.npy\", past_behav=\"past_behav.npy\", future_behav=\"future_behav.npy\", olds_behav=\"olds_behav.npy\")\\\n",
|
411 |
+
" .to_tuple(*[\"behav\", \"past_behav\", \"future_behav\", \"olds_behav\"])\n",
|
412 |
+
"test_dl = torch.utils.data.DataLoader(test_data, batch_size=test_batch_size, shuffle=False, drop_last=False, pin_memory=True)"
|
413 |
+
]
|
414 |
+
},
|
415 |
+
{
|
416 |
+
"cell_type": "markdown",
|
417 |
+
"id": "203b060a-2dd2-4c35-929b-c576be82eb52",
|
418 |
+
"metadata": {},
|
419 |
+
"source": [
|
420 |
+
"### check dataloaders are working"
|
421 |
+
]
|
422 |
+
},
|
423 |
+
{
|
424 |
+
"cell_type": "code",
|
425 |
+
"execution_count": 10,
|
426 |
+
"id": "e7a9c68c-c3c9-4080-bd99-067c4486dc37",
|
427 |
+
"metadata": {
|
428 |
+
"tags": []
|
429 |
+
},
|
430 |
+
"outputs": [],
|
431 |
+
"source": [
|
432 |
+
"# test_indices = []\n",
|
433 |
+
"# test_images = []\n",
|
434 |
+
"# for test_i, (behav, past_behav, future_behav, old_behav) in enumerate(test_dl):\n",
|
435 |
+
"# test_indices = np.append(test_indices, behav[:,0,5].numpy())\n",
|
436 |
+
"# test_images = np.append(test_images, behav[:,0,0].numpy())\n",
|
437 |
+
"# test_indices = test_indices.astype(np.int16)\n",
|
438 |
+
"# print(test_i, (test_i+1) * test_batch_size, len(test_indices))\n",
|
439 |
+
"# print(\"---\\n\")\n",
|
440 |
+
"\n",
|
441 |
+
"# train_indices = []\n",
|
442 |
+
"# train_images = []\n",
|
443 |
+
"# for train_i, (behav, past_behav, future_behav, old_behav) in enumerate(train_dl):\n",
|
444 |
+
"# train_indices = np.append(train_indices, behav[:,0,5].long().numpy())\n",
|
445 |
+
"# train_images = np.append(train_images, behav[:,0,0].numpy())\n",
|
446 |
+
"# train_indices = train_indices.astype(np.int16)\n",
|
447 |
+
"# print(train_i, (train_i+1) * batch_size, len(train_indices))\n",
|
448 |
+
"\n",
|
449 |
+
"# # train_images = np.hstack((train_images, test_images))\n",
|
450 |
+
"# # print(\"WARNING: ADDED TEST IMAGES TO TRAIN IMAGES\")"
|
451 |
+
]
|
452 |
+
},
|
453 |
+
{
|
454 |
+
"cell_type": "markdown",
|
455 |
+
"id": "45fad12c-f9fb-4408-8fd4-9bca324ad634",
|
456 |
+
"metadata": {},
|
457 |
+
"source": [
|
458 |
+
"## Load data and images"
|
459 |
+
]
|
460 |
+
},
|
461 |
+
{
|
462 |
+
"cell_type": "code",
|
463 |
+
"execution_count": 11,
|
464 |
+
"id": "039dd330-7339-4f88-8f00-45f95e47baa0",
|
465 |
+
"metadata": {
|
466 |
+
"tags": []
|
467 |
+
},
|
468 |
+
"outputs": [
|
469 |
+
{
|
470 |
+
"name": "stdout",
|
471 |
+
"output_type": "stream",
|
472 |
+
"text": [
|
473 |
+
"subj01 betas loaded into memory\n",
|
474 |
+
"voxels torch.Size([27750, 15729])\n",
|
475 |
+
"images torch.Size([73000, 3, 224, 224])\n"
|
476 |
+
]
|
477 |
+
}
|
478 |
+
],
|
479 |
+
"source": [
|
480 |
+
"# load betas\n",
|
481 |
+
"f = h5py.File(f'{data_path}/betas_all_subj0{subj}.hdf5', 'r')\n",
|
482 |
+
"voxels = f['betas'][:]\n",
|
483 |
+
"print(f\"subj0{subj} betas loaded into memory\")\n",
|
484 |
+
"voxels = torch.Tensor(voxels).to(\"cpu\").half()\n",
|
485 |
+
"if subj==1:\n",
|
486 |
+
" voxels = torch.hstack((voxels, torch.zeros((len(voxels), 5))))\n",
|
487 |
+
"print(\"voxels\", voxels.shape)\n",
|
488 |
+
"num_voxels = voxels.shape[-1]\n",
|
489 |
+
"\n",
|
490 |
+
"# load orig images\n",
|
491 |
+
"f = h5py.File(f'{data_path}/coco_images_224_float16.hdf5', 'r')\n",
|
492 |
+
"images = f['images'][:]\n",
|
493 |
+
"images = torch.Tensor(images).to(\"cpu\").half()\n",
|
494 |
+
"print(\"images\", images.shape)"
|
495 |
+
]
|
496 |
+
},
|
497 |
+
{
|
498 |
+
"cell_type": "markdown",
|
499 |
+
"id": "10ec4517-dbdf-4ece-98f6-4714d5de4e15",
|
500 |
+
"metadata": {},
|
501 |
+
"source": [
|
502 |
+
"## Load models"
|
503 |
+
]
|
504 |
+
},
|
505 |
+
{
|
506 |
+
"cell_type": "markdown",
|
507 |
+
"id": "48d6160e-1ee8-4da7-a755-9dbb452a6fa5",
|
508 |
+
"metadata": {},
|
509 |
+
"source": [
|
510 |
+
"### CLIP image embeddings model"
|
511 |
+
]
|
512 |
+
},
|
513 |
+
{
|
514 |
+
"cell_type": "code",
|
515 |
+
"execution_count": 12,
|
516 |
+
"id": "795e2885-bd07-4e27-bed7-181473c06df9",
|
517 |
+
"metadata": {
|
518 |
+
"tags": []
|
519 |
+
},
|
520 |
+
"outputs": [],
|
521 |
+
"source": [
|
522 |
+
"import transformers\n",
|
523 |
+
"from transformers import Blip2Processor, Blip2ForConditionalGeneration\n",
|
524 |
+
"\n",
|
525 |
+
"from PIL import Image"
|
526 |
+
]
|
527 |
+
},
|
528 |
+
{
|
529 |
+
"cell_type": "code",
|
530 |
+
"execution_count": 13,
|
531 |
+
"id": "b0420dc0-199e-4c1a-857d-b1747058b467",
|
532 |
+
"metadata": {
|
533 |
+
"tags": []
|
534 |
+
},
|
535 |
+
"outputs": [
|
536 |
+
{
|
537 |
+
"name": "stdout",
|
538 |
+
"output_type": "stream",
|
539 |
+
"text": [
|
540 |
+
"ViT-L/14 cuda:0\n"
|
541 |
+
]
|
542 |
+
}
|
543 |
+
],
|
544 |
+
"source": [
|
545 |
+
"from models import Clipper\n",
|
546 |
+
"clip_model = Clipper(\"ViT-L/14\", device=torch.device(f\"cuda:{local_rank}\"), hidden_state=True, norm_embs=True)"
|
547 |
+
]
|
548 |
+
},
|
549 |
+
{
|
550 |
+
"cell_type": "code",
|
551 |
+
"execution_count": 14,
|
552 |
+
"id": "23428fb7-2955-4295-bea1-447cebf9f72e",
|
553 |
+
"metadata": {
|
554 |
+
"tags": []
|
555 |
+
},
|
556 |
+
"outputs": [
|
557 |
+
{
|
558 |
+
"name": "stderr",
|
559 |
+
"output_type": "stream",
|
560 |
+
"text": [
|
561 |
+
"Loading checkpoint shards: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [01:08<00:00, 34.47s/it]\n"
|
562 |
+
]
|
563 |
+
},
|
564 |
+
{
|
565 |
+
"data": {
|
566 |
+
"text/plain": [
|
567 |
+
"'from lavis.models import load_model_and_preprocess\\nfrom lavis.models import model_zoo\\nblip2_model, vis_processors, _ = load_model_and_preprocess(\\n name=\"blip2_t5\", model_type=\"pretrain_flant5xl_vitL\", is_eval=True, device=device)\\n\\nclip_seq_dim = 257\\nclip_emb_dim = 1024\\nhidden_dim = 4096'"
|
568 |
+
]
|
569 |
+
},
|
570 |
+
"execution_count": 14,
|
571 |
+
"metadata": {},
|
572 |
+
"output_type": "execute_result"
|
573 |
+
}
|
574 |
+
],
|
575 |
+
"source": [
|
576 |
+
"cache_blip2 = \"/fsx/proj-fmri/shared/cache/models--Salesforce--blip2-opt-2.7b/snapshots/6e723d92ee91ebcee4ba74d7017632f11ff4217b\"\n",
|
577 |
+
"\n",
|
578 |
+
"b2_processor = Blip2Processor.from_pretrained(cache_blip2)\n",
|
579 |
+
"b2_model = Blip2ForConditionalGeneration.from_pretrained(cache_blip2, torch_dtype=torch.float16, device_map=\"auto\")\n",
|
580 |
+
"\n",
|
581 |
+
"#Load in blip2 as well\n",
|
582 |
+
"\"\"\"from lavis.models import load_model_and_preprocess\n",
|
583 |
+
"from lavis.models import model_zoo\n",
|
584 |
+
"blip2_model, vis_processors, _ = load_model_and_preprocess(\n",
|
585 |
+
" name=\"blip2_t5\", model_type=\"pretrain_flant5xl_vitL\", is_eval=True, device=device)\n",
|
586 |
+
"\n",
|
587 |
+
"clip_seq_dim = 257\n",
|
588 |
+
"clip_emb_dim = 1024\n",
|
589 |
+
"hidden_dim = 4096\"\"\""
|
590 |
+
]
|
591 |
+
},
|
592 |
+
{
|
593 |
+
"cell_type": "code",
|
594 |
+
"execution_count": 15,
|
595 |
+
"id": "b06f3de2-a8da-4ba0-94f0-99096f738d55",
|
596 |
+
"metadata": {
|
597 |
+
"tags": []
|
598 |
+
},
|
599 |
+
"outputs": [],
|
600 |
+
"source": [
|
601 |
+
"def embed_images_b2(images):\n",
|
602 |
+
" images = (images * 255).type(torch.uint8)\n",
|
603 |
+
" with torch.no_grad():\n",
|
604 |
+
" inputs_processed = b2_processor(images, return_tensors=\"pt\").to(\"cuda\", torch.float16)\n",
|
605 |
+
" enc_imgs = b2_model.vision_model.forward(inputs_processed['pixel_values'])\n",
|
606 |
+
" return enc_imgs.last_hidden_state.detach(), inputs_processed\n",
|
607 |
+
"\n",
|
608 |
+
"def embeds_to_captions_b2(embeds):\n",
|
609 |
+
" with torch.no_grad():\n",
|
610 |
+
" input_ids = None #inputs['input_ids']\n",
|
611 |
+
" attention_mask = None\n",
|
612 |
+
" batch_size = embeds.shape[0]\n",
|
613 |
+
" image_embeds = embeds\n",
|
614 |
+
" image_attention_mask = torch.ones(image_embeds.size()[:-1], dtype=torch.long, device=image_embeds.device)\n",
|
615 |
+
"\n",
|
616 |
+
" query_tokens = b2_model.query_tokens.expand(image_embeds.shape[0], -1, -1)\n",
|
617 |
+
" query_outputs = b2_model.qformer(\n",
|
618 |
+
" query_embeds=query_tokens,\n",
|
619 |
+
" encoder_hidden_states=image_embeds,\n",
|
620 |
+
" encoder_attention_mask=image_attention_mask,\n",
|
621 |
+
" return_dict=True,\n",
|
622 |
+
" )\n",
|
623 |
+
" query_output = query_outputs.last_hidden_state\n",
|
624 |
+
"\n",
|
625 |
+
" language_model_inputs = b2_model.language_projection(query_output)\n",
|
626 |
+
" language_attention_mask = torch.ones(\n",
|
627 |
+
" language_model_inputs.size()[:-1], dtype=torch.long, device=language_model_inputs.device\n",
|
628 |
+
" )\n",
|
629 |
+
" if input_ids is None:\n",
|
630 |
+
" input_ids = (\n",
|
631 |
+
" torch.LongTensor([[b2_model.config.text_config.bos_token_id]])\n",
|
632 |
+
" .repeat(batch_size, 1)\n",
|
633 |
+
" .to(image_embeds.device)\n",
|
634 |
+
" )\n",
|
635 |
+
" if attention_mask is None:\n",
|
636 |
+
" attention_mask = torch.ones_like(input_ids)\n",
|
637 |
+
" attention_mask = torch.cat([language_attention_mask, attention_mask.to(language_attention_mask.device)], dim=1)\n",
|
638 |
+
"\n",
|
639 |
+
" # concatenate query embeddings with prompt embeddings\n",
|
640 |
+
" inputs_embeds = b2_model.get_input_embeddings()(input_ids)\n",
|
641 |
+
" inputs_embeds = torch.cat([language_model_inputs, inputs_embeds.to(language_model_inputs.device)], dim=1)\n",
|
642 |
+
"\n",
|
643 |
+
" outputs = b2_model.language_model.generate(\n",
|
644 |
+
" inputs_embeds=inputs_embeds,\n",
|
645 |
+
" attention_mask=attention_mask,\n",
|
646 |
+
" )\n",
|
647 |
+
" text = b2_processor.batch_decode(outputs, skip_special_tokens=True)\n",
|
648 |
+
" \n",
|
649 |
+
" return outputs, text\n"
|
650 |
+
]
|
651 |
+
},
|
652 |
+
{
|
653 |
+
"cell_type": "code",
|
654 |
+
"execution_count": 16,
|
655 |
+
"id": "ec0a34d3-76e0-4a47-a9ab-6131ab2ccecd",
|
656 |
+
"metadata": {
|
657 |
+
"tags": []
|
658 |
+
},
|
659 |
+
"outputs": [],
|
660 |
+
"source": [
|
661 |
+
"image_test = images[1:20].permute(0,2,3,1)\n",
|
662 |
+
"#raw_image = Image.open('/fsx/proj-fmri/shared/controlNetData/target/img_t1.jpg').convert('RGB')\n",
|
663 |
+
"# Convert the image to a NumPy array\n",
|
664 |
+
"#image_test = np.array(raw_image)\n"
|
665 |
+
]
|
666 |
+
},
|
667 |
+
{
|
668 |
+
"cell_type": "code",
|
669 |
+
"execution_count": 17,
|
670 |
+
"id": "e04876a4-45c7-4015-8255-8574c8f50f14",
|
671 |
+
"metadata": {
|
672 |
+
"tags": []
|
673 |
+
},
|
674 |
+
"outputs": [
|
675 |
+
{
|
676 |
+
"data": {
|
677 |
+
"text/plain": [
|
678 |
+
"\"import matplotlib.pyplot as plt\\n# Plotting one of the images (taking the first image as an example)\\nimg_to_plot = inputs_rec['pixel_values'][-1]\\n\\n# Transpose the image for correct display (PyTorch: [C, H, W], Matplotlib: [H, W, C])\\nimg_to_plot = img_to_plot.permute(1, 2, 0).to(torch.float32).to('cpu')\\nprint(img_to_plot.shape)\\n\\nplt.imshow(img_to_plot)\\nplt.show()\""
|
679 |
+
]
|
680 |
+
},
|
681 |
+
"execution_count": 17,
|
682 |
+
"metadata": {},
|
683 |
+
"output_type": "execute_result"
|
684 |
+
}
|
685 |
+
],
|
686 |
+
"source": [
|
687 |
+
"\"\"\"import matplotlib.pyplot as plt\n",
|
688 |
+
"# Plotting one of the images (taking the first image as an example)\n",
|
689 |
+
"img_to_plot = inputs_rec['pixel_values'][-1]\n",
|
690 |
+
"\n",
|
691 |
+
"# Transpose the image for correct display (PyTorch: [C, H, W], Matplotlib: [H, W, C])\n",
|
692 |
+
"img_to_plot = img_to_plot.permute(1, 2, 0).to(torch.float32).to('cpu')\n",
|
693 |
+
"print(img_to_plot.shape)\n",
|
694 |
+
"\n",
|
695 |
+
"plt.imshow(img_to_plot)\n",
|
696 |
+
"plt.show()\"\"\""
|
697 |
+
]
|
698 |
+
},
|
699 |
+
{
|
700 |
+
"cell_type": "code",
|
701 |
+
"execution_count": 18,
|
702 |
+
"id": "328a17d0-593b-4d1e-812a-10a3b6efea6a",
|
703 |
+
"metadata": {
|
704 |
+
"tags": []
|
705 |
+
},
|
706 |
+
"outputs": [],
|
707 |
+
"source": [
|
708 |
+
"embeds_test, inputs_rec = embed_images_b2(image_test)"
|
709 |
+
]
|
710 |
+
},
|
711 |
+
{
|
712 |
+
"cell_type": "code",
|
713 |
+
"execution_count": 19,
|
714 |
+
"id": "abe5f8a8-fca9-4083-8596-a913bdb57de7",
|
715 |
+
"metadata": {
|
716 |
+
"tags": []
|
717 |
+
},
|
718 |
+
"outputs": [],
|
719 |
+
"source": [
|
720 |
+
"#inputs_rec['pixel_values'].shape"
|
721 |
+
]
|
722 |
+
},
|
723 |
+
{
|
724 |
+
"cell_type": "code",
|
725 |
+
"execution_count": 20,
|
726 |
+
"id": "c5f3ca7e-b880-421e-b354-7b6c3df565e9",
|
727 |
+
"metadata": {
|
728 |
+
"tags": []
|
729 |
+
},
|
730 |
+
"outputs": [],
|
731 |
+
"source": [
|
732 |
+
"#out = b2_model.generate(**inputs_rec)\n",
|
733 |
+
"#print(b2_processor.decode(out[0], skip_special_tokens=True).strip())"
|
734 |
+
]
|
735 |
+
},
|
736 |
+
{
|
737 |
+
"cell_type": "code",
|
738 |
+
"execution_count": 21,
|
739 |
+
"id": "fb462016-78d7-46ea-8058-0d608f17ea65",
|
740 |
+
"metadata": {
|
741 |
+
"tags": []
|
742 |
+
},
|
743 |
+
"outputs": [
|
744 |
+
{
|
745 |
+
"name": "stderr",
|
746 |
+
"output_type": "stream",
|
747 |
+
"text": [
|
748 |
+
"/admin/home-ckadirt/miniconda3/envs/mindeye/lib/python3.10/site-packages/transformers/generation/utils.py:1260: UserWarning: Using the model-agnostic default `max_length` (=20) to control thegeneration length. We recommend setting `max_new_tokens` to control the maximum length of the generation.\n",
|
749 |
+
" warnings.warn(\n"
|
750 |
+
]
|
751 |
+
}
|
752 |
+
],
|
753 |
+
"source": [
|
754 |
+
"outputs_test, text_test = embeds_to_captions_b2(embeds_test)"
|
755 |
+
]
|
756 |
+
},
|
757 |
+
{
|
758 |
+
"cell_type": "code",
|
759 |
+
"execution_count": 22,
|
760 |
+
"id": "6a95fcdf-db87-4c02-9728-09f85605fb1c",
|
761 |
+
"metadata": {
|
762 |
+
"tags": []
|
763 |
+
},
|
764 |
+
"outputs": [
|
765 |
+
{
|
766 |
+
"data": {
|
767 |
+
"text/plain": [
|
768 |
+
"['a cat sitting on a toilet seat\\n',\n",
|
769 |
+
" 'a person cutting a pizza on a cutting board\\n',\n",
|
770 |
+
" 'a sandwich and a drink on a table\\n',\n",
|
771 |
+
" 'a man crossing the street in front of a truck\\n',\n",
|
772 |
+
" 'a giraffe standing in front of trees\\n',\n",
|
773 |
+
" 'three men standing together\\n',\n",
|
774 |
+
" 'a bird standing on a rock next to a body of water\\n',\n",
|
775 |
+
" 'two men sitting on a street corner in asia\\n',\n",
|
776 |
+
" 'a woman and two children playing tennis on a court\\n',\n",
|
777 |
+
" 'a tall brick building with a clock on the side\\n',\n",
|
778 |
+
" 'a train is on the tracks\\n',\n",
|
779 |
+
" 'a man and woman in the water with a surfboard\\n',\n",
|
780 |
+
" 'a living room with a desk and a chair\\n',\n",
|
781 |
+
" 'a group of men on a basketball court\\n',\n",
|
782 |
+
" 'a man holding an umbrella\\n',\n",
|
783 |
+
" 'a man in a red shirt\\n',\n",
|
784 |
+
" 'a group of people holding cell phones and wine glasses\\n',\n",
|
785 |
+
" 'a laptop computer sitting on a table in front of a television\\n',\n",
|
786 |
+
" 'a baseball player is swinging a bat on a field\\n']"
|
787 |
+
]
|
788 |
+
},
|
789 |
+
"execution_count": 22,
|
790 |
+
"metadata": {},
|
791 |
+
"output_type": "execute_result"
|
792 |
+
}
|
793 |
+
],
|
794 |
+
"source": [
|
795 |
+
"text_test"
|
796 |
+
]
|
797 |
+
},
|
798 |
+
{
|
799 |
+
"cell_type": "code",
|
800 |
+
"execution_count": 23,
|
801 |
+
"id": "9ac69fbd-55db-435b-bed6-5ae9186450e3",
|
802 |
+
"metadata": {
|
803 |
+
"tags": []
|
804 |
+
},
|
805 |
+
"outputs": [],
|
806 |
+
"source": [
|
807 |
+
"#inputss['pixel_values'].shape"
|
808 |
+
]
|
809 |
+
},
|
810 |
+
{
|
811 |
+
"cell_type": "code",
|
812 |
+
"execution_count": 24,
|
813 |
+
"id": "0524f498-c8da-4e8a-8970-d75d2d0f6b8b",
|
814 |
+
"metadata": {
|
815 |
+
"tags": []
|
816 |
+
},
|
817 |
+
"outputs": [],
|
818 |
+
"source": [
|
819 |
+
"#image_test.shape"
|
820 |
+
]
|
821 |
+
},
|
822 |
+
{
|
823 |
+
"cell_type": "code",
|
824 |
+
"execution_count": 25,
|
825 |
+
"id": "5417541b-49eb-4e43-a3e2-d937d9653e04",
|
826 |
+
"metadata": {
|
827 |
+
"tags": []
|
828 |
+
},
|
829 |
+
"outputs": [],
|
830 |
+
"source": [
|
831 |
+
"max_lr = 1e-4"
|
832 |
+
]
|
833 |
+
},
|
834 |
+
{
|
835 |
+
"cell_type": "code",
|
836 |
+
"execution_count": 26,
|
837 |
+
"id": "da0ce190-1b3e-4c12-9e9f-91cbc076d044",
|
838 |
+
"metadata": {
|
839 |
+
"tags": []
|
840 |
+
},
|
841 |
+
"outputs": [],
|
842 |
+
"source": [
|
843 |
+
"clip_seq_dim = 257 #blip2 image encoder shapes\n",
|
844 |
+
"clip_emb_dim = 1408 #blip2 image encoder shapes\n",
|
845 |
+
"hidden_dim = 2048"
|
846 |
+
]
|
847 |
+
},
|
848 |
+
{
|
849 |
+
"cell_type": "markdown",
|
850 |
+
"id": "5b79bd38-6990-4504-8d45-4a68d57d8885",
|
851 |
+
"metadata": {},
|
852 |
+
"source": [
|
853 |
+
"### SD VAE (blurry images)"
|
854 |
+
]
|
855 |
+
},
|
856 |
+
{
|
857 |
+
"cell_type": "code",
|
858 |
+
"execution_count": 27,
|
859 |
+
"id": "01baff79-8114-482b-b115-6f05aa8ad691",
|
860 |
+
"metadata": {
|
861 |
+
"tags": []
|
862 |
+
},
|
863 |
+
"outputs": [
|
864 |
+
{
|
865 |
+
"name": "stdout",
|
866 |
+
"output_type": "stream",
|
867 |
+
"text": [
|
868 |
+
"param counts:\n",
|
869 |
+
"83,653,863 total\n",
|
870 |
+
"0 trainable\n"
|
871 |
+
]
|
872 |
+
}
|
873 |
+
],
|
874 |
+
"source": [
|
875 |
+
"from diffusers import AutoencoderKL\n",
|
876 |
+
"autoenc = AutoencoderKL.from_pretrained(\"madebyollin/sdxl-vae-fp16-fix\", torch_dtype=torch.float16, cache_dir=\"/fsx/proj-fmri/shared/cache\")\n",
|
877 |
+
"# autoenc.load_state_dict(torch.load('../train_logs/sdxl_vae_normed/best.pth')[\"model_state_dict\"])\n",
|
878 |
+
"autoenc.eval()\n",
|
879 |
+
"autoenc.requires_grad_(False)\n",
|
880 |
+
"autoenc.to(device)\n",
|
881 |
+
"utils.count_params(autoenc)"
|
882 |
+
]
|
883 |
+
},
|
884 |
+
{
|
885 |
+
"cell_type": "markdown",
|
886 |
+
"id": "260e5e4a-f697-4b2c-88fc-01f6a54886c0",
|
887 |
+
"metadata": {},
|
888 |
+
"source": [
|
889 |
+
"### MindEye modules"
|
890 |
+
]
|
891 |
+
},
|
892 |
+
{
|
893 |
+
"cell_type": "code",
|
894 |
+
"execution_count": 28,
|
895 |
+
"id": "c44c271b-173f-472e-b059-a2eda0f4c4c5",
|
896 |
+
"metadata": {
|
897 |
+
"tags": []
|
898 |
+
},
|
899 |
+
"outputs": [
|
900 |
+
{
|
901 |
+
"data": {
|
902 |
+
"text/plain": [
|
903 |
+
"MindEyeModule()"
|
904 |
+
]
|
905 |
+
},
|
906 |
+
"execution_count": 28,
|
907 |
+
"metadata": {},
|
908 |
+
"output_type": "execute_result"
|
909 |
+
}
|
910 |
+
],
|
911 |
+
"source": [
|
912 |
+
"class MindEyeModule(nn.Module):\n",
|
913 |
+
" def __init__(self):\n",
|
914 |
+
" super(MindEyeModule, self).__init__()\n",
|
915 |
+
" def forward(self, x):\n",
|
916 |
+
" return x\n",
|
917 |
+
" \n",
|
918 |
+
"model = MindEyeModule()\n",
|
919 |
+
"model"
|
920 |
+
]
|
921 |
+
},
|
922 |
+
{
|
923 |
+
"cell_type": "code",
|
924 |
+
"execution_count": 29,
|
925 |
+
"id": "038a5d61-4769-40b9-a004-f4e7b5b38bb0",
|
926 |
+
"metadata": {
|
927 |
+
"tags": []
|
928 |
+
},
|
929 |
+
"outputs": [
|
930 |
+
{
|
931 |
+
"name": "stdout",
|
932 |
+
"output_type": "stream",
|
933 |
+
"text": [
|
934 |
+
"param counts:\n",
|
935 |
+
"32,215,040 total\n",
|
936 |
+
"32,215,040 trainable\n",
|
937 |
+
"param counts:\n",
|
938 |
+
"32,215,040 total\n",
|
939 |
+
"32,215,040 trainable\n",
|
940 |
+
"torch.Size([2, 1, 15729]) torch.Size([2, 1, 2048])\n"
|
941 |
+
]
|
942 |
+
}
|
943 |
+
],
|
944 |
+
"source": [
|
945 |
+
"class RidgeRegression(torch.nn.Module):\n",
|
946 |
+
" # make sure to add weight_decay when initializing optimizer\n",
|
947 |
+
" def __init__(self, input_size, out_features): \n",
|
948 |
+
" super(RidgeRegression, self).__init__()\n",
|
949 |
+
" self.out_features = out_features\n",
|
950 |
+
" self.linear = torch.nn.Linear(input_size, out_features)\n",
|
951 |
+
" def forward(self, x):\n",
|
952 |
+
" return self.linear(x)\n",
|
953 |
+
" \n",
|
954 |
+
"model.ridge = RidgeRegression(voxels.shape[1], out_features=hidden_dim)\n",
|
955 |
+
"utils.count_params(model.ridge)\n",
|
956 |
+
"utils.count_params(model)\n",
|
957 |
+
"\n",
|
958 |
+
"b = torch.randn((2,1,voxels.shape[1]))\n",
|
959 |
+
"print(b.shape, model.ridge(b).shape)"
|
960 |
+
]
|
961 |
+
},
|
962 |
+
{
|
963 |
+
"cell_type": "code",
|
964 |
+
"execution_count": 30,
|
965 |
+
"id": "3602c333-d029-465c-8fb4-c3ccffdba6fd",
|
966 |
+
"metadata": {
|
967 |
+
"tags": []
|
968 |
+
},
|
969 |
+
"outputs": [
|
970 |
+
{
|
971 |
+
"name": "stdout",
|
972 |
+
"output_type": "stream",
|
973 |
+
"text": [
|
974 |
+
"param counts:\n",
|
975 |
+
"772,419,072 total\n",
|
976 |
+
"772,419,072 trainable\n",
|
977 |
+
"param counts:\n",
|
978 |
+
"804,634,112 total\n",
|
979 |
+
"804,634,112 trainable\n",
|
980 |
+
"torch.Size([4, 2048])\n",
|
981 |
+
"torch.Size([4, 257, 1408])\n"
|
982 |
+
]
|
983 |
+
}
|
984 |
+
],
|
985 |
+
"source": [
|
986 |
+
"from functools import partial\n",
|
987 |
+
"from diffusers.models.vae import Decoder\n",
|
988 |
+
"class BrainNetwork(nn.Module):\n",
|
989 |
+
" def __init__(self, out_dim=768, in_dim=15724, clip_size=768, h=4096, n_blocks=4, norm_type='ln', act_first=False, drop=.15, blurry_dim=16):\n",
|
990 |
+
" super().__init__()\n",
|
991 |
+
" self.blurry_dim = blurry_dim\n",
|
992 |
+
" norm_func = partial(nn.BatchNorm1d, num_features=h) if norm_type == 'bn' else partial(nn.LayerNorm, normalized_shape=h)\n",
|
993 |
+
" act_fn = partial(nn.ReLU, inplace=True) if norm_type == 'bn' else nn.GELU\n",
|
994 |
+
" act_and_norm = (act_fn, norm_func) if act_first else (norm_func, act_fn)\n",
|
995 |
+
" self.lin0 = nn.Linear(in_dim, h)\n",
|
996 |
+
" self.mlp = nn.ModuleList([\n",
|
997 |
+
" nn.Sequential(\n",
|
998 |
+
" nn.Linear(h, h),\n",
|
999 |
+
" *[item() for item in act_and_norm],\n",
|
1000 |
+
" nn.Dropout(drop)\n",
|
1001 |
+
" ) for _ in range(n_blocks)\n",
|
1002 |
+
" ])\n",
|
1003 |
+
" self.lin1 = nn.Linear(h, out_dim, bias=True)\n",
|
1004 |
+
" # self.blin1 = nn.Linear(out_dim, blurry_dim, bias=True)\n",
|
1005 |
+
" self.n_blocks = n_blocks\n",
|
1006 |
+
" self.clip_size = clip_size\n",
|
1007 |
+
" self.clip_proj = nn.Sequential(\n",
|
1008 |
+
" nn.LayerNorm(clip_size),\n",
|
1009 |
+
" nn.GELU(),\n",
|
1010 |
+
" nn.Linear(clip_size, 2048),\n",
|
1011 |
+
" nn.LayerNorm(2048),\n",
|
1012 |
+
" nn.GELU(),\n",
|
1013 |
+
" nn.Linear(2048, 2048),\n",
|
1014 |
+
" nn.LayerNorm(2048),\n",
|
1015 |
+
" nn.GELU(),\n",
|
1016 |
+
" nn.Linear(2048, clip_size)\n",
|
1017 |
+
" )\n",
|
1018 |
+
" # self.upsampler = Decoder(\n",
|
1019 |
+
" # in_channels=64,\n",
|
1020 |
+
" # out_channels=4,\n",
|
1021 |
+
" # up_block_types=[\"UpDecoderBlock2D\",\"UpDecoderBlock2D\",\"UpDecoderBlock2D\"],\n",
|
1022 |
+
" # block_out_channels=[64, 128, 256],\n",
|
1023 |
+
" # layers_per_block=1,\n",
|
1024 |
+
" # )\n",
|
1025 |
+
" \n",
|
1026 |
+
" def forward(self, x):\n",
|
1027 |
+
" x = self.lin0(x)\n",
|
1028 |
+
" residual = x\n",
|
1029 |
+
" for res_block in range(self.n_blocks):\n",
|
1030 |
+
" x = self.mlp[res_block](x)\n",
|
1031 |
+
" x += residual\n",
|
1032 |
+
" residual = x\n",
|
1033 |
+
" x = x.reshape(len(x), -1)\n",
|
1034 |
+
" x = self.lin1(x)\n",
|
1035 |
+
" # b = self.blin1(x)\n",
|
1036 |
+
" # b = self.upsampler(b.reshape(len(b), -1, 7, 7))\n",
|
1037 |
+
" c = self.clip_proj(x.reshape(len(x), -1, self.clip_size))\n",
|
1038 |
+
" # return c, b\n",
|
1039 |
+
" return c\n",
|
1040 |
+
"\n",
|
1041 |
+
"model.backbone = BrainNetwork(h=2048, in_dim=hidden_dim, clip_size=clip_emb_dim, out_dim=clip_emb_dim*clip_seq_dim, blurry_dim=64*7*7) \n",
|
1042 |
+
"utils.count_params(model.backbone)\n",
|
1043 |
+
"utils.count_params(model)\n",
|
1044 |
+
"\n",
|
1045 |
+
"b = torch.randn((4,hidden_dim))\n",
|
1046 |
+
"print(b.shape)\n",
|
1047 |
+
"clip_ = model.backbone(b)\n",
|
1048 |
+
"print(clip_.shape)"
|
1049 |
+
]
|
1050 |
+
},
|
1051 |
+
{
|
1052 |
+
"cell_type": "code",
|
1053 |
+
"execution_count": 31,
|
1054 |
+
"id": "e14d0482-dc42-43b9-9ce1-953c32f2c9c1",
|
1055 |
+
"metadata": {
|
1056 |
+
"tags": []
|
1057 |
+
},
|
1058 |
+
"outputs": [
|
1059 |
+
{
|
1060 |
+
"name": "stdout",
|
1061 |
+
"output_type": "stream",
|
1062 |
+
"text": [
|
1063 |
+
"\n",
|
1064 |
+
"Done with model preparations!\n",
|
1065 |
+
"param counts:\n",
|
1066 |
+
"804,634,112 total\n",
|
1067 |
+
"804,634,112 trainable\n"
|
1068 |
+
]
|
1069 |
+
}
|
1070 |
+
],
|
1071 |
+
"source": [
|
1072 |
+
"no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']\n",
|
1073 |
+
"opt_grouped_parameters = [\n",
|
1074 |
+
" {'params': [p for n, p in model.ridge.named_parameters()], 'weight_decay': 1e-2},\n",
|
1075 |
+
" {'params': [p for n, p in model.backbone.named_parameters() if not any(nd in n for nd in no_decay)], 'weight_decay': 1e-2},\n",
|
1076 |
+
" {'params': [p for n, p in model.backbone.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0},\n",
|
1077 |
+
"]\n",
|
1078 |
+
"\n",
|
1079 |
+
"optimizer = torch.optim.AdamW(opt_grouped_parameters, lr=max_lr, betas=(0.9, 0.95))\n",
|
1080 |
+
"\n",
|
1081 |
+
"if lr_scheduler_type == 'linear':\n",
|
1082 |
+
" lr_scheduler = torch.optim.lr_scheduler.LinearLR(\n",
|
1083 |
+
" optimizer,\n",
|
1084 |
+
" total_iters=int(num_epochs*(num_train*num_devices//batch_size)),\n",
|
1085 |
+
" last_epoch=-1\n",
|
1086 |
+
" )\n",
|
1087 |
+
"elif lr_scheduler_type == 'cycle':\n",
|
1088 |
+
" total_steps=int(num_epochs*(num_train*num_devices//batch_size))\n",
|
1089 |
+
" lr_scheduler = torch.optim.lr_scheduler.OneCycleLR(\n",
|
1090 |
+
" optimizer, \n",
|
1091 |
+
" max_lr=max_lr,\n",
|
1092 |
+
" total_steps=total_steps,\n",
|
1093 |
+
" final_div_factor=1000,\n",
|
1094 |
+
" last_epoch=-1, pct_start=2/num_epochs\n",
|
1095 |
+
" )\n",
|
1096 |
+
" \n",
|
1097 |
+
"def save_ckpt(tag): \n",
|
1098 |
+
" ckpt_path = outdir+f'/{tag}.pth'\n",
|
1099 |
+
" print(f'saving {ckpt_path}',flush=True)\n",
|
1100 |
+
" unwrapped_model = accelerator.unwrap_model(model)\n",
|
1101 |
+
" try:\n",
|
1102 |
+
" torch.save({\n",
|
1103 |
+
" 'epoch': epoch,\n",
|
1104 |
+
" 'model_state_dict': unwrapped_model.state_dict(),\n",
|
1105 |
+
" 'optimizer_state_dict': optimizer.state_dict(),\n",
|
1106 |
+
" 'lr_scheduler': lr_scheduler.state_dict(),\n",
|
1107 |
+
" 'train_losses': losses,\n",
|
1108 |
+
" 'test_losses': test_losses,\n",
|
1109 |
+
" 'lrs': lrs,\n",
|
1110 |
+
" }, ckpt_path)\n",
|
1111 |
+
" except:\n",
|
1112 |
+
" print(\"Couldn't save... moving on to prevent crashing.\")\n",
|
1113 |
+
" del unwrapped_model\n",
|
1114 |
+
" \n",
|
1115 |
+
"print(\"\\nDone with model preparations!\")\n",
|
1116 |
+
"utils.count_params(model)"
|
1117 |
+
]
|
1118 |
+
},
|
1119 |
+
{
|
1120 |
+
"cell_type": "markdown",
|
1121 |
+
"id": "983f458b-35b8-49f2-b6db-80296cece730",
|
1122 |
+
"metadata": {},
|
1123 |
+
"source": [
|
1124 |
+
"# Weights and Biases"
|
1125 |
+
]
|
1126 |
+
},
|
1127 |
+
{
|
1128 |
+
"cell_type": "code",
|
1129 |
+
"execution_count": 32,
|
1130 |
+
"id": "0a25a662-daa8-4de9-9233-8364800fcb6b",
|
1131 |
+
"metadata": {
|
1132 |
+
"tags": []
|
1133 |
+
},
|
1134 |
+
"outputs": [
|
1135 |
+
{
|
1136 |
+
"name": "stdout",
|
1137 |
+
"output_type": "stream",
|
1138 |
+
"text": [
|
1139 |
+
"wandb mindeyev2 run captions\n"
|
1140 |
+
]
|
1141 |
+
},
|
1142 |
+
{
|
1143 |
+
"name": "stderr",
|
1144 |
+
"output_type": "stream",
|
1145 |
+
"text": [
|
1146 |
+
"\u001b[34m\u001b[1mwandb\u001b[0m: Currently logged in as: \u001b[33mckadirt\u001b[0m. Use \u001b[1m`wandb login --relogin`\u001b[0m to force relogin\n"
|
1147 |
+
]
|
1148 |
+
},
|
1149 |
+
{
|
1150 |
+
"name": "stdout",
|
1151 |
+
"output_type": "stream",
|
1152 |
+
"text": [
|
1153 |
+
"wandb_config:\n",
|
1154 |
+
" {'model_name': 'captions', 'batch_size': 128, 'num_epochs': 30, 'use_image_aug': False, 'max_lr': 0.0001, 'lr_scheduler_type': 'cycle', 'mixup_pct': 0.66, 'num_train': 24958, 'num_test': 2770, 'seed': 42, 'distributed': False, 'num_devices': 1, 'world_size': 1}\n"
|
1155 |
+
]
|
1156 |
+
},
|
1157 |
+
{
|
1158 |
+
"data": {
|
1159 |
+
"text/html": [
|
1160 |
+
"wandb version 0.16.0 is available! To upgrade, please run:\n",
|
1161 |
+
" $ pip install wandb --upgrade"
|
1162 |
+
],
|
1163 |
+
"text/plain": [
|
1164 |
+
"<IPython.core.display.HTML object>"
|
1165 |
+
]
|
1166 |
+
},
|
1167 |
+
"metadata": {},
|
1168 |
+
"output_type": "display_data"
|
1169 |
+
},
|
1170 |
+
{
|
1171 |
+
"data": {
|
1172 |
+
"text/html": [
|
1173 |
+
"Tracking run with wandb version 0.15.5"
|
1174 |
+
],
|
1175 |
+
"text/plain": [
|
1176 |
+
"<IPython.core.display.HTML object>"
|
1177 |
+
]
|
1178 |
+
},
|
1179 |
+
"metadata": {},
|
1180 |
+
"output_type": "display_data"
|
1181 |
+
},
|
1182 |
+
{
|
1183 |
+
"data": {
|
1184 |
+
"text/html": [
|
1185 |
+
"Run data is saved locally in <code>/fsx/proj-fmri/ckadirt/MindEyeV2/src/wandb/run-20231119_163615-o1xwsqre</code>"
|
1186 |
+
],
|
1187 |
+
"text/plain": [
|
1188 |
+
"<IPython.core.display.HTML object>"
|
1189 |
+
]
|
1190 |
+
},
|
1191 |
+
"metadata": {},
|
1192 |
+
"output_type": "display_data"
|
1193 |
+
},
|
1194 |
+
{
|
1195 |
+
"data": {
|
1196 |
+
"text/html": [
|
1197 |
+
"Syncing run <strong><a href='https://stability.wandb.io/ckadirt/mindeyev2/runs/o1xwsqre' target=\"_blank\">captions</a></strong> to <a href='https://stability.wandb.io/ckadirt/mindeyev2' target=\"_blank\">Weights & Biases</a> (<a href='https://wandb.me/run' target=\"_blank\">docs</a>)<br/>"
|
1198 |
+
],
|
1199 |
+
"text/plain": [
|
1200 |
+
"<IPython.core.display.HTML object>"
|
1201 |
+
]
|
1202 |
+
},
|
1203 |
+
"metadata": {},
|
1204 |
+
"output_type": "display_data"
|
1205 |
+
},
|
1206 |
+
{
|
1207 |
+
"data": {
|
1208 |
+
"text/html": [
|
1209 |
+
" View project at <a href='https://stability.wandb.io/ckadirt/mindeyev2' target=\"_blank\">https://stability.wandb.io/ckadirt/mindeyev2</a>"
|
1210 |
+
],
|
1211 |
+
"text/plain": [
|
1212 |
+
"<IPython.core.display.HTML object>"
|
1213 |
+
]
|
1214 |
+
},
|
1215 |
+
"metadata": {},
|
1216 |
+
"output_type": "display_data"
|
1217 |
+
},
|
1218 |
+
{
|
1219 |
+
"data": {
|
1220 |
+
"text/html": [
|
1221 |
+
" View run at <a href='https://stability.wandb.io/ckadirt/mindeyev2/runs/o1xwsqre' target=\"_blank\">https://stability.wandb.io/ckadirt/mindeyev2/runs/o1xwsqre</a>"
|
1222 |
+
],
|
1223 |
+
"text/plain": [
|
1224 |
+
"<IPython.core.display.HTML object>"
|
1225 |
+
]
|
1226 |
+
},
|
1227 |
+
"metadata": {},
|
1228 |
+
"output_type": "display_data"
|
1229 |
+
}
|
1230 |
+
],
|
1231 |
+
"source": [
|
1232 |
+
"# params for wandb\n",
|
1233 |
+
"if local_rank==0 and True: # only use main process for wandb logging\n",
|
1234 |
+
" import wandb\n",
|
1235 |
+
" \n",
|
1236 |
+
" wandb_project = 'mindeyev2'\n",
|
1237 |
+
" wandb_run = model_name\n",
|
1238 |
+
" wandb_notes = ''\n",
|
1239 |
+
" \n",
|
1240 |
+
" print(f\"wandb {wandb_project} run {wandb_run}\")\n",
|
1241 |
+
" wandb.login(host='https://stability.wandb.io')#, relogin=True)\n",
|
1242 |
+
" wandb_config = {\n",
|
1243 |
+
" \"model_name\": model_name,\n",
|
1244 |
+
" \"batch_size\": batch_size,\n",
|
1245 |
+
" \"num_epochs\": num_epochs,\n",
|
1246 |
+
" \"use_image_aug\": use_image_aug,\n",
|
1247 |
+
" \"max_lr\": max_lr,\n",
|
1248 |
+
" \"lr_scheduler_type\": lr_scheduler_type,\n",
|
1249 |
+
" \"mixup_pct\": mixup_pct,\n",
|
1250 |
+
" \"num_train\": num_train,\n",
|
1251 |
+
" \"num_test\": num_test,\n",
|
1252 |
+
" \"seed\": seed,\n",
|
1253 |
+
" \"distributed\": distributed,\n",
|
1254 |
+
" \"num_devices\": num_devices,\n",
|
1255 |
+
" \"world_size\": world_size,\n",
|
1256 |
+
" }\n",
|
1257 |
+
" print(\"wandb_config:\\n\",wandb_config)\n",
|
1258 |
+
" if False: # wandb_auto_resume\n",
|
1259 |
+
" print(\"wandb_id:\",model_name)\n",
|
1260 |
+
" wandb.init(\n",
|
1261 |
+
" id = model_name,\n",
|
1262 |
+
" project=wandb_project,\n",
|
1263 |
+
" name=wandb_run,\n",
|
1264 |
+
" config=wandb_config,\n",
|
1265 |
+
" notes=wandb_notes,\n",
|
1266 |
+
" resume=\"allow\",\n",
|
1267 |
+
" )\n",
|
1268 |
+
" else:\n",
|
1269 |
+
" wandb.init(\n",
|
1270 |
+
" project=wandb_project,\n",
|
1271 |
+
" name=wandb_run,\n",
|
1272 |
+
" config=wandb_config,\n",
|
1273 |
+
" notes=wandb_notes,\n",
|
1274 |
+
" )\n",
|
1275 |
+
"else:\n",
|
1276 |
+
" wandb_log = False"
|
1277 |
+
]
|
1278 |
+
},
|
1279 |
+
{
|
1280 |
+
"cell_type": "code",
|
1281 |
+
"execution_count": 33,
|
1282 |
+
"id": "4e5de216-5318-4b45-ac02-113f03105adc",
|
1283 |
+
"metadata": {},
|
1284 |
+
"outputs": [
|
1285 |
+
{
|
1286 |
+
"data": {
|
1287 |
+
"text/html": [
|
1288 |
+
"<pre style=\"white-space:pre;overflow-x:auto;line-height:normal;font-family:Menlo,'DejaVu Sans Mono',consolas,'Courier New',monospace\"><span style=\"color: #ff0000; text-decoration-color: #ff0000\">╭──────────────────────────────────────────────────────────────────────────────────────────────────╮</span>\n",
|
1289 |
+
"<span style=\"color: #ff0000; text-decoration-color: #ff0000\">│</span> n++ <span style=\"color: #ff0000; text-decoration-color: #ff0000\">│</span>\n",
|
1290 |
+
"<span style=\"color: #ff0000; text-decoration-color: #ff0000\">│</span> <span style=\"color: #ff0000; text-decoration-color: #ff0000; font-weight: bold\">▲</span> <span style=\"color: #ff0000; text-decoration-color: #ff0000\">│</span>\n",
|
1291 |
+
"<span style=\"color: #ff0000; text-decoration-color: #ff0000\">╰──────────────────────────────────────────────────────────────────────────────────────────────────╯</span>\n",
|
1292 |
+
"<span style=\"color: #ff0000; text-decoration-color: #ff0000; font-weight: bold\">SyntaxError: </span>invalid syntax\n",
|
1293 |
+
"</pre>\n"
|
1294 |
+
],
|
1295 |
+
"text/plain": [
|
1296 |
+
"\u001b[91m╭──────────────────────────────────────────────────────────────────────────────────────────────────╮\u001b[0m\n",
|
1297 |
+
"\u001b[91m│\u001b[0m n++ \u001b[91m│\u001b[0m\n",
|
1298 |
+
"\u001b[91m���\u001b[0m \u001b[1;91m▲\u001b[0m \u001b[91m│\u001b[0m\n",
|
1299 |
+
"\u001b[91m╰──────────────────────────────────────────────────────────────────────────────────────────────────╯\u001b[0m\n",
|
1300 |
+
"\u001b[1;91mSyntaxError: \u001b[0minvalid syntax\n"
|
1301 |
+
]
|
1302 |
+
},
|
1303 |
+
"metadata": {},
|
1304 |
+
"output_type": "display_data"
|
1305 |
+
}
|
1306 |
+
],
|
1307 |
+
"source": [
|
1308 |
+
"n++"
|
1309 |
+
]
|
1310 |
+
},
|
1311 |
+
{
|
1312 |
+
"cell_type": "markdown",
|
1313 |
+
"id": "5b0ae095-3203-4eb8-8606-acc2db6ccf20",
|
1314 |
+
"metadata": {},
|
1315 |
+
"source": [
|
1316 |
+
"# More custom functions"
|
1317 |
+
]
|
1318 |
+
},
|
1319 |
+
{
|
1320 |
+
"cell_type": "code",
|
1321 |
+
"execution_count": null,
|
1322 |
+
"id": "827ead88-7eb3-47cc-82da-31565063b927",
|
1323 |
+
"metadata": {
|
1324 |
+
"tags": []
|
1325 |
+
},
|
1326 |
+
"outputs": [],
|
1327 |
+
"source": [
|
1328 |
+
"# using the same preprocessing as was used in MindEye + BrainDiffuser\n",
|
1329 |
+
"pixcorr_preprocess = transforms.Compose([\n",
|
1330 |
+
" transforms.Resize(425, interpolation=transforms.InterpolationMode.BILINEAR),\n",
|
1331 |
+
"])\n",
|
1332 |
+
"def pixcorr(images,brains):\n",
|
1333 |
+
" # Flatten images while keeping the batch dimension\n",
|
1334 |
+
" all_images_flattened = pixcorr_preprocess(images).reshape(len(images), -1)\n",
|
1335 |
+
" all_brain_recons_flattened = pixcorr_preprocess(brains).view(len(brains), -1)\n",
|
1336 |
+
" corrmean = torch.diag(utils.batchwise_pearson_correlation(all_images_flattened, all_brain_recons_flattened)).mean()\n",
|
1337 |
+
" return corrmean"
|
1338 |
+
]
|
1339 |
+
},
|
1340 |
+
{
|
1341 |
+
"cell_type": "markdown",
|
1342 |
+
"id": "d5690151-2131-4918-b750-e869cbd1a8a8",
|
1343 |
+
"metadata": {},
|
1344 |
+
"source": [
|
1345 |
+
"# Main"
|
1346 |
+
]
|
1347 |
+
},
|
1348 |
+
{
|
1349 |
+
"cell_type": "code",
|
1350 |
+
"execution_count": null,
|
1351 |
+
"id": "12de6387-6e18-4e4b-b5ce-a847d625330a",
|
1352 |
+
"metadata": {
|
1353 |
+
"tags": []
|
1354 |
+
},
|
1355 |
+
"outputs": [],
|
1356 |
+
"source": [
|
1357 |
+
"epoch = 0\n",
|
1358 |
+
"losses, test_losses, lrs = [], [], []\n",
|
1359 |
+
"best_test_loss = 1e9\n",
|
1360 |
+
"soft_loss_temps = utils.cosine_anneal(0.004, 0.0075, num_epochs - int(mixup_pct * num_epochs))\n",
|
1361 |
+
"\n",
|
1362 |
+
"# Optionally resume from checkpoint #\n",
|
1363 |
+
"if resume_from_ckpt:\n",
|
1364 |
+
" print(\"\\n---resuming from last.pth ckpt---\\n\")\n",
|
1365 |
+
" try:\n",
|
1366 |
+
" checkpoint = torch.load(outdir+'/last.pth', map_location='cpu')\n",
|
1367 |
+
" except:\n",
|
1368 |
+
" print('last.pth failed... trying last_backup.pth')\n",
|
1369 |
+
" checkpoint = torch.load(outdir+'/last_backup.pth', map_location='cpu')\n",
|
1370 |
+
" epoch = checkpoint['epoch']\n",
|
1371 |
+
" print(\"Epoch\",epoch)\n",
|
1372 |
+
" optimizer.load_state_dict(checkpoint['optimizer_state_dict'])\n",
|
1373 |
+
" lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])\n",
|
1374 |
+
" diffusion_diffuser.load_state_dict(checkpoint['model_state_dict'])\n",
|
1375 |
+
" del checkpoint\n",
|
1376 |
+
"elif wandb_log:\n",
|
1377 |
+
" if wandb.run.resumed:\n",
|
1378 |
+
" print(\"\\n---resuming from last.pth ckpt---\\n\")\n",
|
1379 |
+
" try:\n",
|
1380 |
+
" checkpoint = torch.load(outdir+'/last.pth', map_location='cpu')\n",
|
1381 |
+
" except:\n",
|
1382 |
+
" print('last.pth failed... trying last_backup.pth')\n",
|
1383 |
+
" checkpoint = torch.load(outdir+'/last_backup.pth', map_location='cpu')\n",
|
1384 |
+
" epoch = checkpoint['epoch']\n",
|
1385 |
+
" print(\"Epoch\",epoch)\n",
|
1386 |
+
" optimizer.load_state_dict(checkpoint['optimizer_state_dict'])\n",
|
1387 |
+
" lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])\n",
|
1388 |
+
" diffusion_diffuser.load_state_dict(checkpoint['model_state_dict'])\n",
|
1389 |
+
" del checkpoint\n",
|
1390 |
+
"torch.cuda.empty_cache()"
|
1391 |
+
]
|
1392 |
+
},
|
1393 |
+
{
|
1394 |
+
"cell_type": "code",
|
1395 |
+
"execution_count": null,
|
1396 |
+
"id": "99f09f76-4481-4133-b09a-a22b10dbc0c4",
|
1397 |
+
"metadata": {
|
1398 |
+
"tags": []
|
1399 |
+
},
|
1400 |
+
"outputs": [],
|
1401 |
+
"source": [
|
1402 |
+
"model, optimizer, train_dl, test_dl, lr_scheduler = accelerator.prepare(\n",
|
1403 |
+
"model, optimizer, train_dl, test_dl, lr_scheduler\n",
|
1404 |
+
")"
|
1405 |
+
]
|
1406 |
+
},
|
1407 |
+
{
|
1408 |
+
"cell_type": "code",
|
1409 |
+
"execution_count": null,
|
1410 |
+
"id": "bfeeda32-82ca-4364-bce1-eaa41b4f3e25",
|
1411 |
+
"metadata": {
|
1412 |
+
"tags": []
|
1413 |
+
},
|
1414 |
+
"outputs": [],
|
1415 |
+
"source": [
|
1416 |
+
"\"\"\"transform = transforms.Compose(\n",
|
1417 |
+
" [\n",
|
1418 |
+
" transforms.Resize(\n",
|
1419 |
+
" (224, 224),\n",
|
1420 |
+
" ),\n",
|
1421 |
+
" transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)),\n",
|
1422 |
+
" ]\n",
|
1423 |
+
" )\n",
|
1424 |
+
"\n",
|
1425 |
+
"def tensor_2_embed(image): \n",
|
1426 |
+
" image_for_blip2 = transform(image)\n",
|
1427 |
+
" \n",
|
1428 |
+
" #Generate embeddings\n",
|
1429 |
+
" with blip2_model.maybe_autocast():\n",
|
1430 |
+
" blip2_target = blip2_model.ln_vision(blip2_model.visual_encoder(image_for_blip2))\n",
|
1431 |
+
" \n",
|
1432 |
+
" return blip2_target\n",
|
1433 |
+
"\n",
|
1434 |
+
"def embed_2_caption(image_embeds, model):\n",
|
1435 |
+
" image_embeds = image_embeds.float()\n",
|
1436 |
+
" image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(\n",
|
1437 |
+
" image.device)\n",
|
1438 |
+
"\n",
|
1439 |
+
" query_tokens = model.query_tokens.expand(image_embeds.shape[0], -1, -1)\n",
|
1440 |
+
" query_output = model.Qformer.bert(\n",
|
1441 |
+
" query_embeds=query_tokens,\n",
|
1442 |
+
" encoder_hidden_states=image_embeds,\n",
|
1443 |
+
" encoder_attention_mask=image_atts,\n",
|
1444 |
+
" return_dict=True)\n",
|
1445 |
+
"\n",
|
1446 |
+
" inputs_t5 = model.t5_proj(query_output.last_hidden_state)\n",
|
1447 |
+
" atts_t5 = torch.ones(inputs_t5.size()[:-1], dtype=torch.long).to(image.device)\n",
|
1448 |
+
" prompt = model.prompt\n",
|
1449 |
+
" input_tokens = model.t5_tokenizer(\n",
|
1450 |
+
" prompt, padding=\"longest\", return_tensors=\"pt\"\n",
|
1451 |
+
" ).to(image.device)\n",
|
1452 |
+
" encoder_atts = torch.cat([atts_t5, input_tokens.attention_mask], dim=1)\n",
|
1453 |
+
" \n",
|
1454 |
+
" with model.maybe_autocast(dtype=torch.bfloat16):\n",
|
1455 |
+
" inputs_embeds = model.t5_model.encoder.embed_tokens(input_tokens.input_ids)\n",
|
1456 |
+
" inputs_embeds = torch.cat([inputs_t5, inputs_embeds], dim=1)\n",
|
1457 |
+
"\n",
|
1458 |
+
" outputs = model.t5_model.generate(\n",
|
1459 |
+
" inputs_embeds=inputs_embeds,\n",
|
1460 |
+
" attention_mask=encoder_atts)\n",
|
1461 |
+
" output_text = model.t5_tokenizer.batch_decode(\n",
|
1462 |
+
" outputs, skip_special_tokens=True)\n",
|
1463 |
+
" \n",
|
1464 |
+
" return output_text\"\"\""
|
1465 |
+
]
|
1466 |
+
},
|
1467 |
+
{
|
1468 |
+
"cell_type": "code",
|
1469 |
+
"execution_count": null,
|
1470 |
+
"id": "636b4684-df9a-4e29-8683-86fb035ba690",
|
1471 |
+
"metadata": {
|
1472 |
+
"tags": []
|
1473 |
+
},
|
1474 |
+
"outputs": [],
|
1475 |
+
"source": [
|
1476 |
+
"wandb_log = True"
|
1477 |
+
]
|
1478 |
+
},
|
1479 |
+
{
|
1480 |
+
"cell_type": "code",
|
1481 |
+
"execution_count": null,
|
1482 |
+
"id": "60be0d5f-3e94-4612-9373-61b53d836393",
|
1483 |
+
"metadata": {
|
1484 |
+
"tags": []
|
1485 |
+
},
|
1486 |
+
"outputs": [],
|
1487 |
+
"source": [
|
1488 |
+
"print(f\"{model_name} starting with epoch {epoch} / {num_epochs}\")\n",
|
1489 |
+
"progress_bar = tqdm(range(epoch,num_epochs), ncols=1200, disable=(local_rank!=0))\n",
|
1490 |
+
"test_image, test_voxel = None, None\n",
|
1491 |
+
"mse = nn.MSELoss()\n",
|
1492 |
+
"for epoch in progress_bar:\n",
|
1493 |
+
" model.train()\n",
|
1494 |
+
" \n",
|
1495 |
+
" fwd_percent_correct = 0.\n",
|
1496 |
+
" bwd_percent_correct = 0.\n",
|
1497 |
+
" test_fwd_percent_correct = 0.\n",
|
1498 |
+
" test_bwd_percent_correct = 0.\n",
|
1499 |
+
"\n",
|
1500 |
+
" loss_clip_total = 0.\n",
|
1501 |
+
" loss_blurry_total = 0.\n",
|
1502 |
+
" test_loss_clip_total = 0.\n",
|
1503 |
+
" test_loss_blurry_total = 0.\n",
|
1504 |
+
"\n",
|
1505 |
+
" blurry_pixcorr = 0.\n",
|
1506 |
+
" test_blurry_pixcorr = 0. # needs >.456 to beat low-level subj01 results in mindeye v1\n",
|
1507 |
+
" \n",
|
1508 |
+
" for train_i, (behav, past_behav, future_behav, old_behav) in enumerate(train_dl):\n",
|
1509 |
+
" if epoch == 0:\n",
|
1510 |
+
" lrs.append(0)\n",
|
1511 |
+
" break\n",
|
1512 |
+
" with torch.cuda.amp.autocast():\n",
|
1513 |
+
" optimizer.zero_grad()\n",
|
1514 |
+
"\n",
|
1515 |
+
" voxel = voxels[behav[:,0,5].cpu().long()].to(device)\n",
|
1516 |
+
" \n",
|
1517 |
+
" image = images[behav[:,0,0].cpu().long()].to(device).float()\n",
|
1518 |
+
"\n",
|
1519 |
+
" # blurry_image_enc = autoenc.encode(image).latent_dist.mode()\n",
|
1520 |
+
" \n",
|
1521 |
+
" if use_image_aug: image = img_augment(image)\n",
|
1522 |
+
" # clip_target = clip_model.embed_image(image)\n",
|
1523 |
+
" clip_target = embed_images_b2(image)[0].to(device) #####CHANGED\n",
|
1524 |
+
" assert not torch.any(torch.isnan(clip_target))\n",
|
1525 |
+
" \n",
|
1526 |
+
" if epoch < int(mixup_pct * num_epochs):\n",
|
1527 |
+
" voxel, perm, betas, select = utils.mixco(voxel)\n",
|
1528 |
+
"\n",
|
1529 |
+
" voxel_ridge = model.ridge(voxel)\n",
|
1530 |
+
" \n",
|
1531 |
+
" # clip_voxels, blurry_image_enc_ = model.backbone(voxel_ridge)\n",
|
1532 |
+
" clip_voxels = model.backbone(voxel_ridge)\n",
|
1533 |
+
" \n",
|
1534 |
+
" clip_voxels_norm = nn.functional.normalize(clip_voxels.flatten(1), dim=-1)\n",
|
1535 |
+
" clip_target_norm = nn.functional.normalize(clip_target.flatten(1), dim=-1)\n",
|
1536 |
+
"\n",
|
1537 |
+
" if epoch < int(mixup_pct * num_epochs): \n",
|
1538 |
+
" loss_clip = utils.mixco_nce(\n",
|
1539 |
+
" clip_voxels_norm,\n",
|
1540 |
+
" clip_target_norm,\n",
|
1541 |
+
" temp=.006, \n",
|
1542 |
+
" perm=perm, betas=betas, select=select)\n",
|
1543 |
+
" else:\n",
|
1544 |
+
" epoch_temp = soft_loss_temps[epoch-int(mixup_pct*num_epochs)]\n",
|
1545 |
+
" loss_clip = utils.soft_clip_loss(\n",
|
1546 |
+
" clip_voxels_norm,\n",
|
1547 |
+
" clip_target_norm,\n",
|
1548 |
+
" temp=epoch_temp)\n",
|
1549 |
+
" \n",
|
1550 |
+
" loss_mse= mse(clip_voxels, clip_target)\n",
|
1551 |
+
"\n",
|
1552 |
+
" # loss_blurry = mse(blurry_image_enc_, blurry_image_enc) \n",
|
1553 |
+
"\n",
|
1554 |
+
" loss_clip_total += loss_clip.item()\n",
|
1555 |
+
" # loss_blurry_total += loss_blurry.item()\n",
|
1556 |
+
"\n",
|
1557 |
+
" # loss = loss_blurry + loss_clip\n",
|
1558 |
+
" loss = 0.7 * loss_clip + 0.3 * loss_mse\n",
|
1559 |
+
" if (train_i % 10 == 0):\n",
|
1560 |
+
" print(train_i, loss)\n",
|
1561 |
+
" # print(batch_size)\n",
|
1562 |
+
" utils.check_loss(loss)\n",
|
1563 |
+
" accelerator.backward(loss)\n",
|
1564 |
+
" optimizer.step()\n",
|
1565 |
+
" \n",
|
1566 |
+
" losses.append(loss.item())\n",
|
1567 |
+
" lrs.append(optimizer.param_groups[0]['lr'])\n",
|
1568 |
+
" \n",
|
1569 |
+
" # forward and backward top 1 accuracy \n",
|
1570 |
+
" labels = torch.arange(len(clip_target_norm)).to(clip_voxels_norm.device) \n",
|
1571 |
+
" fwd_percent_correct += utils.topk(utils.batchwise_cosine_similarity(clip_voxels_norm, clip_target_norm), labels, k=1)\n",
|
1572 |
+
" bwd_percent_correct += utils.topk(utils.batchwise_cosine_similarity(clip_target_norm, clip_voxels_norm), labels, k=1)\n",
|
1573 |
+
"\n",
|
1574 |
+
" # with torch.no_grad():\n",
|
1575 |
+
" # # only doing pixcorr eval on a subset (8) of the samples per batch because its costly & slow to compute autoenc.decode()\n",
|
1576 |
+
" # random_samps = np.random.choice(np.arange(len(voxel)), size=8, replace=False)\n",
|
1577 |
+
" # blurry_recon_images = autoenc.decode(blurry_image_enc_[random_samps]).sample.clamp(0,1)\n",
|
1578 |
+
" # blurry_pixcorr += pixcorr(image[random_samps], blurry_recon_images)\n",
|
1579 |
+
"\n",
|
1580 |
+
" if lr_scheduler_type is not None:\n",
|
1581 |
+
" lr_scheduler.step()\n",
|
1582 |
+
" \n",
|
1583 |
+
" model.eval()\n",
|
1584 |
+
" for test_i, (behav, past_behav, future_behav, old_behav) in enumerate(test_dl):\n",
|
1585 |
+
" with torch.cuda.amp.autocast():\n",
|
1586 |
+
" with torch.no_grad(): \n",
|
1587 |
+
" # all test samples should be loaded per batch such that test_i should never exceed 0\n",
|
1588 |
+
" if len(behav) != num_test: print(\"!\",len(behav),num_test)\n",
|
1589 |
+
" \n",
|
1590 |
+
" ## Average same-image repeats ##\n",
|
1591 |
+
" if test_image is None:\n",
|
1592 |
+
" voxel = voxels[behav[:,0,5].cpu().long()].to(device)\n",
|
1593 |
+
" \n",
|
1594 |
+
" image = behav[:,0,0].cpu().long()\n",
|
1595 |
+
" \n",
|
1596 |
+
" unique_image, sort_indices = torch.unique(image, return_inverse=True)\n",
|
1597 |
+
" for im in unique_image:\n",
|
1598 |
+
" locs = torch.where(im == image)[0]\n",
|
1599 |
+
" if test_image is None:\n",
|
1600 |
+
" test_image = images[im][None]\n",
|
1601 |
+
" test_voxel = torch.mean(voxel[locs],axis=0)[None]\n",
|
1602 |
+
" else:\n",
|
1603 |
+
" test_image = torch.vstack((test_image, images[im][None]))\n",
|
1604 |
+
" test_voxel = torch.vstack((test_voxel, torch.mean(voxel[locs],axis=0)[None]))\n",
|
1605 |
+
" \n",
|
1606 |
+
" # sample of batch_size\n",
|
1607 |
+
" random_indices = torch.arange(len(test_voxel))[:batch_size] #torch.randperm(len(test_voxel))[:300]\n",
|
1608 |
+
" voxel = test_voxel[random_indices].to(device)\n",
|
1609 |
+
" image = test_image[random_indices].to(device)\n",
|
1610 |
+
" assert len(image) == batch_size\n",
|
1611 |
+
" \n",
|
1612 |
+
" # blurry_image_enc = autoenc.encode(image).latent_dist.mode()\n",
|
1613 |
+
" \n",
|
1614 |
+
" # clip_target = clip_model.embed_image(image.float())\n",
|
1615 |
+
" clip_target = embed_images_b2(image)[0].to(device) #####CHANGED\n",
|
1616 |
+
" \n",
|
1617 |
+
" voxel_ridge = model.ridge(voxel)\n",
|
1618 |
+
" \n",
|
1619 |
+
" # clip_voxels, blurry_image_enc_ = model.backbone(voxel_ridge)\n",
|
1620 |
+
" clip_voxels = model.backbone(voxel_ridge)\n",
|
1621 |
+
" \n",
|
1622 |
+
" clip_voxels_norm = nn.functional.normalize(clip_voxels.flatten(1), dim=-1)\n",
|
1623 |
+
" clip_target_norm = nn.functional.normalize(clip_target.flatten(1), dim=-1)\n",
|
1624 |
+
" \n",
|
1625 |
+
" # loss_clip = utils.soft_clip_loss(\n",
|
1626 |
+
" # clip_voxels_norm,\n",
|
1627 |
+
" # clip_target_norm,\n",
|
1628 |
+
" # temp=.006)\n",
|
1629 |
+
" \n",
|
1630 |
+
" loss_clip = mse(clip_voxels, clip_target)\n",
|
1631 |
+
"\n",
|
1632 |
+
" # loss_blurry = mse(blurry_image_enc_, blurry_image_enc)\n",
|
1633 |
+
" \n",
|
1634 |
+
" # loss = loss_blurry + loss_clip\n",
|
1635 |
+
" loss = loss_clip\n",
|
1636 |
+
" \n",
|
1637 |
+
" utils.check_loss(loss)\n",
|
1638 |
+
" \n",
|
1639 |
+
" test_losses.append(loss.item())\n",
|
1640 |
+
" \n",
|
1641 |
+
" # forward and backward top 1 accuracy \n",
|
1642 |
+
" labels = torch.arange(len(clip_target_norm)).to(clip_voxels_norm.device) \n",
|
1643 |
+
" test_fwd_percent_correct += utils.topk(utils.batchwise_cosine_similarity(clip_voxels_norm, clip_target_norm), labels, k=1)\n",
|
1644 |
+
" test_bwd_percent_correct += utils.topk(utils.batchwise_cosine_similarity(clip_target_norm, clip_voxels_norm), labels, k=1)\n",
|
1645 |
+
"\n",
|
1646 |
+
" # # halving the batch size because the decoder is computationally heavy\n",
|
1647 |
+
" # blurry_recon_images = autoenc.decode(blurry_image_enc_[:len(voxel)//2]).sample.clamp(0,1)\n",
|
1648 |
+
" # blurry_recon_images = torch.vstack((blurry_recon_images, autoenc.decode(blurry_image_enc_[len(voxel)//2:]).sample.clamp(0,1)))\n",
|
1649 |
+
" # test_blurry_pixcorr += pixcorr(image, blurry_recon_images)\n",
|
1650 |
+
"\n",
|
1651 |
+
" #Find captions and print next to images\n",
|
1652 |
+
" #caption1 = embed_2_caption(clip_voxels[[0]], blip2_model)\n",
|
1653 |
+
" #caption2 = embed_2_caption(clip_voxels[[1]], blip2_model)\n",
|
1654 |
+
"\n",
|
1655 |
+
" #true_embed1 = tensor_2_embed(image[[0]])\n",
|
1656 |
+
" #true_embed2 = tensor_2_embed(image[[1]])\n",
|
1657 |
+
"\n",
|
1658 |
+
" # print(clip_voxels[[0]].shape)\n",
|
1659 |
+
" # print(true_embed1.shape)\n",
|
1660 |
+
" \n",
|
1661 |
+
" #true_caption1 = embed_2_caption(true_embed1, blip2_model)\n",
|
1662 |
+
" #true_caption2 = embed_2_caption(true_embed2, blip2_model)\n",
|
1663 |
+
" \n",
|
1664 |
+
" # transform blurry recon latents to images and plot it\n",
|
1665 |
+
" #fig, axes = plt.subplots(2, 2, figsize=(8, 4))\n",
|
1666 |
+
" #axes[0,0].imshow(utils.torch_to_Image(image[[0]]))\n",
|
1667 |
+
" #axes[0,1].imshow(utils.torch_to_Image(image[[1]]))\n",
|
1668 |
+
" #axes[0,0].axis('off'); axes[0,1].axis('off'); axes[1,0].axis('off'); axes[1,1].axis('off')\n",
|
1669 |
+
" #axes[0,0].set_title(caption1)\n",
|
1670 |
+
" #axes[0,1].set_title(caption2)\n",
|
1671 |
+
" #axes[1,0].set_title(true_caption1)\n",
|
1672 |
+
" #axes[1,1].set_title(true_caption2)\n",
|
1673 |
+
"\n",
|
1674 |
+
" #plt.show()\n",
|
1675 |
+
" \n",
|
1676 |
+
" # # transform blurry recon latents to images and plot it\n",
|
1677 |
+
" # fig, axes = plt.subplots(1, 4, figsize=(8, 4))\n",
|
1678 |
+
" # axes[0].imshow(utils.torch_to_Image(image[[0]]))\n",
|
1679 |
+
" # axes[1].imshow(utils.torch_to_Image(autoenc.decode(blurry_image_enc_[[0]]).sample.clamp(0,1)))\n",
|
1680 |
+
" # axes[2].imshow(utils.torch_to_Image(image[[1]]))\n",
|
1681 |
+
" # axes[3].imshow(utils.torch_to_Image(autoenc.decode(blurry_image_enc_[[1]]).sample.clamp(0,1)))\n",
|
1682 |
+
" # axes[0].axis('off'); axes[1].axis('off'); axes[2].axis('off'); axes[3].axis('off')\n",
|
1683 |
+
" # axes[0].set_title(caption1)\n",
|
1684 |
+
" # axes[3].set_title(caption2)\n",
|
1685 |
+
" # plt.show()\n",
|
1686 |
+
" \n",
|
1687 |
+
"\n",
|
1688 |
+
" if local_rank==0: \n",
|
1689 |
+
" # if utils.is_interactive(): clear_output(wait=True)\n",
|
1690 |
+
" assert (test_i+1) == 1\n",
|
1691 |
+
" logs = {\"train/loss\": np.mean(losses[-(train_i+1):]),\n",
|
1692 |
+
" \"test/loss\": np.mean(test_losses[-(test_i+1):]),\n",
|
1693 |
+
" \"train/lr\": lrs[-1],\n",
|
1694 |
+
" \"train/num_steps\": len(losses),\n",
|
1695 |
+
" \"test/num_steps\": len(test_losses),\n",
|
1696 |
+
" \"train/fwd_pct_correct\": fwd_percent_correct / (train_i + 1),\n",
|
1697 |
+
" \"train/bwd_pct_correct\": bwd_percent_correct / (train_i + 1),\n",
|
1698 |
+
" \"test/test_fwd_pct_correct\": test_fwd_percent_correct / (test_i + 1),\n",
|
1699 |
+
" \"test/test_bwd_pct_correct\": test_bwd_percent_correct / (test_i + 1),\n",
|
1700 |
+
" \"train/loss_clip_total\": loss_clip_total / (train_i + 1),\n",
|
1701 |
+
" \"train/loss_blurry_total\": loss_blurry_total / (train_i + 1),\n",
|
1702 |
+
" \"test/loss_clip_total\": test_loss_clip_total / (test_i + 1),\n",
|
1703 |
+
" \"test/loss_blurry_total\": test_loss_blurry_total / (test_i + 1),\n",
|
1704 |
+
" \"train/blurry_pixcorr\": blurry_pixcorr / (train_i + 1),\n",
|
1705 |
+
" \"test/blurry_pixcorr\": test_blurry_pixcorr / (test_i + 1),\n",
|
1706 |
+
" }\n",
|
1707 |
+
" progress_bar.set_postfix(**logs)\n",
|
1708 |
+
" \n",
|
1709 |
+
" fig, axes = plt.subplots(1, 8, figsize=(10, 4))\n",
|
1710 |
+
" jj=-1\n",
|
1711 |
+
" for j in [0,1,2,3,4,5,6,7]:\n",
|
1712 |
+
" jj+=1\n",
|
1713 |
+
" axes[jj].imshow(utils.torch_to_Image(image[j]))\n",
|
1714 |
+
" axes[jj].axis('off')\n",
|
1715 |
+
"\n",
|
1716 |
+
" if wandb_log:\n",
|
1717 |
+
" generated_captions = embeds_to_captions_b2(clip_voxels[0:8])\n",
|
1718 |
+
" print(generated_captions[1])\n",
|
1719 |
+
" logs[f\"test/recons\"] = wandb.Image(fig, caption=f\"epoch{epoch:03d}\" + \"\\n\".join(generated_captions[1]))\n",
|
1720 |
+
" plt.close()\n",
|
1721 |
+
" # Save model checkpoint and reconstruct\n",
|
1722 |
+
" if epoch % ckpt_interval == 0:\n",
|
1723 |
+
" if not utils.is_interactive():\n",
|
1724 |
+
" save_ckpt(f'last')\n",
|
1725 |
+
" \n",
|
1726 |
+
" if wandb_log: wandb.log(logs)\n",
|
1727 |
+
"\n",
|
1728 |
+
" # wait for other GPUs to catch up if needed\n",
|
1729 |
+
" accelerator.wait_for_everyone()\n",
|
1730 |
+
" torch.cuda.empty_cache()\n",
|
1731 |
+
" gc.collect()\n",
|
1732 |
+
"\n",
|
1733 |
+
"print(\"\\n===Finished!===\\n\")\n",
|
1734 |
+
"if ckpt_saving:\n",
|
1735 |
+
" save_ckpt(f'last')\n",
|
1736 |
+
"if not utils.is_interactive():\n",
|
1737 |
+
" sys.exit(0)"
|
1738 |
+
]
|
1739 |
+
},
|
1740 |
+
{
|
1741 |
+
"cell_type": "code",
|
1742 |
+
"execution_count": null,
|
1743 |
+
"id": "93e87fde-815d-4452-9915-f5f5dacf7c2a",
|
1744 |
+
"metadata": {
|
1745 |
+
"tags": []
|
1746 |
+
},
|
1747 |
+
"outputs": [],
|
1748 |
+
"source": [
|
1749 |
+
"plt.plot(losses)\n",
|
1750 |
+
"plt.show()\n",
|
1751 |
+
"plt.plot(test_losses)\n",
|
1752 |
+
"plt.show()"
|
1753 |
+
]
|
1754 |
+
},
|
1755 |
+
{
|
1756 |
+
"cell_type": "code",
|
1757 |
+
"execution_count": null,
|
1758 |
+
"id": "ccfccd4f-764d-4624-842c-f931676eb43b",
|
1759 |
+
"metadata": {},
|
1760 |
+
"outputs": [],
|
1761 |
+
"source": [
|
1762 |
+
"print('test')"
|
1763 |
+
]
|
1764 |
+
},
|
1765 |
+
{
|
1766 |
+
"cell_type": "code",
|
1767 |
+
"execution_count": null,
|
1768 |
+
"id": "f1a60e19-c440-4c9c-a634-30186209012f",
|
1769 |
+
"metadata": {},
|
1770 |
+
"outputs": [],
|
1771 |
+
"source": [
|
1772 |
+
"def tensor_2_embed_old(tensor):\n",
|
1773 |
+
" embed_array = torch.zeros((tensor.shape[0],257, 1024)) \n",
|
1774 |
+
" to_pil = ToPILImage()\n",
|
1775 |
+
" for sample in range(tensor.shape[0]):\n",
|
1776 |
+
" PIL_image = to_pil(tensor[sample])\n",
|
1777 |
+
" image_for_blip2 = vis_processors[\"eval\"](PIL_image).unsqueeze(0).to(device)\n",
|
1778 |
+
" #Generate embeddings\n",
|
1779 |
+
" with blip2_model.maybe_autocast():\n",
|
1780 |
+
" blip2_target = blip2_model.ln_vision(blip2_model.visual_encoder(image_for_blip2))\n",
|
1781 |
+
" embed_array[sample] = blip2_target\n",
|
1782 |
+
" \n",
|
1783 |
+
" return embed_array"
|
1784 |
+
]
|
1785 |
+
},
|
1786 |
+
{
|
1787 |
+
"cell_type": "code",
|
1788 |
+
"execution_count": null,
|
1789 |
+
"id": "d39ddada-47f7-4111-92fa-0dd98e8a83d6",
|
1790 |
+
"metadata": {},
|
1791 |
+
"outputs": [],
|
1792 |
+
"source": []
|
1793 |
+
},
|
1794 |
+
{
|
1795 |
+
"cell_type": "code",
|
1796 |
+
"execution_count": null,
|
1797 |
+
"id": "ec8ed96a-61fa-4c20-8da2-fcd9d0a2ed38",
|
1798 |
+
"metadata": {},
|
1799 |
+
"outputs": [],
|
1800 |
+
"source": []
|
1801 |
+
},
|
1802 |
+
{
|
1803 |
+
"cell_type": "code",
|
1804 |
+
"execution_count": null,
|
1805 |
+
"id": "6228eb1a-e8e7-4500-b7bc-d0c57bcac4c6",
|
1806 |
+
"metadata": {},
|
1807 |
+
"outputs": [],
|
1808 |
+
"source": []
|
1809 |
+
}
|
1810 |
+
],
|
1811 |
+
"metadata": {
|
1812 |
+
"kernelspec": {
|
1813 |
+
"display_name": "Python 3 (ipykernel)",
|
1814 |
+
"language": "python",
|
1815 |
+
"name": "python3"
|
1816 |
+
},
|
1817 |
+
"language_info": {
|
1818 |
+
"codemirror_mode": {
|
1819 |
+
"name": "ipython",
|
1820 |
+
"version": 3
|
1821 |
+
},
|
1822 |
+
"file_extension": ".py",
|
1823 |
+
"mimetype": "text/x-python",
|
1824 |
+
"name": "python",
|
1825 |
+
"nbconvert_exporter": "python",
|
1826 |
+
"pygments_lexer": "ipython3",
|
1827 |
+
"version": "3.10.8"
|
1828 |
+
},
|
1829 |
+
"toc": {
|
1830 |
+
"base_numbering": 1,
|
1831 |
+
"nav_menu": {},
|
1832 |
+
"number_sections": true,
|
1833 |
+
"sideBar": true,
|
1834 |
+
"skip_h1_title": false,
|
1835 |
+
"title_cell": "Table of Contents",
|
1836 |
+
"title_sidebar": "Contents",
|
1837 |
+
"toc_cell": false,
|
1838 |
+
"toc_position": {
|
1839 |
+
"height": "calc(100% - 180px)",
|
1840 |
+
"left": "10px",
|
1841 |
+
"top": "150px",
|
1842 |
+
"width": "165px"
|
1843 |
+
},
|
1844 |
+
"toc_section_display": true,
|
1845 |
+
"toc_window_display": true
|
1846 |
+
},
|
1847 |
+
"toc-autonumbering": true,
|
1848 |
+
"vscode": {
|
1849 |
+
"interpreter": {
|
1850 |
+
"hash": "62aae01ef0cf7b6af841ab1c8ce59175c4332e693ab3d00bc32ceffb78a35376"
|
1851 |
+
}
|
1852 |
+
}
|
1853 |
+
},
|
1854 |
+
"nbformat": 4,
|
1855 |
+
"nbformat_minor": 5
|
1856 |
+
}
|
src/train2.py
ADDED
@@ -0,0 +1,1141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# coding: utf-8
|
3 |
+
|
4 |
+
# In[1]:
|
5 |
+
|
6 |
+
|
7 |
+
# # Code to convert this notebook to .py if you want to run it via command line or with Slurm
|
8 |
+
# from subprocess import call
|
9 |
+
# command = "jupyter nbconvert Train.ipynb --to python"
|
10 |
+
# call(command,shell=True)
|
11 |
+
|
12 |
+
|
13 |
+
# # Import packages & functions
|
14 |
+
|
15 |
+
# In[2]:
|
16 |
+
|
17 |
+
|
18 |
+
import os
|
19 |
+
import sys
|
20 |
+
import json
|
21 |
+
import argparse
|
22 |
+
import numpy as np
|
23 |
+
import math
|
24 |
+
from einops import rearrange
|
25 |
+
import time
|
26 |
+
import random
|
27 |
+
import h5py
|
28 |
+
from tqdm import tqdm
|
29 |
+
|
30 |
+
import webdataset as wds
|
31 |
+
import gc
|
32 |
+
|
33 |
+
import matplotlib.pyplot as plt
|
34 |
+
import torch
|
35 |
+
import torch.nn as nn
|
36 |
+
from torchvision import transforms
|
37 |
+
from torchvision.transforms import ToPILImage #CHANGED (added)
|
38 |
+
|
39 |
+
from accelerate import Accelerator, DeepSpeedPlugin
|
40 |
+
|
41 |
+
# tf32 data type is faster than standard float32
|
42 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
43 |
+
|
44 |
+
# custom functions #
|
45 |
+
import utils
|
46 |
+
|
47 |
+
global_batch_size = 128 #128
|
48 |
+
|
49 |
+
|
50 |
+
# In[3]:
|
51 |
+
|
52 |
+
|
53 |
+
### Multi-GPU config ###
|
54 |
+
local_rank = os.getenv('RANK')
|
55 |
+
if local_rank is None:
|
56 |
+
local_rank = 0
|
57 |
+
else:
|
58 |
+
local_rank = int(local_rank)
|
59 |
+
print("LOCAL RANK ", local_rank)
|
60 |
+
|
61 |
+
num_devices = torch.cuda.device_count()
|
62 |
+
if num_devices==0: num_devices = 1
|
63 |
+
|
64 |
+
accelerator = Accelerator(split_batches=False)
|
65 |
+
|
66 |
+
### UNCOMMENT BELOW STUFF TO USE DEEPSPEED (also comment out the immediately above "accelerator = " line) ###
|
67 |
+
|
68 |
+
# if num_devices <= 1 and utils.is_interactive():
|
69 |
+
# # can emulate a distributed environment for deepspeed to work in jupyter notebook
|
70 |
+
# os.environ["MASTER_ADDR"] = "localhost"
|
71 |
+
# os.environ["MASTER_PORT"] = str(np.random.randint(10000)+9000)
|
72 |
+
# os.environ["RANK"] = "0"
|
73 |
+
# os.environ["LOCAL_RANK"] = "0"
|
74 |
+
# os.environ["WORLD_SIZE"] = "1"
|
75 |
+
# os.environ["GLOBAL_BATCH_SIZE"] = str(global_batch_size) # set this to your batch size!
|
76 |
+
# global_batch_size = os.environ["GLOBAL_BATCH_SIZE"]
|
77 |
+
|
78 |
+
# # alter the deepspeed config according to your global and local batch size
|
79 |
+
# if local_rank == 0:
|
80 |
+
# with open('deepspeed_config_stage2.json', 'r') as file:
|
81 |
+
# config = json.load(file)
|
82 |
+
# config['train_batch_size'] = int(os.environ["GLOBAL_BATCH_SIZE"])
|
83 |
+
# config['train_micro_batch_size_per_gpu'] = int(os.environ["GLOBAL_BATCH_SIZE"]) // num_devices
|
84 |
+
# with open('deepspeed_config_stage2.json', 'w') as file:
|
85 |
+
# json.dump(config, file)
|
86 |
+
# else:
|
87 |
+
# # give some time for the local_rank=0 gpu to prep new deepspeed config file
|
88 |
+
# time.sleep(10)
|
89 |
+
# deepspeed_plugin = DeepSpeedPlugin("deepspeed_config_stage2.json")
|
90 |
+
# accelerator = Accelerator(split_batches=False, deepspeed_plugin=deepspeed_plugin)
|
91 |
+
|
92 |
+
|
93 |
+
# In[4]:
|
94 |
+
|
95 |
+
|
96 |
+
print("PID of this process =",os.getpid())
|
97 |
+
device = accelerator.device
|
98 |
+
print("device:",device)
|
99 |
+
num_workers = num_devices
|
100 |
+
print(accelerator.state)
|
101 |
+
world_size = accelerator.state.num_processes
|
102 |
+
distributed = not accelerator.state.distributed_type == 'NO'
|
103 |
+
print("distributed =",distributed, "num_devices =", num_devices, "local rank =", local_rank, "world size =", world_size)
|
104 |
+
print = accelerator.print # only print if local_rank=0
|
105 |
+
|
106 |
+
|
107 |
+
# # Configurations
|
108 |
+
|
109 |
+
# In[5]:
|
110 |
+
|
111 |
+
|
112 |
+
# if running this interactively, can specify jupyter_args here for argparser to use
|
113 |
+
if utils.is_interactive():
|
114 |
+
# Example use
|
115 |
+
jupyter_args = f"--data_path=/fsx/proj-fmri/shared/mindeyev2_dataset \
|
116 |
+
--model_name=captions \
|
117 |
+
--subj=1 --batch_size={global_batch_size} --n_samples_save=0 \
|
118 |
+
--max_lr=3e-1 --mixup_pct=.66 --num_epochs=30 --ckpt_interval=999 --no-use_image_aug"
|
119 |
+
#max_lr=3e-5 originally
|
120 |
+
jupyter_args = jupyter_args.split()
|
121 |
+
print(jupyter_args)
|
122 |
+
|
123 |
+
from IPython.display import clear_output # function to clear print outputs in cell
|
124 |
+
get_ipython().run_line_magic('load_ext', 'autoreload')
|
125 |
+
# this allows you to change functions in models.py or utils.py and have this notebook automatically update with your revisions
|
126 |
+
get_ipython().run_line_magic('autoreload', '2')
|
127 |
+
|
128 |
+
|
129 |
+
# In[6]:
|
130 |
+
|
131 |
+
|
132 |
+
parser = argparse.ArgumentParser(description="Model Training Configuration")
|
133 |
+
parser.add_argument(
|
134 |
+
"--model_name", type=str, default="testing",
|
135 |
+
help="name of model, used for ckpt saving and wandb logging (if enabled)",
|
136 |
+
)
|
137 |
+
parser.add_argument(
|
138 |
+
"--data_path", type=str, default="/fsx/proj-fmri/shared/natural-scenes-dataset",
|
139 |
+
help="Path to where NSD data is stored / where to download it to",
|
140 |
+
)
|
141 |
+
parser.add_argument(
|
142 |
+
"--subj",type=int, default=1, choices=[1,2,5,7],
|
143 |
+
)
|
144 |
+
parser.add_argument(
|
145 |
+
"--batch_size", type=int, default=32,
|
146 |
+
help="Batch size can be increased by 10x if only training v2c and not diffusion diffuser",
|
147 |
+
)
|
148 |
+
parser.add_argument(
|
149 |
+
"--wandb_log",action=argparse.BooleanOptionalAction,default=False,
|
150 |
+
help="whether to log to wandb",
|
151 |
+
)
|
152 |
+
parser.add_argument(
|
153 |
+
"--resume_from_ckpt",action=argparse.BooleanOptionalAction,default=False,
|
154 |
+
help="if not using wandb and want to resume from a ckpt",
|
155 |
+
)
|
156 |
+
parser.add_argument(
|
157 |
+
"--wandb_project",type=str,default="stability",
|
158 |
+
help="wandb project name",
|
159 |
+
)
|
160 |
+
parser.add_argument(
|
161 |
+
"--mixup_pct",type=float,default=.33,
|
162 |
+
help="proportion of way through training when to switch from BiMixCo to SoftCLIP",
|
163 |
+
)
|
164 |
+
parser.add_argument(
|
165 |
+
"--use_image_aug",action=argparse.BooleanOptionalAction,default=True,
|
166 |
+
help="whether to use image augmentation",
|
167 |
+
)
|
168 |
+
parser.add_argument(
|
169 |
+
"--num_epochs",type=int,default=100,
|
170 |
+
help="number of epochs of training",
|
171 |
+
)
|
172 |
+
parser.add_argument(
|
173 |
+
"--lr_scheduler_type",type=str,default='cycle',choices=['cycle','linear'],
|
174 |
+
)
|
175 |
+
parser.add_argument(
|
176 |
+
"--ckpt_saving",action=argparse.BooleanOptionalAction,default=True,
|
177 |
+
)
|
178 |
+
parser.add_argument(
|
179 |
+
"--ckpt_interval",type=int,default=5,
|
180 |
+
help="save backup ckpt and reconstruct every x epochs",
|
181 |
+
)
|
182 |
+
parser.add_argument(
|
183 |
+
"--seed",type=int,default=42,
|
184 |
+
)
|
185 |
+
parser.add_argument(
|
186 |
+
"--max_lr",type=float,default=3e-4,
|
187 |
+
)
|
188 |
+
parser.add_argument(
|
189 |
+
"--n_samples_save",type=int,default=0,choices=[0,1],
|
190 |
+
help="Number of reconstructions for monitoring progress, 0 will speed up training",
|
191 |
+
)
|
192 |
+
parser.add_argument(
|
193 |
+
"--clip_mse_ratio",type=float,default=0.7,
|
194 |
+
help="Number of reconstructions for monitoring progress, 0 will speed up training",
|
195 |
+
)
|
196 |
+
|
197 |
+
if utils.is_interactive():
|
198 |
+
args = parser.parse_args(jupyter_args)
|
199 |
+
else:
|
200 |
+
args = parser.parse_args()
|
201 |
+
|
202 |
+
# create global variables without the args prefix
|
203 |
+
for attribute_name in vars(args).keys():
|
204 |
+
globals()[attribute_name] = getattr(args, attribute_name)
|
205 |
+
|
206 |
+
print("global batch_size", batch_size)
|
207 |
+
batch_size = int(batch_size / num_devices)
|
208 |
+
print("batch_size", batch_size)
|
209 |
+
|
210 |
+
|
211 |
+
# In[7]:
|
212 |
+
|
213 |
+
|
214 |
+
outdir = os.path.abspath(f'../train_logs/{model_name}')
|
215 |
+
if not os.path.exists(outdir):
|
216 |
+
os.makedirs(outdir,exist_ok=True)
|
217 |
+
if use_image_aug:
|
218 |
+
import kornia
|
219 |
+
from kornia.augmentation.container import AugmentationSequential
|
220 |
+
img_augment = AugmentationSequential(
|
221 |
+
kornia.augmentation.RandomResizedCrop((224,224), (0.6,1), p=0.3),
|
222 |
+
kornia.augmentation.Resize((224, 224)),
|
223 |
+
kornia.augmentation.RandomHorizontalFlip(p=0.3),
|
224 |
+
kornia.augmentation.ColorJitter(brightness=0.4, contrast=0.4, saturation=0.2, hue=0.1, p=0.3),
|
225 |
+
kornia.augmentation.RandomGrayscale(p=0.3),
|
226 |
+
same_on_batch=False,
|
227 |
+
data_keys=["input"],
|
228 |
+
)
|
229 |
+
|
230 |
+
|
231 |
+
# In[8]:
|
232 |
+
|
233 |
+
|
234 |
+
wandb_log = True
|
235 |
+
|
236 |
+
|
237 |
+
# # Prep data, models, and dataloaders
|
238 |
+
|
239 |
+
# ## Dataloader
|
240 |
+
|
241 |
+
# In[9]:
|
242 |
+
|
243 |
+
|
244 |
+
if subj==1:
|
245 |
+
num_train = 24958
|
246 |
+
num_test = 2770
|
247 |
+
test_batch_size = num_test
|
248 |
+
|
249 |
+
def my_split_by_node(urls): return urls
|
250 |
+
|
251 |
+
train_url = f"{data_path}/wds/subj0{subj}/train/" + "{0..36}.tar"
|
252 |
+
print(train_url)
|
253 |
+
|
254 |
+
train_data = wds.WebDataset(train_url,resampled=False,nodesplitter=my_split_by_node)\
|
255 |
+
.shuffle(750, initial=1500, rng=random.Random(42))\
|
256 |
+
.decode("torch")\
|
257 |
+
.rename(behav="behav.npy", past_behav="past_behav.npy", future_behav="future_behav.npy", olds_behav="olds_behav.npy")\
|
258 |
+
.to_tuple(*["behav", "past_behav", "future_behav", "olds_behav"])
|
259 |
+
train_dl = torch.utils.data.DataLoader(train_data, batch_size=batch_size, shuffle=False, drop_last=False, pin_memory=True)
|
260 |
+
|
261 |
+
test_url = f"{data_path}/wds/subj0{subj}/test/" + "0.tar"
|
262 |
+
print(test_url)
|
263 |
+
|
264 |
+
test_data = wds.WebDataset(test_url,resampled=False,nodesplitter=my_split_by_node)\
|
265 |
+
.shuffle(750, initial=1500, rng=random.Random(42))\
|
266 |
+
.decode("torch")\
|
267 |
+
.rename(behav="behav.npy", past_behav="past_behav.npy", future_behav="future_behav.npy", olds_behav="olds_behav.npy")\
|
268 |
+
.to_tuple(*["behav", "past_behav", "future_behav", "olds_behav"])
|
269 |
+
test_dl = torch.utils.data.DataLoader(test_data, batch_size=test_batch_size, shuffle=False, drop_last=False, pin_memory=True)
|
270 |
+
|
271 |
+
|
272 |
+
# ### check dataloaders are working
|
273 |
+
|
274 |
+
# In[10]:
|
275 |
+
|
276 |
+
|
277 |
+
# test_indices = []
|
278 |
+
# test_images = []
|
279 |
+
# for test_i, (behav, past_behav, future_behav, old_behav) in enumerate(test_dl):
|
280 |
+
# test_indices = np.append(test_indices, behav[:,0,5].numpy())
|
281 |
+
# test_images = np.append(test_images, behav[:,0,0].numpy())
|
282 |
+
# test_indices = test_indices.astype(np.int16)
|
283 |
+
# print(test_i, (test_i+1) * test_batch_size, len(test_indices))
|
284 |
+
# print("---\n")
|
285 |
+
|
286 |
+
# train_indices = []
|
287 |
+
# train_images = []
|
288 |
+
# for train_i, (behav, past_behav, future_behav, old_behav) in enumerate(train_dl):
|
289 |
+
# train_indices = np.append(train_indices, behav[:,0,5].long().numpy())
|
290 |
+
# train_images = np.append(train_images, behav[:,0,0].numpy())
|
291 |
+
# train_indices = train_indices.astype(np.int16)
|
292 |
+
# print(train_i, (train_i+1) * batch_size, len(train_indices))
|
293 |
+
|
294 |
+
# # train_images = np.hstack((train_images, test_images))
|
295 |
+
# # print("WARNING: ADDED TEST IMAGES TO TRAIN IMAGES")
|
296 |
+
|
297 |
+
|
298 |
+
# ## Load data and images
|
299 |
+
|
300 |
+
# In[11]:
|
301 |
+
|
302 |
+
|
303 |
+
# load betas
|
304 |
+
f = h5py.File(f'{data_path}/betas_all_subj0{subj}.hdf5', 'r')
|
305 |
+
voxels = f['betas'][:]
|
306 |
+
print(f"subj0{subj} betas loaded into memory")
|
307 |
+
voxels = torch.Tensor(voxels).to("cpu").half()
|
308 |
+
if subj==1:
|
309 |
+
voxels = torch.hstack((voxels, torch.zeros((len(voxels), 5))))
|
310 |
+
print("voxels", voxels.shape)
|
311 |
+
num_voxels = voxels.shape[-1]
|
312 |
+
|
313 |
+
# load orig images
|
314 |
+
f = h5py.File(f'{data_path}/coco_images_224_float16.hdf5', 'r')
|
315 |
+
images = f['images'][:]
|
316 |
+
images = torch.Tensor(images).to("cpu").half()
|
317 |
+
print("images", images.shape)
|
318 |
+
|
319 |
+
|
320 |
+
# ## Load models
|
321 |
+
|
322 |
+
# ### CLIP image embeddings model
|
323 |
+
|
324 |
+
# In[12]:
|
325 |
+
|
326 |
+
|
327 |
+
import transformers
|
328 |
+
from transformers import Blip2Processor, Blip2ForConditionalGeneration
|
329 |
+
|
330 |
+
from PIL import Image
|
331 |
+
|
332 |
+
|
333 |
+
# In[13]:
|
334 |
+
|
335 |
+
|
336 |
+
from models import Clipper
|
337 |
+
clip_model = Clipper("ViT-L/14", device=torch.device(f"cuda:{local_rank}"), hidden_state=True, norm_embs=True)
|
338 |
+
|
339 |
+
|
340 |
+
# In[14]:
|
341 |
+
|
342 |
+
|
343 |
+
cache_blip2 = "/fsx/proj-fmri/shared/cache/models--Salesforce--blip2-opt-2.7b/snapshots/6e723d92ee91ebcee4ba74d7017632f11ff4217b"
|
344 |
+
|
345 |
+
b2_processor = Blip2Processor.from_pretrained(cache_blip2)
|
346 |
+
b2_model = Blip2ForConditionalGeneration.from_pretrained(cache_blip2, torch_dtype=torch.float16, device_map="auto")
|
347 |
+
|
348 |
+
#Load in blip2 as well
|
349 |
+
"""from lavis.models import load_model_and_preprocess
|
350 |
+
from lavis.models import model_zoo
|
351 |
+
blip2_model, vis_processors, _ = load_model_and_preprocess(
|
352 |
+
name="blip2_t5", model_type="pretrain_flant5xl_vitL", is_eval=True, device=device)
|
353 |
+
|
354 |
+
clip_seq_dim = 257
|
355 |
+
clip_emb_dim = 1024
|
356 |
+
hidden_dim = 4096"""
|
357 |
+
|
358 |
+
|
359 |
+
# In[15]:
|
360 |
+
|
361 |
+
|
362 |
+
def embed_images_b2(images):
|
363 |
+
images = (images * 255).type(torch.uint8)
|
364 |
+
with torch.no_grad():
|
365 |
+
inputs_processed = b2_processor(images, return_tensors="pt").to("cuda", torch.float16)
|
366 |
+
enc_imgs = b2_model.vision_model.forward(inputs_processed['pixel_values'])
|
367 |
+
return enc_imgs.last_hidden_state.detach(), inputs_processed
|
368 |
+
|
369 |
+
def embeds_to_captions_b2(embeds):
|
370 |
+
with torch.no_grad():
|
371 |
+
input_ids = None #inputs['input_ids']
|
372 |
+
attention_mask = None
|
373 |
+
batch_size = embeds.shape[0]
|
374 |
+
image_embeds = embeds
|
375 |
+
image_attention_mask = torch.ones(image_embeds.size()[:-1], dtype=torch.long, device=image_embeds.device)
|
376 |
+
|
377 |
+
query_tokens = b2_model.query_tokens.expand(image_embeds.shape[0], -1, -1)
|
378 |
+
query_outputs = b2_model.qformer(
|
379 |
+
query_embeds=query_tokens,
|
380 |
+
encoder_hidden_states=image_embeds,
|
381 |
+
encoder_attention_mask=image_attention_mask,
|
382 |
+
return_dict=True,
|
383 |
+
)
|
384 |
+
query_output = query_outputs.last_hidden_state
|
385 |
+
|
386 |
+
language_model_inputs = b2_model.language_projection(query_output)
|
387 |
+
language_attention_mask = torch.ones(
|
388 |
+
language_model_inputs.size()[:-1], dtype=torch.long, device=language_model_inputs.device
|
389 |
+
)
|
390 |
+
if input_ids is None:
|
391 |
+
input_ids = (
|
392 |
+
torch.LongTensor([[b2_model.config.text_config.bos_token_id]])
|
393 |
+
.repeat(batch_size, 1)
|
394 |
+
.to(image_embeds.device)
|
395 |
+
)
|
396 |
+
if attention_mask is None:
|
397 |
+
attention_mask = torch.ones_like(input_ids)
|
398 |
+
attention_mask = torch.cat([language_attention_mask, attention_mask.to(language_attention_mask.device)], dim=1)
|
399 |
+
|
400 |
+
# concatenate query embeddings with prompt embeddings
|
401 |
+
inputs_embeds = b2_model.get_input_embeddings()(input_ids)
|
402 |
+
inputs_embeds = torch.cat([language_model_inputs, inputs_embeds.to(language_model_inputs.device)], dim=1)
|
403 |
+
|
404 |
+
outputs = b2_model.language_model.generate(
|
405 |
+
inputs_embeds=inputs_embeds,
|
406 |
+
attention_mask=attention_mask,
|
407 |
+
)
|
408 |
+
text = b2_processor.batch_decode(outputs, skip_special_tokens=True)
|
409 |
+
|
410 |
+
return outputs, text
|
411 |
+
|
412 |
+
|
413 |
+
# In[16]:
|
414 |
+
|
415 |
+
|
416 |
+
image_test = images[1:20].permute(0,2,3,1)
|
417 |
+
#raw_image = Image.open('/fsx/proj-fmri/shared/controlNetData/target/img_t1.jpg').convert('RGB')
|
418 |
+
# Convert the image to a NumPy array
|
419 |
+
#image_test = np.array(raw_image)
|
420 |
+
|
421 |
+
|
422 |
+
# In[17]:
|
423 |
+
|
424 |
+
|
425 |
+
"""import matplotlib.pyplot as plt
|
426 |
+
# Plotting one of the images (taking the first image as an example)
|
427 |
+
img_to_plot = inputs_rec['pixel_values'][-1]
|
428 |
+
|
429 |
+
# Transpose the image for correct display (PyTorch: [C, H, W], Matplotlib: [H, W, C])
|
430 |
+
img_to_plot = img_to_plot.permute(1, 2, 0).to(torch.float32).to('cpu')
|
431 |
+
print(img_to_plot.shape)
|
432 |
+
|
433 |
+
plt.imshow(img_to_plot)
|
434 |
+
plt.show()"""
|
435 |
+
|
436 |
+
|
437 |
+
# In[18]:
|
438 |
+
|
439 |
+
|
440 |
+
embeds_test, inputs_rec = embed_images_b2(image_test)
|
441 |
+
|
442 |
+
|
443 |
+
# In[19]:
|
444 |
+
|
445 |
+
|
446 |
+
#inputs_rec['pixel_values'].shape
|
447 |
+
|
448 |
+
|
449 |
+
# In[20]:
|
450 |
+
|
451 |
+
|
452 |
+
#out = b2_model.generate(**inputs_rec)
|
453 |
+
#print(b2_processor.decode(out[0], skip_special_tokens=True).strip())
|
454 |
+
|
455 |
+
|
456 |
+
# In[21]:
|
457 |
+
|
458 |
+
|
459 |
+
outputs_test, text_test = embeds_to_captions_b2(embeds_test)
|
460 |
+
|
461 |
+
|
462 |
+
# In[22]:
|
463 |
+
|
464 |
+
|
465 |
+
text_test
|
466 |
+
|
467 |
+
|
468 |
+
# In[23]:
|
469 |
+
|
470 |
+
|
471 |
+
#inputss['pixel_values'].shape
|
472 |
+
|
473 |
+
|
474 |
+
# In[24]:
|
475 |
+
|
476 |
+
|
477 |
+
#image_test.shape
|
478 |
+
|
479 |
+
|
480 |
+
# In[25]:
|
481 |
+
|
482 |
+
|
483 |
+
|
484 |
+
|
485 |
+
# In[26]:
|
486 |
+
|
487 |
+
|
488 |
+
clip_seq_dim = 257 #blip2 image encoder shapes
|
489 |
+
clip_emb_dim = 1408 #blip2 image encoder shapes
|
490 |
+
hidden_dim = 2048
|
491 |
+
|
492 |
+
|
493 |
+
# ### SD VAE (blurry images)
|
494 |
+
|
495 |
+
# In[27]:
|
496 |
+
|
497 |
+
|
498 |
+
from diffusers import AutoencoderKL
|
499 |
+
autoenc = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16, cache_dir="/fsx/proj-fmri/shared/cache")
|
500 |
+
# autoenc.load_state_dict(torch.load('../train_logs/sdxl_vae_normed/best.pth')["model_state_dict"])
|
501 |
+
autoenc.eval()
|
502 |
+
autoenc.requires_grad_(False)
|
503 |
+
autoenc.to(device)
|
504 |
+
utils.count_params(autoenc)
|
505 |
+
|
506 |
+
|
507 |
+
# ### MindEye modules
|
508 |
+
|
509 |
+
# In[28]:
|
510 |
+
|
511 |
+
|
512 |
+
class MindEyeModule(nn.Module):
|
513 |
+
def __init__(self):
|
514 |
+
super(MindEyeModule, self).__init__()
|
515 |
+
def forward(self, x):
|
516 |
+
return x
|
517 |
+
|
518 |
+
model = MindEyeModule()
|
519 |
+
model
|
520 |
+
|
521 |
+
|
522 |
+
# In[29]:
|
523 |
+
|
524 |
+
|
525 |
+
class RidgeRegression(torch.nn.Module):
|
526 |
+
# make sure to add weight_decay when initializing optimizer
|
527 |
+
def __init__(self, input_size, out_features):
|
528 |
+
super(RidgeRegression, self).__init__()
|
529 |
+
self.out_features = out_features
|
530 |
+
self.linear = torch.nn.Linear(input_size, out_features)
|
531 |
+
def forward(self, x):
|
532 |
+
return self.linear(x)
|
533 |
+
|
534 |
+
model.ridge = RidgeRegression(voxels.shape[1], out_features=hidden_dim)
|
535 |
+
utils.count_params(model.ridge)
|
536 |
+
utils.count_params(model)
|
537 |
+
|
538 |
+
b = torch.randn((2,1,voxels.shape[1]))
|
539 |
+
print(b.shape, model.ridge(b).shape)
|
540 |
+
|
541 |
+
|
542 |
+
# In[30]:
|
543 |
+
|
544 |
+
|
545 |
+
from functools import partial
|
546 |
+
from diffusers.models.vae import Decoder
|
547 |
+
class BrainNetwork(nn.Module):
|
548 |
+
def __init__(self, out_dim=768, in_dim=15724, clip_size=768, h=4096, n_blocks=4, norm_type='ln', act_first=False, drop=.35, blurry_dim=16):
|
549 |
+
super().__init__()
|
550 |
+
self.blurry_dim = blurry_dim
|
551 |
+
norm_func = partial(nn.BatchNorm1d, num_features=h) if norm_type == 'bn' else partial(nn.LayerNorm, normalized_shape=h)
|
552 |
+
act_fn = partial(nn.ReLU, inplace=True) if norm_type == 'bn' else nn.GELU
|
553 |
+
act_and_norm = (act_fn, norm_func) if act_first else (norm_func, act_fn)
|
554 |
+
self.lin0 = nn.Linear(in_dim, h)
|
555 |
+
self.mlp = nn.ModuleList([
|
556 |
+
nn.Sequential(
|
557 |
+
nn.Linear(h, h),
|
558 |
+
*[item() for item in act_and_norm],
|
559 |
+
nn.Dropout(drop)
|
560 |
+
) for _ in range(n_blocks)
|
561 |
+
])
|
562 |
+
self.lin1 = nn.Linear(h, out_dim, bias=True)
|
563 |
+
# self.blin1 = nn.Linear(out_dim, blurry_dim, bias=True)
|
564 |
+
self.n_blocks = n_blocks
|
565 |
+
self.clip_size = clip_size
|
566 |
+
self.clip_proj = nn.Sequential(
|
567 |
+
nn.LayerNorm(clip_size),
|
568 |
+
nn.GELU(),
|
569 |
+
nn.Linear(clip_size, 2048),
|
570 |
+
nn.LayerNorm(2048),
|
571 |
+
nn.GELU(),
|
572 |
+
nn.Linear(2048, 2048),
|
573 |
+
nn.LayerNorm(2048),
|
574 |
+
nn.GELU(),
|
575 |
+
nn.Linear(2048, clip_size)
|
576 |
+
)
|
577 |
+
# self.upsampler = Decoder(
|
578 |
+
# in_channels=64,
|
579 |
+
# out_channels=4,
|
580 |
+
# up_block_types=["UpDecoderBlock2D","UpDecoderBlock2D","UpDecoderBlock2D"],
|
581 |
+
# block_out_channels=[64, 128, 256],
|
582 |
+
# layers_per_block=1,
|
583 |
+
# )
|
584 |
+
|
585 |
+
def forward(self, x):
|
586 |
+
x = self.lin0(x)
|
587 |
+
residual = x
|
588 |
+
for res_block in range(self.n_blocks):
|
589 |
+
x = self.mlp[res_block](x)
|
590 |
+
x += residual
|
591 |
+
residual = x
|
592 |
+
x = x.reshape(len(x), -1)
|
593 |
+
x = self.lin1(x)
|
594 |
+
# b = self.blin1(x)
|
595 |
+
# b = self.upsampler(b.reshape(len(b), -1, 7, 7))
|
596 |
+
c = self.clip_proj(x.reshape(len(x), -1, self.clip_size))
|
597 |
+
# return c, b
|
598 |
+
return c
|
599 |
+
|
600 |
+
model.backbone = BrainNetwork(h=2048, in_dim=hidden_dim, clip_size=clip_emb_dim, out_dim=clip_emb_dim*clip_seq_dim, blurry_dim=64*7*7)
|
601 |
+
utils.count_params(model.backbone)
|
602 |
+
utils.count_params(model)
|
603 |
+
|
604 |
+
b = torch.randn((4,hidden_dim))
|
605 |
+
print(b.shape)
|
606 |
+
clip_ = model.backbone(b)
|
607 |
+
print(clip_.shape)
|
608 |
+
|
609 |
+
|
610 |
+
# In[31]:
|
611 |
+
|
612 |
+
|
613 |
+
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
|
614 |
+
opt_grouped_parameters = [
|
615 |
+
{'params': [p for n, p in model.ridge.named_parameters()], 'weight_decay': 1e-2},
|
616 |
+
{'params': [p for n, p in model.backbone.named_parameters() if not any(nd in n for nd in no_decay)], 'weight_decay': 1e-2},
|
617 |
+
{'params': [p for n, p in model.backbone.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0},
|
618 |
+
]
|
619 |
+
|
620 |
+
optimizer = torch.optim.AdamW(opt_grouped_parameters, lr=max_lr, betas=(0.9, 0.95))
|
621 |
+
|
622 |
+
if lr_scheduler_type == 'linear':
|
623 |
+
lr_scheduler = torch.optim.lr_scheduler.LinearLR(
|
624 |
+
optimizer,
|
625 |
+
total_iters=int(num_epochs*(num_train*num_devices//batch_size)),
|
626 |
+
last_epoch=-1
|
627 |
+
)
|
628 |
+
elif lr_scheduler_type == 'cycle':
|
629 |
+
total_steps=int(num_epochs*(num_train*num_devices//batch_size))
|
630 |
+
lr_scheduler = torch.optim.lr_scheduler.OneCycleLR(
|
631 |
+
optimizer,
|
632 |
+
max_lr=max_lr,
|
633 |
+
total_steps=total_steps,
|
634 |
+
final_div_factor=1000,
|
635 |
+
last_epoch=-1, pct_start=2/num_epochs
|
636 |
+
)
|
637 |
+
|
638 |
+
def save_ckpt(tag):
|
639 |
+
ckpt_path = outdir+f'/{tag}.pth'
|
640 |
+
print(f'saving {ckpt_path}',flush=True)
|
641 |
+
unwrapped_model = accelerator.unwrap_model(model)
|
642 |
+
try:
|
643 |
+
torch.save({
|
644 |
+
'epoch': epoch,
|
645 |
+
'model_state_dict': unwrapped_model.state_dict(),
|
646 |
+
'optimizer_state_dict': optimizer.state_dict(),
|
647 |
+
'lr_scheduler': lr_scheduler.state_dict(),
|
648 |
+
'train_losses': losses,
|
649 |
+
'test_losses': test_losses,
|
650 |
+
'lrs': lrs,
|
651 |
+
}, ckpt_path)
|
652 |
+
except:
|
653 |
+
print("Couldn't save... moving on to prevent crashing.")
|
654 |
+
del unwrapped_model
|
655 |
+
|
656 |
+
print("\nDone with model preparations!")
|
657 |
+
utils.count_params(model)
|
658 |
+
|
659 |
+
|
660 |
+
# # Weights and Biases
|
661 |
+
|
662 |
+
# In[32]:
|
663 |
+
|
664 |
+
|
665 |
+
# params for wandb
|
666 |
+
if local_rank==0 and True: # only use main process for wandb logging
|
667 |
+
import wandb
|
668 |
+
|
669 |
+
wandb_project = 'mindeyev2'
|
670 |
+
wandb_run = model_name
|
671 |
+
wandb_notes = ''
|
672 |
+
|
673 |
+
print(f"wandb {wandb_project} run {wandb_run}")
|
674 |
+
wandb.login(host='https://stability.wandb.io')#, relogin=True)
|
675 |
+
wandb_config = {
|
676 |
+
"model_name": model_name,
|
677 |
+
"batch_size": batch_size,
|
678 |
+
"num_epochs": num_epochs,
|
679 |
+
"use_image_aug": use_image_aug,
|
680 |
+
"max_lr": max_lr,
|
681 |
+
"lr_scheduler_type": lr_scheduler_type,
|
682 |
+
"mixup_pct": mixup_pct,
|
683 |
+
"num_train": num_train,
|
684 |
+
"num_test": num_test,
|
685 |
+
"seed": seed,
|
686 |
+
"distributed": distributed,
|
687 |
+
"num_devices": num_devices,
|
688 |
+
"world_size": world_size,
|
689 |
+
}
|
690 |
+
print("wandb_config:\n",wandb_config)
|
691 |
+
if False: # wandb_auto_resume
|
692 |
+
print("wandb_id:",model_name)
|
693 |
+
wandb.init(
|
694 |
+
id = model_name,
|
695 |
+
project=wandb_project,
|
696 |
+
name=wandb_run,
|
697 |
+
config=wandb_config,
|
698 |
+
notes=wandb_notes,
|
699 |
+
resume="allow",
|
700 |
+
)
|
701 |
+
else:
|
702 |
+
wandb.init(
|
703 |
+
project=wandb_project,
|
704 |
+
name=wandb_run,
|
705 |
+
config=wandb_config,
|
706 |
+
notes=wandb_notes,
|
707 |
+
)
|
708 |
+
else:
|
709 |
+
wandb_log = False
|
710 |
+
|
711 |
+
|
712 |
+
# # More custom functions
|
713 |
+
|
714 |
+
# In[33]:
|
715 |
+
|
716 |
+
|
717 |
+
# using the same preprocessing as was used in MindEye + BrainDiffuser
|
718 |
+
pixcorr_preprocess = transforms.Compose([
|
719 |
+
transforms.Resize(425, interpolation=transforms.InterpolationMode.BILINEAR),
|
720 |
+
])
|
721 |
+
def pixcorr(images,brains):
|
722 |
+
# Flatten images while keeping the batch dimension
|
723 |
+
all_images_flattened = pixcorr_preprocess(images).reshape(len(images), -1)
|
724 |
+
all_brain_recons_flattened = pixcorr_preprocess(brains).view(len(brains), -1)
|
725 |
+
corrmean = torch.diag(utils.batchwise_pearson_correlation(all_images_flattened, all_brain_recons_flattened)).mean()
|
726 |
+
return corrmean
|
727 |
+
|
728 |
+
|
729 |
+
# # Main
|
730 |
+
|
731 |
+
# In[34]:
|
732 |
+
|
733 |
+
|
734 |
+
epoch = 0
|
735 |
+
losses, test_losses, lrs = [], [], []
|
736 |
+
best_test_loss = 1e9
|
737 |
+
soft_loss_temps = utils.cosine_anneal(0.004, 0.0075, num_epochs - int(mixup_pct * num_epochs))
|
738 |
+
|
739 |
+
# Optionally resume from checkpoint #
|
740 |
+
if resume_from_ckpt:
|
741 |
+
print("\n---resuming from last.pth ckpt---\n")
|
742 |
+
try:
|
743 |
+
checkpoint = torch.load(outdir+'/last.pth', map_location='cpu')
|
744 |
+
except:
|
745 |
+
print('last.pth failed... trying last_backup.pth')
|
746 |
+
checkpoint = torch.load(outdir+'/last_backup.pth', map_location='cpu')
|
747 |
+
epoch = checkpoint['epoch']
|
748 |
+
print("Epoch",epoch)
|
749 |
+
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
|
750 |
+
lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
|
751 |
+
diffusion_diffuser.load_state_dict(checkpoint['model_state_dict'])
|
752 |
+
del checkpoint
|
753 |
+
elif wandb_log:
|
754 |
+
if wandb.run.resumed:
|
755 |
+
print("\n---resuming from last.pth ckpt---\n")
|
756 |
+
try:
|
757 |
+
checkpoint = torch.load(outdir+'/last.pth', map_location='cpu')
|
758 |
+
except:
|
759 |
+
print('last.pth failed... trying last_backup.pth')
|
760 |
+
checkpoint = torch.load(outdir+'/last_backup.pth', map_location='cpu')
|
761 |
+
epoch = checkpoint['epoch']
|
762 |
+
print("Epoch",epoch)
|
763 |
+
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
|
764 |
+
lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
|
765 |
+
diffusion_diffuser.load_state_dict(checkpoint['model_state_dict'])
|
766 |
+
del checkpoint
|
767 |
+
torch.cuda.empty_cache()
|
768 |
+
|
769 |
+
|
770 |
+
# In[35]:
|
771 |
+
|
772 |
+
|
773 |
+
model, optimizer, train_dl, test_dl, lr_scheduler = accelerator.prepare(
|
774 |
+
model, optimizer, train_dl, test_dl, lr_scheduler
|
775 |
+
)
|
776 |
+
|
777 |
+
|
778 |
+
# In[36]:
|
779 |
+
|
780 |
+
|
781 |
+
"""transform = transforms.Compose(
|
782 |
+
[
|
783 |
+
transforms.Resize(
|
784 |
+
(224, 224),
|
785 |
+
),
|
786 |
+
transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)),
|
787 |
+
]
|
788 |
+
)
|
789 |
+
|
790 |
+
def tensor_2_embed(image):
|
791 |
+
image_for_blip2 = transform(image)
|
792 |
+
|
793 |
+
#Generate embeddings
|
794 |
+
with blip2_model.maybe_autocast():
|
795 |
+
blip2_target = blip2_model.ln_vision(blip2_model.visual_encoder(image_for_blip2))
|
796 |
+
|
797 |
+
return blip2_target
|
798 |
+
|
799 |
+
def embed_2_caption(image_embeds, model):
|
800 |
+
image_embeds = image_embeds.float()
|
801 |
+
image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(
|
802 |
+
image.device)
|
803 |
+
|
804 |
+
query_tokens = model.query_tokens.expand(image_embeds.shape[0], -1, -1)
|
805 |
+
query_output = model.Qformer.bert(
|
806 |
+
query_embeds=query_tokens,
|
807 |
+
encoder_hidden_states=image_embeds,
|
808 |
+
encoder_attention_mask=image_atts,
|
809 |
+
return_dict=True)
|
810 |
+
|
811 |
+
inputs_t5 = model.t5_proj(query_output.last_hidden_state)
|
812 |
+
atts_t5 = torch.ones(inputs_t5.size()[:-1], dtype=torch.long).to(image.device)
|
813 |
+
prompt = model.prompt
|
814 |
+
input_tokens = model.t5_tokenizer(
|
815 |
+
prompt, padding="longest", return_tensors="pt"
|
816 |
+
).to(image.device)
|
817 |
+
encoder_atts = torch.cat([atts_t5, input_tokens.attention_mask], dim=1)
|
818 |
+
|
819 |
+
with model.maybe_autocast(dtype=torch.bfloat16):
|
820 |
+
inputs_embeds = model.t5_model.encoder.embed_tokens(input_tokens.input_ids)
|
821 |
+
inputs_embeds = torch.cat([inputs_t5, inputs_embeds], dim=1)
|
822 |
+
|
823 |
+
outputs = model.t5_model.generate(
|
824 |
+
inputs_embeds=inputs_embeds,
|
825 |
+
attention_mask=encoder_atts)
|
826 |
+
output_text = model.t5_tokenizer.batch_decode(
|
827 |
+
outputs, skip_special_tokens=True)
|
828 |
+
|
829 |
+
return output_text"""
|
830 |
+
|
831 |
+
|
832 |
+
# In[37]:
|
833 |
+
|
834 |
+
|
835 |
+
wandb_log = True
|
836 |
+
|
837 |
+
|
838 |
+
# In[ ]:
|
839 |
+
|
840 |
+
|
841 |
+
print(f"{model_name} starting with epoch {epoch} / {num_epochs}")
|
842 |
+
progress_bar = tqdm(range(epoch,num_epochs), ncols=1200, disable=(local_rank!=0))
|
843 |
+
test_image, test_voxel = None, None
|
844 |
+
mse = nn.MSELoss()
|
845 |
+
for epoch in progress_bar:
|
846 |
+
model.train()
|
847 |
+
|
848 |
+
fwd_percent_correct = 0.
|
849 |
+
bwd_percent_correct = 0.
|
850 |
+
test_fwd_percent_correct = 0.
|
851 |
+
test_bwd_percent_correct = 0.
|
852 |
+
|
853 |
+
loss_clip_total = 0.
|
854 |
+
loss_blurry_total = 0.
|
855 |
+
test_loss_clip_total = 0.
|
856 |
+
test_loss_blurry_total = 0.
|
857 |
+
|
858 |
+
blurry_pixcorr = 0.
|
859 |
+
test_blurry_pixcorr = 0. # needs >.456 to beat low-level subj01 results in mindeye v1
|
860 |
+
|
861 |
+
for train_i, (behav, past_behav, future_behav, old_behav) in enumerate(train_dl):
|
862 |
+
if epoch == 0:
|
863 |
+
lrs.append(0)
|
864 |
+
break
|
865 |
+
with torch.cuda.amp.autocast():
|
866 |
+
optimizer.zero_grad()
|
867 |
+
|
868 |
+
voxel = voxels[behav[:,0,5].cpu().long()].to(device)
|
869 |
+
|
870 |
+
image = images[behav[:,0,0].cpu().long()].to(device).float()
|
871 |
+
|
872 |
+
# blurry_image_enc = autoenc.encode(image).latent_dist.mode()
|
873 |
+
|
874 |
+
if use_image_aug: image = img_augment(image)
|
875 |
+
# clip_target = clip_model.embed_image(image)
|
876 |
+
clip_target = embed_images_b2(image)[0].to(device) #####CHANGED
|
877 |
+
assert not torch.any(torch.isnan(clip_target))
|
878 |
+
|
879 |
+
if epoch < int(mixup_pct * num_epochs):
|
880 |
+
voxel, perm, betas, select = utils.mixco(voxel)
|
881 |
+
|
882 |
+
voxel_ridge = model.ridge(voxel)
|
883 |
+
|
884 |
+
# clip_voxels, blurry_image_enc_ = model.backbone(voxel_ridge)
|
885 |
+
clip_voxels = model.backbone(voxel_ridge)
|
886 |
+
|
887 |
+
clip_voxels_norm = nn.functional.normalize(clip_voxels.flatten(1), dim=-1)
|
888 |
+
clip_target_norm = nn.functional.normalize(clip_target.flatten(1), dim=-1)
|
889 |
+
|
890 |
+
if epoch < int(mixup_pct * num_epochs):
|
891 |
+
loss_clip = utils.mixco_nce(
|
892 |
+
clip_voxels_norm,
|
893 |
+
clip_target_norm,
|
894 |
+
temp=.006,
|
895 |
+
perm=perm, betas=betas, select=select)
|
896 |
+
else:
|
897 |
+
epoch_temp = soft_loss_temps[epoch-int(mixup_pct*num_epochs)]
|
898 |
+
loss_clip = utils.soft_clip_loss(
|
899 |
+
clip_voxels_norm,
|
900 |
+
clip_target_norm,
|
901 |
+
temp=epoch_temp)
|
902 |
+
|
903 |
+
loss_mse= mse(clip_voxels, clip_target)
|
904 |
+
|
905 |
+
# loss_blurry = mse(blurry_image_enc_, blurry_image_enc)
|
906 |
+
|
907 |
+
loss_clip_total += loss_clip.item()
|
908 |
+
# loss_blurry_total += loss_blurry.item()
|
909 |
+
|
910 |
+
# loss = loss_blurry + loss_clip
|
911 |
+
loss = (clip_mse_ratio * loss_clip) + ((1 - clip_mse_ratio) * loss_mse)
|
912 |
+
if (train_i % 10 == 0):
|
913 |
+
print(train_i, loss)
|
914 |
+
# print(batch_size)
|
915 |
+
utils.check_loss(loss)
|
916 |
+
accelerator.backward(loss)
|
917 |
+
optimizer.step()
|
918 |
+
|
919 |
+
losses.append(loss.item())
|
920 |
+
lrs.append(optimizer.param_groups[0]['lr'])
|
921 |
+
|
922 |
+
# forward and backward top 1 accuracy
|
923 |
+
labels = torch.arange(len(clip_target_norm)).to(clip_voxels_norm.device)
|
924 |
+
fwd_percent_correct += utils.topk(utils.batchwise_cosine_similarity(clip_voxels_norm, clip_target_norm), labels, k=1)
|
925 |
+
bwd_percent_correct += utils.topk(utils.batchwise_cosine_similarity(clip_target_norm, clip_voxels_norm), labels, k=1)
|
926 |
+
|
927 |
+
# with torch.no_grad():
|
928 |
+
# # only doing pixcorr eval on a subset (8) of the samples per batch because its costly & slow to compute autoenc.decode()
|
929 |
+
# random_samps = np.random.choice(np.arange(len(voxel)), size=8, replace=False)
|
930 |
+
# blurry_recon_images = autoenc.decode(blurry_image_enc_[random_samps]).sample.clamp(0,1)
|
931 |
+
# blurry_pixcorr += pixcorr(image[random_samps], blurry_recon_images)
|
932 |
+
|
933 |
+
if lr_scheduler_type is not None:
|
934 |
+
lr_scheduler.step()
|
935 |
+
|
936 |
+
model.eval()
|
937 |
+
for test_i, (behav, past_behav, future_behav, old_behav) in enumerate(test_dl):
|
938 |
+
with torch.cuda.amp.autocast():
|
939 |
+
with torch.no_grad():
|
940 |
+
# all test samples should be loaded per batch such that test_i should never exceed 0
|
941 |
+
if len(behav) != num_test: print("!",len(behav),num_test)
|
942 |
+
|
943 |
+
## Average same-image repeats ##
|
944 |
+
if test_image is None:
|
945 |
+
voxel = voxels[behav[:,0,5].cpu().long()].to(device)
|
946 |
+
|
947 |
+
image = behav[:,0,0].cpu().long()
|
948 |
+
|
949 |
+
unique_image, sort_indices = torch.unique(image, return_inverse=True)
|
950 |
+
for im in unique_image:
|
951 |
+
locs = torch.where(im == image)[0]
|
952 |
+
if test_image is None:
|
953 |
+
test_image = images[im][None]
|
954 |
+
test_voxel = torch.mean(voxel[locs],axis=0)[None]
|
955 |
+
else:
|
956 |
+
test_image = torch.vstack((test_image, images[im][None]))
|
957 |
+
test_voxel = torch.vstack((test_voxel, torch.mean(voxel[locs],axis=0)[None]))
|
958 |
+
|
959 |
+
# sample of batch_size
|
960 |
+
random_indices = torch.arange(len(test_voxel))[:batch_size] #torch.randperm(len(test_voxel))[:300]
|
961 |
+
voxel = test_voxel[random_indices].to(device)
|
962 |
+
image = test_image[random_indices].to(device)
|
963 |
+
assert len(image) == batch_size
|
964 |
+
|
965 |
+
# blurry_image_enc = autoenc.encode(image).latent_dist.mode()
|
966 |
+
|
967 |
+
# clip_target = clip_model.embed_image(image.float())
|
968 |
+
clip_target = embed_images_b2(image)[0].to(device) #####CHANGED
|
969 |
+
|
970 |
+
voxel_ridge = model.ridge(voxel)
|
971 |
+
|
972 |
+
# clip_voxels, blurry_image_enc_ = model.backbone(voxel_ridge)
|
973 |
+
clip_voxels = model.backbone(voxel_ridge)
|
974 |
+
|
975 |
+
clip_voxels_norm = nn.functional.normalize(clip_voxels.flatten(1), dim=-1)
|
976 |
+
clip_target_norm = nn.functional.normalize(clip_target.flatten(1), dim=-1)
|
977 |
+
|
978 |
+
loss_clip = utils.soft_clip_loss(
|
979 |
+
clip_voxels_norm,
|
980 |
+
clip_target_norm,
|
981 |
+
temp=.006)
|
982 |
+
|
983 |
+
loss_mse = mse(clip_voxels, clip_target)
|
984 |
+
|
985 |
+
# loss_blurry = mse(blurry_image_enc_, blurry_image_enc)
|
986 |
+
|
987 |
+
# loss = loss_blurry + loss_clip
|
988 |
+
loss = (clip_mse_ratio * loss_clip) + ((1 - clip_mse_ratio) * loss_mse)
|
989 |
+
|
990 |
+
utils.check_loss(loss)
|
991 |
+
|
992 |
+
test_losses.append(loss.item())
|
993 |
+
|
994 |
+
# forward and backward top 1 accuracy
|
995 |
+
labels = torch.arange(len(clip_target_norm)).to(clip_voxels_norm.device)
|
996 |
+
test_fwd_percent_correct += utils.topk(utils.batchwise_cosine_similarity(clip_voxels_norm, clip_target_norm), labels, k=1)
|
997 |
+
test_bwd_percent_correct += utils.topk(utils.batchwise_cosine_similarity(clip_target_norm, clip_voxels_norm), labels, k=1)
|
998 |
+
|
999 |
+
# # halving the batch size because the decoder is computationally heavy
|
1000 |
+
# blurry_recon_images = autoenc.decode(blurry_image_enc_[:len(voxel)//2]).sample.clamp(0,1)
|
1001 |
+
# blurry_recon_images = torch.vstack((blurry_recon_images, autoenc.decode(blurry_image_enc_[len(voxel)//2:]).sample.clamp(0,1)))
|
1002 |
+
# test_blurry_pixcorr += pixcorr(image, blurry_recon_images)
|
1003 |
+
|
1004 |
+
#Find captions and print next to images
|
1005 |
+
#caption1 = embed_2_caption(clip_voxels[[0]], blip2_model)
|
1006 |
+
#caption2 = embed_2_caption(clip_voxels[[1]], blip2_model)
|
1007 |
+
|
1008 |
+
#true_embed1 = tensor_2_embed(image[[0]])
|
1009 |
+
#true_embed2 = tensor_2_embed(image[[1]])
|
1010 |
+
|
1011 |
+
# print(clip_voxels[[0]].shape)
|
1012 |
+
# print(true_embed1.shape)
|
1013 |
+
|
1014 |
+
#true_caption1 = embed_2_caption(true_embed1, blip2_model)
|
1015 |
+
#true_caption2 = embed_2_caption(true_embed2, blip2_model)
|
1016 |
+
|
1017 |
+
# transform blurry recon latents to images and plot it
|
1018 |
+
#fig, axes = plt.subplots(2, 2, figsize=(8, 4))
|
1019 |
+
#axes[0,0].imshow(utils.torch_to_Image(image[[0]]))
|
1020 |
+
#axes[0,1].imshow(utils.torch_to_Image(image[[1]]))
|
1021 |
+
#axes[0,0].axis('off'); axes[0,1].axis('off'); axes[1,0].axis('off'); axes[1,1].axis('off')
|
1022 |
+
#axes[0,0].set_title(caption1)
|
1023 |
+
#axes[0,1].set_title(caption2)
|
1024 |
+
#axes[1,0].set_title(true_caption1)
|
1025 |
+
#axes[1,1].set_title(true_caption2)
|
1026 |
+
|
1027 |
+
#plt.show()
|
1028 |
+
|
1029 |
+
# # transform blurry recon latents to images and plot it
|
1030 |
+
# fig, axes = plt.subplots(1, 4, figsize=(8, 4))
|
1031 |
+
# axes[0].imshow(utils.torch_to_Image(image[[0]]))
|
1032 |
+
# axes[1].imshow(utils.torch_to_Image(autoenc.decode(blurry_image_enc_[[0]]).sample.clamp(0,1)))
|
1033 |
+
# axes[2].imshow(utils.torch_to_Image(image[[1]]))
|
1034 |
+
# axes[3].imshow(utils.torch_to_Image(autoenc.decode(blurry_image_enc_[[1]]).sample.clamp(0,1)))
|
1035 |
+
# axes[0].axis('off'); axes[1].axis('off'); axes[2].axis('off'); axes[3].axis('off')
|
1036 |
+
# axes[0].set_title(caption1)
|
1037 |
+
# axes[3].set_title(caption2)
|
1038 |
+
# plt.show()
|
1039 |
+
|
1040 |
+
|
1041 |
+
if local_rank==0:
|
1042 |
+
# if utils.is_interactive(): clear_output(wait=True)
|
1043 |
+
assert (test_i+1) == 1
|
1044 |
+
logs = {"train/loss": np.mean(losses[-(train_i+1):]),
|
1045 |
+
"test/loss": np.mean(test_losses[-(test_i+1):]),
|
1046 |
+
"train/lr": lrs[-1],
|
1047 |
+
"train/num_steps": len(losses),
|
1048 |
+
"test/num_steps": len(test_losses),
|
1049 |
+
"train/fwd_pct_correct": fwd_percent_correct / (train_i + 1),
|
1050 |
+
"train/bwd_pct_correct": bwd_percent_correct / (train_i + 1),
|
1051 |
+
"test/test_fwd_pct_correct": test_fwd_percent_correct / (test_i + 1),
|
1052 |
+
"test/test_bwd_pct_correct": test_bwd_percent_correct / (test_i + 1),
|
1053 |
+
"train/loss_clip_total": loss_clip_total / (train_i + 1),
|
1054 |
+
"train/loss_blurry_total": loss_blurry_total / (train_i + 1),
|
1055 |
+
"test/loss_clip_total": test_loss_clip_total / (test_i + 1),
|
1056 |
+
"test/loss_blurry_total": test_loss_blurry_total / (test_i + 1),
|
1057 |
+
"train/blurry_pixcorr": blurry_pixcorr / (train_i + 1),
|
1058 |
+
"test/blurry_pixcorr": test_blurry_pixcorr / (test_i + 1),
|
1059 |
+
}
|
1060 |
+
progress_bar.set_postfix(**logs)
|
1061 |
+
|
1062 |
+
fig, axes = plt.subplots(1, 8, figsize=(10, 4))
|
1063 |
+
jj=-1
|
1064 |
+
for j in [0,1,2,3,4,5,6,7]:
|
1065 |
+
jj+=1
|
1066 |
+
axes[jj].imshow(utils.torch_to_Image(image[j]))
|
1067 |
+
axes[jj].axis('off')
|
1068 |
+
|
1069 |
+
if wandb_log:
|
1070 |
+
generated_captions = embeds_to_captions_b2(clip_voxels[0:8])
|
1071 |
+
print(generated_captions[1])
|
1072 |
+
logs[f"test/recons"] = wandb.Image(fig, caption=f"epoch{epoch:03d}" + "\n".join(generated_captions[1]))
|
1073 |
+
plt.close()
|
1074 |
+
# Save model checkpoint and reconstruct
|
1075 |
+
if epoch % ckpt_interval == 0:
|
1076 |
+
if not utils.is_interactive():
|
1077 |
+
save_ckpt(f'last')
|
1078 |
+
|
1079 |
+
if wandb_log: wandb.log(logs)
|
1080 |
+
|
1081 |
+
# wait for other GPUs to catch up if needed
|
1082 |
+
accelerator.wait_for_everyone()
|
1083 |
+
torch.cuda.empty_cache()
|
1084 |
+
gc.collect()
|
1085 |
+
|
1086 |
+
print("\n===Finished!===\n")
|
1087 |
+
if ckpt_saving:
|
1088 |
+
save_ckpt(f'last')
|
1089 |
+
if not utils.is_interactive():
|
1090 |
+
sys.exit(0)
|
1091 |
+
|
1092 |
+
|
1093 |
+
# In[ ]:
|
1094 |
+
|
1095 |
+
|
1096 |
+
plt.plot(losses)
|
1097 |
+
plt.show()
|
1098 |
+
plt.plot(test_losses)
|
1099 |
+
plt.show()
|
1100 |
+
|
1101 |
+
|
1102 |
+
# In[ ]:
|
1103 |
+
|
1104 |
+
|
1105 |
+
print('test')
|
1106 |
+
|
1107 |
+
|
1108 |
+
# In[ ]:
|
1109 |
+
|
1110 |
+
|
1111 |
+
def tensor_2_embed_old(tensor):
|
1112 |
+
embed_array = torch.zeros((tensor.shape[0],257, 1024))
|
1113 |
+
to_pil = ToPILImage()
|
1114 |
+
for sample in range(tensor.shape[0]):
|
1115 |
+
PIL_image = to_pil(tensor[sample])
|
1116 |
+
image_for_blip2 = vis_processors["eval"](PIL_image).unsqueeze(0).to(device)
|
1117 |
+
#Generate embeddings
|
1118 |
+
with blip2_model.maybe_autocast():
|
1119 |
+
blip2_target = blip2_model.ln_vision(blip2_model.visual_encoder(image_for_blip2))
|
1120 |
+
embed_array[sample] = blip2_target
|
1121 |
+
|
1122 |
+
return embed_array
|
1123 |
+
|
1124 |
+
|
1125 |
+
# In[ ]:
|
1126 |
+
|
1127 |
+
|
1128 |
+
|
1129 |
+
|
1130 |
+
|
1131 |
+
# In[ ]:
|
1132 |
+
|
1133 |
+
|
1134 |
+
|
1135 |
+
|
1136 |
+
|
1137 |
+
# In[ ]:
|
1138 |
+
|
1139 |
+
|
1140 |
+
|
1141 |
+
|
src/utils.py
ADDED
@@ -0,0 +1,368 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
from torchvision import transforms
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
import torch.nn.functional as F
|
6 |
+
import PIL
|
7 |
+
import random
|
8 |
+
import os
|
9 |
+
import matplotlib.pyplot as plt
|
10 |
+
import pandas as pd
|
11 |
+
import math
|
12 |
+
import webdataset as wds
|
13 |
+
import tempfile
|
14 |
+
from torchvision.utils import make_grid
|
15 |
+
# from diffusers.utils import randn_tensor
|
16 |
+
|
17 |
+
import json
|
18 |
+
from torchmetrics.image.fid import FrechetInceptionDistance
|
19 |
+
from PIL import Image
|
20 |
+
import requests
|
21 |
+
import io
|
22 |
+
import time
|
23 |
+
|
24 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
25 |
+
|
26 |
+
def is_interactive():
|
27 |
+
import __main__ as main
|
28 |
+
return not hasattr(main, '__file__')
|
29 |
+
|
30 |
+
def seed_everything(seed=0, cudnn_deterministic=True):
|
31 |
+
random.seed(seed)
|
32 |
+
os.environ['PYTHONHASHSEED'] = str(seed)
|
33 |
+
np.random.seed(seed)
|
34 |
+
torch.manual_seed(seed)
|
35 |
+
torch.cuda.manual_seed(seed)
|
36 |
+
torch.cuda.manual_seed_all(seed)
|
37 |
+
if cudnn_deterministic:
|
38 |
+
torch.backends.cudnn.deterministic = True
|
39 |
+
else:
|
40 |
+
## needs to be False to use conv3D
|
41 |
+
print('Note: not using cudnn.deterministic')
|
42 |
+
|
43 |
+
def np_to_Image(x):
|
44 |
+
if x.ndim==4:
|
45 |
+
x=x[0]
|
46 |
+
return PIL.Image.fromarray((x.transpose(1, 2, 0)*127.5+128).clip(0,255).astype('uint8'))
|
47 |
+
|
48 |
+
def torch_to_Image(x):
|
49 |
+
if x.ndim==4:
|
50 |
+
x=x[0]
|
51 |
+
return transforms.ToPILImage()(x)
|
52 |
+
|
53 |
+
def Image_to_torch(x):
|
54 |
+
try:
|
55 |
+
x = (transforms.ToTensor()(x)[:3].unsqueeze(0)-.5)/.5
|
56 |
+
except:
|
57 |
+
x = (transforms.ToTensor()(x[0])[:3].unsqueeze(0)-.5)/.5
|
58 |
+
return x
|
59 |
+
|
60 |
+
def torch_to_matplotlib(x,device=device):
|
61 |
+
if torch.mean(x)>10:
|
62 |
+
x = (x.permute(0, 2, 3, 1)).clamp(0, 255).to(torch.uint8)
|
63 |
+
else:
|
64 |
+
x = (x.permute(0, 2, 3, 1) * 255).clamp(0, 255).to(torch.uint8)
|
65 |
+
if device=='cpu':
|
66 |
+
return x[0]
|
67 |
+
else:
|
68 |
+
return x.cpu().numpy()[0]
|
69 |
+
|
70 |
+
def pairwise_cosine_similarity(A, B, dim=1, eps=1e-8):
|
71 |
+
#https://stackoverflow.com/questions/67199317/pytorch-cosine-similarity-nxn-elements
|
72 |
+
numerator = A @ B.T
|
73 |
+
A_l2 = torch.mul(A, A).sum(axis=dim)
|
74 |
+
B_l2 = torch.mul(B, B).sum(axis=dim)
|
75 |
+
denominator = torch.max(torch.sqrt(torch.outer(A_l2, B_l2)), torch.tensor(eps))
|
76 |
+
return torch.div(numerator, denominator)
|
77 |
+
|
78 |
+
def batchwise_pearson_correlation(Z, B):
|
79 |
+
# Calculate means
|
80 |
+
Z_mean = torch.mean(Z, dim=1, keepdim=True)
|
81 |
+
B_mean = torch.mean(B, dim=1, keepdim=True)
|
82 |
+
|
83 |
+
# Subtract means
|
84 |
+
Z_centered = Z - Z_mean
|
85 |
+
B_centered = B - B_mean
|
86 |
+
|
87 |
+
# Calculate Pearson correlation coefficient
|
88 |
+
numerator = Z_centered @ B_centered.T
|
89 |
+
Z_centered_norm = torch.linalg.norm(Z_centered, dim=1, keepdim=True)
|
90 |
+
B_centered_norm = torch.linalg.norm(B_centered, dim=1, keepdim=True)
|
91 |
+
denominator = Z_centered_norm @ B_centered_norm.T
|
92 |
+
|
93 |
+
pearson_correlation = (numerator / denominator)
|
94 |
+
return pearson_correlation
|
95 |
+
|
96 |
+
def batchwise_cosine_similarity(Z,B):
|
97 |
+
# https://www.h4pz.co/blog/2021/4/2/batch-cosine-similarity-in-pytorch-or-numpy-jax-cupy-etc
|
98 |
+
B = B.T
|
99 |
+
Z_norm = torch.linalg.norm(Z, dim=1, keepdim=True) # Size (n, 1).
|
100 |
+
B_norm = torch.linalg.norm(B, dim=0, keepdim=True) # Size (1, b).
|
101 |
+
cosine_similarity = ((Z @ B) / (Z_norm @ B_norm)).T
|
102 |
+
return cosine_similarity
|
103 |
+
|
104 |
+
def topk(similarities,labels,k=5):
|
105 |
+
if k > similarities.shape[0]:
|
106 |
+
k = similarities.shape[0]
|
107 |
+
topsum=0
|
108 |
+
for i in range(k):
|
109 |
+
topsum += torch.sum(torch.argsort(similarities,axis=1)[:,-(i+1)] == labels)/len(labels)
|
110 |
+
return topsum
|
111 |
+
|
112 |
+
def get_non_diagonals(a):
|
113 |
+
a = torch.triu(a,diagonal=1)+torch.tril(a,diagonal=-1)
|
114 |
+
# make diagonals -1
|
115 |
+
a=a.fill_diagonal_(-1)
|
116 |
+
return a
|
117 |
+
|
118 |
+
def gather_features(image_features, voxel_features, accelerator):
|
119 |
+
all_image_features = accelerator.gather(image_features.contiguous())
|
120 |
+
if voxel_features is not None:
|
121 |
+
all_voxel_features = accelerator.gather(voxel_features.contiguous())
|
122 |
+
return all_image_features, all_voxel_features
|
123 |
+
return all_image_features
|
124 |
+
|
125 |
+
def soft_clip_loss(preds, targs, temp=0.125): #, distributed=False, accelerator=None):
|
126 |
+
# if not distributed:
|
127 |
+
clip_clip = (targs @ targs.T)/temp
|
128 |
+
brain_clip = (preds @ targs.T)/temp
|
129 |
+
# else:
|
130 |
+
# all_targs = gather_features(targs, None, accelerator)
|
131 |
+
# clip_clip = (targs @ all_targs.T)/temp
|
132 |
+
# brain_clip = (preds @ all_targs.T)/temp
|
133 |
+
|
134 |
+
loss1 = -(brain_clip.log_softmax(-1) * clip_clip.softmax(-1)).sum(-1).mean()
|
135 |
+
loss2 = -(brain_clip.T.log_softmax(-1) * clip_clip.softmax(-1)).sum(-1).mean()
|
136 |
+
|
137 |
+
loss = (loss1 + loss2)/2
|
138 |
+
return loss
|
139 |
+
|
140 |
+
def soft_siglip_loss(preds, targs, temp, bias):
|
141 |
+
temp = torch.exp(temp)
|
142 |
+
|
143 |
+
logits = (preds @ targs.T) * temp + bias
|
144 |
+
# diagonals (aka paired samples) should be >0 and off-diagonals <0
|
145 |
+
labels = (targs @ targs.T) - 1 + (torch.eye(len(targs)).to(targs.dtype).to(targs.device))
|
146 |
+
|
147 |
+
loss1 = -torch.sum(nn.functional.logsigmoid(logits * labels[:len(preds)])) / len(preds)
|
148 |
+
loss2 = -torch.sum(nn.functional.logsigmoid(logits.T * labels[:,:len(preds)])) / len(preds)
|
149 |
+
loss = (loss1 + loss2)/2
|
150 |
+
return loss
|
151 |
+
|
152 |
+
def mixco_hard_siglip_loss(preds, targs, temp, bias, perm, betas):
|
153 |
+
temp = torch.exp(temp)
|
154 |
+
|
155 |
+
probs = torch.diag(betas)
|
156 |
+
probs[torch.arange(preds.shape[0]).to(preds.device), perm] = 1 - betas
|
157 |
+
|
158 |
+
logits = (preds @ targs.T) * temp + bias
|
159 |
+
labels = probs * 2 - 1
|
160 |
+
#labels = torch.eye(len(targs)).to(targs.dtype).to(targs.device) * 2 - 1
|
161 |
+
|
162 |
+
loss1 = -torch.sum(nn.functional.logsigmoid(logits * labels)) / len(preds)
|
163 |
+
loss2 = -torch.sum(nn.functional.logsigmoid(logits.T * labels)) / len(preds)
|
164 |
+
loss = (loss1 + loss2)/2
|
165 |
+
return loss
|
166 |
+
|
167 |
+
def mixco(voxels, beta=0.15, s_thresh=0.5, perm=None, betas=None, select=None):
|
168 |
+
if perm is None:
|
169 |
+
perm = torch.randperm(voxels.shape[0])
|
170 |
+
voxels_shuffle = voxels[perm].to(voxels.device,dtype=voxels.dtype)
|
171 |
+
if betas is None:
|
172 |
+
betas = torch.distributions.Beta(beta, beta).sample([voxels.shape[0]]).to(voxels.device,dtype=voxels.dtype)
|
173 |
+
if select is None:
|
174 |
+
select = (torch.rand(voxels.shape[0]) <= s_thresh).to(voxels.device)
|
175 |
+
betas_shape = [-1] + [1]*(len(voxels.shape)-1)
|
176 |
+
voxels[select] = voxels[select] * betas[select].reshape(*betas_shape) + \
|
177 |
+
voxels_shuffle[select] * (1 - betas[select]).reshape(*betas_shape)
|
178 |
+
betas[~select] = 1
|
179 |
+
return voxels, perm, betas, select
|
180 |
+
|
181 |
+
def mixco_clip_target(clip_target, perm, select, betas):
|
182 |
+
clip_target_shuffle = clip_target[perm]
|
183 |
+
clip_target[select] = clip_target[select] * betas[select].reshape(-1, 1) + \
|
184 |
+
clip_target_shuffle[select] * (1 - betas[select]).reshape(-1, 1)
|
185 |
+
return clip_target
|
186 |
+
|
187 |
+
def mixco_nce(preds, targs, temp=0.1, perm=None, betas=None, select=None, distributed=False,
|
188 |
+
accelerator=None, local_rank=None, bidirectional=True):
|
189 |
+
brain_clip = (preds @ targs.T)/temp
|
190 |
+
|
191 |
+
if perm is not None and betas is not None and select is not None:
|
192 |
+
probs = torch.diag(betas)
|
193 |
+
probs[torch.arange(preds.shape[0]).to(preds.device), perm] = 1 - betas
|
194 |
+
|
195 |
+
loss = -(brain_clip.log_softmax(-1) * probs).sum(-1).mean()
|
196 |
+
if bidirectional:
|
197 |
+
loss2 = -(brain_clip.T.log_softmax(-1) * probs.T).sum(-1).mean()
|
198 |
+
loss = (loss + loss2)/2
|
199 |
+
return loss
|
200 |
+
else:
|
201 |
+
loss = F.cross_entropy(brain_clip, torch.arange(brain_clip.shape[0]).to(brain_clip.device))
|
202 |
+
if bidirectional:
|
203 |
+
loss2 = F.cross_entropy(brain_clip.T, torch.arange(brain_clip.shape[0]).to(brain_clip.device))
|
204 |
+
loss = (loss + loss2)/2
|
205 |
+
return loss
|
206 |
+
|
207 |
+
def count_params(model):
|
208 |
+
total = sum(p.numel() for p in model.parameters())
|
209 |
+
trainable = sum(p.numel() for p in model.parameters() if p.requires_grad)
|
210 |
+
print('param counts:\n{:,} total\n{:,} trainable'.format(total, trainable))
|
211 |
+
|
212 |
+
def image_grid(imgs, rows, cols):
|
213 |
+
w, h = imgs[0].size
|
214 |
+
grid = PIL.Image.new('RGB', size=(cols*w, rows*h))
|
215 |
+
for i, img in enumerate(imgs):
|
216 |
+
grid.paste(img, box=(i%cols*w, i//cols*h))
|
217 |
+
return grid
|
218 |
+
|
219 |
+
def check_loss(loss):
|
220 |
+
if loss.isnan().any():
|
221 |
+
raise ValueError('NaN loss')
|
222 |
+
|
223 |
+
def cosine_anneal(start, end, steps):
|
224 |
+
return end + (start - end)/2 * (1 + torch.cos(torch.pi*torch.arange(steps)/(steps-1)))
|
225 |
+
|
226 |
+
def resize(img, img_size=128):
|
227 |
+
if img.ndim == 3: img = img[None]
|
228 |
+
return nn.functional.interpolate(img, size=(img_size, img_size), mode='nearest')
|
229 |
+
|
230 |
+
def patchify(img, patch_size=16):
|
231 |
+
B, C, H, W = img.size()
|
232 |
+
patches = img.unfold(2, patch_size, patch_size).unfold(3, patch_size, patch_size)
|
233 |
+
patches = patches.contiguous().view(B, C, -1, patch_size, patch_size)
|
234 |
+
return patches.permute(0, 2, 1, 3, 4)
|
235 |
+
|
236 |
+
def unpatchify(patches):
|
237 |
+
B, N, C, H, W = patches.shape # B=Batch size, N=Number of patches, C=Channels, H=Height, W=Width
|
238 |
+
patches = patches.view(B, int(N**0.5), int(N**0.5), C, H, W)
|
239 |
+
patches = patches.permute(0, 3, 1, 4, 2, 5).contiguous()
|
240 |
+
return patches.view(B, C, H*int(N**0.5), W*int(N**0.5))
|
241 |
+
|
242 |
+
import braceexpand
|
243 |
+
def get_dataloaders(
|
244 |
+
batch_size,
|
245 |
+
image_var='images',
|
246 |
+
num_devices=None,
|
247 |
+
num_workers=None,
|
248 |
+
train_url=None,
|
249 |
+
val_url=None,
|
250 |
+
meta_url=None,
|
251 |
+
num_train=None,
|
252 |
+
num_val=None,
|
253 |
+
cache_dir="/scratch/tmp/wds-cache",
|
254 |
+
seed=0,
|
255 |
+
voxels_key="nsdgeneral.npy",
|
256 |
+
val_batch_size=None,
|
257 |
+
to_tuple=["voxels", "images", "trial"],
|
258 |
+
local_rank=0,
|
259 |
+
world_size=1,
|
260 |
+
):
|
261 |
+
print("Getting dataloaders...")
|
262 |
+
assert image_var == 'images'
|
263 |
+
|
264 |
+
def my_split_by_node(urls):
|
265 |
+
return urls
|
266 |
+
|
267 |
+
train_url = list(braceexpand.braceexpand(train_url))
|
268 |
+
val_url = list(braceexpand.braceexpand(val_url))
|
269 |
+
|
270 |
+
if num_devices is None:
|
271 |
+
num_devices = torch.cuda.device_count()
|
272 |
+
|
273 |
+
if num_workers is None:
|
274 |
+
num_workers = num_devices
|
275 |
+
|
276 |
+
if num_train is None:
|
277 |
+
metadata = json.load(open(meta_url))
|
278 |
+
num_train = metadata['totals']['train']
|
279 |
+
if num_val is None:
|
280 |
+
metadata = json.load(open(meta_url))
|
281 |
+
num_val = metadata['totals']['val']
|
282 |
+
|
283 |
+
if val_batch_size is None:
|
284 |
+
val_batch_size = batch_size
|
285 |
+
|
286 |
+
global_batch_size = batch_size * num_devices
|
287 |
+
num_batches = math.floor(num_train / global_batch_size)
|
288 |
+
num_worker_batches = math.floor(num_batches / num_workers)
|
289 |
+
if num_worker_batches == 0: num_worker_batches = 1
|
290 |
+
|
291 |
+
print("\nnum_train",num_train)
|
292 |
+
print("global_batch_size",global_batch_size)
|
293 |
+
print("batch_size",batch_size)
|
294 |
+
print("num_workers",num_workers)
|
295 |
+
print("num_batches",num_batches)
|
296 |
+
print("num_worker_batches", num_worker_batches)
|
297 |
+
|
298 |
+
# train_url = train_url[local_rank:world_size]
|
299 |
+
train_data = wds.WebDataset(train_url, resampled=False, cache_dir=cache_dir, nodesplitter=my_split_by_node)\
|
300 |
+
.shuffle(500, initial=500, rng=random.Random(42))\
|
301 |
+
.decode("torch")\
|
302 |
+
.rename(images="jpg;png", voxels=voxels_key, trial="trial.npy", coco="coco73k.npy", reps="num_uniques.npy")\
|
303 |
+
.to_tuple(*to_tuple)#\
|
304 |
+
# .batched(batch_size, partial=True)#\
|
305 |
+
# .with_epoch(num_worker_batches)
|
306 |
+
|
307 |
+
# BATCH SIZE SHOULD BE NONE!!! FOR TRAIN AND VAL | resampled=True for train | .batched(val_batch_size, partial=False)
|
308 |
+
train_dl = torch.utils.data.DataLoader(train_data, batch_size=batch_size, num_workers=1, shuffle=False)
|
309 |
+
|
310 |
+
# Validation
|
311 |
+
print("val_batch_size",val_batch_size)
|
312 |
+
val_data = wds.WebDataset(val_url, resampled=False, cache_dir=cache_dir, nodesplitter=my_split_by_node)\
|
313 |
+
.shuffle(500, initial=500, rng=random.Random(42))\
|
314 |
+
.decode("torch")\
|
315 |
+
.rename(images="jpg;png", voxels=voxels_key, trial="trial.npy", coco="coco73k.npy", reps="num_uniques.npy")\
|
316 |
+
.to_tuple(*to_tuple)#\
|
317 |
+
# .batched(val_batch_size, partial=True)
|
318 |
+
val_dl = torch.utils.data.DataLoader(val_data, batch_size=val_batch_size, num_workers=1, shuffle=False, drop_last=True)
|
319 |
+
|
320 |
+
return train_dl, val_dl, num_train, num_val
|
321 |
+
|
322 |
+
pixcorr_preprocess = transforms.Compose([
|
323 |
+
transforms.Resize(425, interpolation=transforms.InterpolationMode.BILINEAR),
|
324 |
+
])
|
325 |
+
def pixcorr(images,brains):
|
326 |
+
all_images_flattened = pixcorr_preprocess(images).reshape(len(images), -1)
|
327 |
+
all_brain_recons_flattened = pixcorr_preprocess(brains).view(len(brains), -1)
|
328 |
+
corrmean = torch.diag(batchwise_pearson_correlation(all_images_flattened, all_brain_recons_flattened)).mean()
|
329 |
+
return corrmean
|
330 |
+
|
331 |
+
pixcorr_origsize_nanmean_preprocess = transforms.Compose([
|
332 |
+
transforms.Resize(128, interpolation=transforms.InterpolationMode.BILINEAR),
|
333 |
+
])
|
334 |
+
def pixcorr_origsize_nanmean(images,brains):
|
335 |
+
all_images_flattened = pixcorr_origsize_nanmean_preprocess(images).reshape(len(images), -1)
|
336 |
+
all_brain_recons_flattened = brains.view(len(brains), -1) # assuming it's already 128 size
|
337 |
+
corrmean = torch.nanmean(torch.diag(batchwise_pearson_correlation(all_images_flattened, all_brain_recons_flattened)))
|
338 |
+
return corrmean
|
339 |
+
|
340 |
+
def select_annotations(annots, random=False):
|
341 |
+
"""
|
342 |
+
There are 5 annotations per image. Select one of them for each image.
|
343 |
+
"""
|
344 |
+
for i, b in enumerate(annots):
|
345 |
+
t = ''
|
346 |
+
if random:
|
347 |
+
# select random non-empty annotation
|
348 |
+
while t == '':
|
349 |
+
rand = torch.randint(5, (1,1))[0][0]
|
350 |
+
t = b[rand]
|
351 |
+
else:
|
352 |
+
# select first non-empty annotation
|
353 |
+
for j in range(5):
|
354 |
+
if b[j] != '':
|
355 |
+
t = b[j]
|
356 |
+
break
|
357 |
+
if i == 0:
|
358 |
+
txt = np.array(t)
|
359 |
+
else:
|
360 |
+
txt = np.vstack((txt, t))
|
361 |
+
txt = txt.flatten()
|
362 |
+
return txt
|
363 |
+
|
364 |
+
def add_saturation(image, alpha=2):
|
365 |
+
gray_image = 0.2989 * image[:, 0, :, :] + 0.5870 * image[:, 1, :, :] + 0.1140 * image[:, 2, :, :]
|
366 |
+
gray_image = gray_image.unsqueeze(1).expand_as(image)
|
367 |
+
saturated_image = alpha * image + (1 - alpha) * gray_image
|
368 |
+
return torch.clamp(saturated_image, 0, 1)
|
train_mem_logs/error.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3c5b11d49c3a54be008689ed7a339164c4740c698ccf562bb069ae274ee9f834
|
3 |
+
size 8108517524
|
train_mem_logs/error_tensors.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0ef06b797eafcaa4038c81293ce5a4154707134f813b82976d81726e021169fd
|
3 |
+
size 3534675888
|
train_mem_logs/test/last.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5457bfd8fb50a44c250c8688aa2846ff9bf1ca8c7c03c9cfaff90b565f327b3e
|
3 |
+
size 16742654526
|
train_mem_logs/test_mem/last.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e82bf58463b16ffe2049b7788c4de136829f0d6c847335e345630d11e84e2ee3
|
3 |
+
size 8066548705
|