File size: 79,272 Bytes
b8ea2b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 25,
   "id": "ef9e1556-7840-4004-b181-a2c97ac2ab17",
   "metadata": {},
   "outputs": [],
   "source": [
    "import os\n",
    "import torch\n",
    "import torch.nn as nn\n",
    "import numpy as np\n",
    "import matplotlib.pyplot as plt"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "b6f12dd4-f3aa-4981-b604-b72e67229011",
   "metadata": {},
   "source": [
    "# DinoV2"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 26,
   "id": "2a604617-b602-4503-b288-e9828684505e",
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Using cache found in /fsx/proj-fmri/shared/cache/dinov2/hub/facebookresearch_dinov2_main\n"
     ]
    }
   ],
   "source": [
    "# need to change TORCH_HOME env variable to specify pretrained model should go in shared folder, not home directory\n",
    "os.environ['TORCH_HOME'] = '/fsx/proj-fmri/shared/cache/dinov2'\n",
    "dinov2_model = torch.hub.load('facebookresearch/dinov2', 'dinov2_vitl14')\n",
    "# remove initial image patching\n",
    "dinov2_model.patch_embed = nn.Identity()\n",
    "dinov2_model.patch_embed = nn.Identity()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 27,
   "id": "32da913d-d931-4967-a5e8-bd40c21d1ad9",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "torch.Size([2, 33, 1024])\n"
     ]
    }
   ],
   "source": [
    "dinov2_model.to(\"cuda\")\n",
    "input = torch.randn((2,33,1024)).to(\"cuda\")\n",
    "\n",
    "for block in dinov2_model.blocks: input = block(input)\n",
    "input = dinov2_model.norm(input)\n",
    "\n",
    "print(input.shape)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "febe89c0-06d0-4309-b378-a8d58b99bf4c",
   "metadata": {},
   "source": [
    "# eva"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 28,
   "id": "690204d0-13d7-452b-97af-14d144800e81",
   "metadata": {},
   "outputs": [],
   "source": [
    "from urllib.request import urlopen\n",
    "from PIL import Image\n",
    "import timm\n",
    "\n",
    "img = Image.open(urlopen(\n",
    "    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'\n",
    "))\n",
    "\n",
    "model = timm.create_model(\n",
    "    \"eva02_enormous_patch14_clip_224.laion2b\",\n",
    "    pretrained=True,\n",
    "    num_classes=0,  # remove classifier nn.Linear\n",
    ")\n",
    "model = model.eval()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 39,
   "id": "035e3e9d-86c9-4ddf-b760-7b78dded7d2e",
   "metadata": {},
   "outputs": [
    {
     "ename": "ValueError",
     "evalue": "You have to specify pixel_values",
     "output_type": "error",
     "traceback": [
      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[0;31mValueError\u001b[0m                                Traceback (most recent call last)",
      "Cell \u001b[0;32mIn[39], line 5\u001b[0m\n\u001b[1;32m      2\u001b[0m data_config \u001b[38;5;241m=\u001b[39m timm\u001b[38;5;241m.\u001b[39mdata\u001b[38;5;241m.\u001b[39mresolve_model_data_config(model)\n\u001b[1;32m      3\u001b[0m transforms \u001b[38;5;241m=\u001b[39m timm\u001b[38;5;241m.\u001b[39mdata\u001b[38;5;241m.\u001b[39mcreate_transform(\u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mdata_config, is_training\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mFalse\u001b[39;00m)\n\u001b[0;32m----> 5\u001b[0m output \u001b[38;5;241m=\u001b[39m \u001b[43mmodel\u001b[49m\u001b[43m(\u001b[49m\u001b[43mtransforms\u001b[49m\u001b[43m(\u001b[49m\u001b[43mimg\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43munsqueeze\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m0\u001b[39;49m\u001b[43m)\u001b[49m\u001b[43m)\u001b[49m  \u001b[38;5;66;03m# output is (batch_size, num_features) shaped tensor\u001b[39;00m\n\u001b[1;32m      6\u001b[0m \u001b[38;5;28mprint\u001b[39m(output\u001b[38;5;241m.\u001b[39mshape)\n\u001b[1;32m      7\u001b[0m \u001b[38;5;66;03m# or equivalently (without needing to set num_classes=0)\u001b[39;00m\n",
      "File \u001b[0;32m~/miniconda3/envs/mindeye/lib/python3.10/site-packages/torch/nn/modules/module.py:1501\u001b[0m, in \u001b[0;36mModule._call_impl\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m   1496\u001b[0m \u001b[38;5;66;03m# If we don't have any hooks, we want to skip the rest of the logic in\u001b[39;00m\n\u001b[1;32m   1497\u001b[0m \u001b[38;5;66;03m# this function, and just call forward.\u001b[39;00m\n\u001b[1;32m   1498\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m (\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_backward_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_backward_pre_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_forward_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_forward_pre_hooks\n\u001b[1;32m   1499\u001b[0m         \u001b[38;5;129;01mor\u001b[39;00m _global_backward_pre_hooks \u001b[38;5;129;01mor\u001b[39;00m _global_backward_hooks\n\u001b[1;32m   1500\u001b[0m         \u001b[38;5;129;01mor\u001b[39;00m _global_forward_hooks \u001b[38;5;129;01mor\u001b[39;00m _global_forward_pre_hooks):\n\u001b[0;32m-> 1501\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mforward_call\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m   1502\u001b[0m \u001b[38;5;66;03m# Do not call functions when jit is used\u001b[39;00m\n\u001b[1;32m   1503\u001b[0m full_backward_hooks, non_full_backward_hooks \u001b[38;5;241m=\u001b[39m [], []\n",
      "File \u001b[0;32m~/miniconda3/envs/mindeye/lib/python3.10/site-packages/transformers/models/clipseg/modeling_clipseg.py:1433\u001b[0m, in \u001b[0;36mCLIPSegForImageSegmentation.forward\u001b[0;34m(self, input_ids, pixel_values, conditional_pixel_values, conditional_embeddings, attention_mask, position_ids, labels, output_attentions, output_hidden_states, return_dict)\u001b[0m\n\u001b[1;32m   1431\u001b[0m \u001b[38;5;66;03m# step 1: forward the query images through the frozen CLIP vision encoder\u001b[39;00m\n\u001b[1;32m   1432\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m torch\u001b[38;5;241m.\u001b[39mno_grad():\n\u001b[0;32m-> 1433\u001b[0m     vision_outputs \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mclip\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mvision_model\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m   1434\u001b[0m \u001b[43m        \u001b[49m\u001b[43mpixel_values\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mpixel_values\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1435\u001b[0m \u001b[43m        \u001b[49m\u001b[43moutput_attentions\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43moutput_attentions\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1436\u001b[0m \u001b[43m        \u001b[49m\u001b[43moutput_hidden_states\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\u001b[43m,\u001b[49m\u001b[43m  \u001b[49m\u001b[38;5;66;43;03m# we need the intermediate hidden states\u001b[39;49;00m\n\u001b[1;32m   1437\u001b[0m \u001b[43m        \u001b[49m\u001b[43mreturn_dict\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mreturn_dict\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   1438\u001b[0m \u001b[43m    \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m   1439\u001b[0m     pooled_output \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mclip\u001b[38;5;241m.\u001b[39mvisual_projection(vision_outputs[\u001b[38;5;241m1\u001b[39m])\n\u001b[1;32m   1441\u001b[0m     hidden_states \u001b[38;5;241m=\u001b[39m vision_outputs\u001b[38;5;241m.\u001b[39mhidden_states \u001b[38;5;28;01mif\u001b[39;00m return_dict \u001b[38;5;28;01melse\u001b[39;00m vision_outputs[\u001b[38;5;241m2\u001b[39m]\n",
      "File \u001b[0;32m~/miniconda3/envs/mindeye/lib/python3.10/site-packages/torch/nn/modules/module.py:1501\u001b[0m, in \u001b[0;36mModule._call_impl\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m   1496\u001b[0m \u001b[38;5;66;03m# If we don't have any hooks, we want to skip the rest of the logic in\u001b[39;00m\n\u001b[1;32m   1497\u001b[0m \u001b[38;5;66;03m# this function, and just call forward.\u001b[39;00m\n\u001b[1;32m   1498\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m (\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_backward_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_backward_pre_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_forward_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_forward_pre_hooks\n\u001b[1;32m   1499\u001b[0m         \u001b[38;5;129;01mor\u001b[39;00m _global_backward_pre_hooks \u001b[38;5;129;01mor\u001b[39;00m _global_backward_hooks\n\u001b[1;32m   1500\u001b[0m         \u001b[38;5;129;01mor\u001b[39;00m _global_forward_hooks \u001b[38;5;129;01mor\u001b[39;00m _global_forward_pre_hooks):\n\u001b[0;32m-> 1501\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mforward_call\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m   1502\u001b[0m \u001b[38;5;66;03m# Do not call functions when jit is used\u001b[39;00m\n\u001b[1;32m   1503\u001b[0m full_backward_hooks, non_full_backward_hooks \u001b[38;5;241m=\u001b[39m [], []\n",
      "File \u001b[0;32m~/miniconda3/envs/mindeye/lib/python3.10/site-packages/transformers/models/clipseg/modeling_clipseg.py:872\u001b[0m, in \u001b[0;36mCLIPSegVisionTransformer.forward\u001b[0;34m(self, pixel_values, output_attentions, output_hidden_states, return_dict)\u001b[0m\n\u001b[1;32m    869\u001b[0m return_dict \u001b[38;5;241m=\u001b[39m return_dict \u001b[38;5;28;01mif\u001b[39;00m return_dict \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;28;01melse\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mconfig\u001b[38;5;241m.\u001b[39muse_return_dict\n\u001b[1;32m    871\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m pixel_values \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[0;32m--> 872\u001b[0m     \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mYou have to specify pixel_values\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m    874\u001b[0m hidden_states \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39membeddings(pixel_values)\n\u001b[1;32m    875\u001b[0m hidden_states \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mpre_layrnorm(hidden_states)\n",
      "\u001b[0;31mValueError\u001b[0m: You have to specify pixel_values"
     ]
    }
   ],
   "source": [
    "# get model specific transforms (normalization, resize)\n",
    "data_config = timm.data.resolve_model_data_config(model)\n",
    "transforms = timm.data.create_transform(**data_config, is_training=False)\n",
    "\n",
    "output = model(transforms(img).unsqueeze(0))  # output is (batch_size, num_features) shaped tensor\n",
    "print(output.shape)\n",
    "# or equivalently (without needing to set num_classes=0)\n",
    "\n",
    "output = model.forward_features(transforms(img).unsqueeze(0))\n",
    "# output is unpooled, a (1, 257, 768) shaped tensor\n",
    "print(output.shape)\n",
    "\n",
    "output = model.forward_head(output, pre_logits=True)\n",
    "# output is a (1, num_features) shaped tensor\n",
    "print(output.shape)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "54275c4c-e506-4959-92f1-29e584f5ce51",
   "metadata": {},
   "outputs": [],
   "source": [
    "model.forward_features(transforms(img).unsqueeze(0)).shape"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "6546c673-f3ab-4d43-a051-cab20e782bab",
   "metadata": {},
   "source": [
    "# Eva02-clip"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 29,
   "id": "dfbc95de-9af9-4583-98fc-b8061114ef64",
   "metadata": {},
   "outputs": [],
   "source": [
    "import timm \n",
    "# couldnt figure out how to load pretrained model from shared folder rather than home directory using timm...\n",
    "eva02_model = timm.create_model(\"eva02_enormous_patch14_clip_224.laion2b\", pretrained=True)\n",
    "# eva02_model.head_drop = nn.Identity()\n",
    "# eva02_model.head = nn.Identity()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 30,
   "id": "97e3ea29-ae6b-4bd2-b3d7-17839098a6e4",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "torch.Size([2, 1024])"
      ]
     },
     "execution_count": 30,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "eva02_model(torch.randn((2,3,224,224))).shape"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 31,
   "id": "069b76f0-029f-42b1-85f5-a492ee1cc5d1",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "torch.Size([2, 256, 1024])\n"
     ]
    }
   ],
   "source": [
    "image = torch.randn((2,3,224,224))\n",
    "\n",
    "input = eva02_model.patch_embed(image)\n",
    "input = eva02_model.pos_drop(input)\n",
    "for block in eva02_model.blocks: input = block(input)\n",
    "input = eva02_model.norm(input)\n",
    "input = eva02_model.fc_norm(input)\n",
    "input = eva02_model.head_drop(input)\n",
    "input = eva02_model.head(input)\n",
    "\n",
    "print(input.shape)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 32,
   "id": "90e4e8e7-3dd1-43b0-a305-066a6ec13c2e",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Help on Eva in module timm.models.eva object:\n",
      "\n",
      "class Eva(torch.nn.modules.module.Module)\n",
      " |  Eva(img_size: Union[int, Tuple[int, int]] = 224, patch_size: Union[int, Tuple[int, int]] = 16, in_chans: int = 3, num_classes: int = 1000, global_pool: str = 'avg', embed_dim: int = 768, depth: int = 12, num_heads: int = 12, qkv_bias: bool = True, qkv_fused: bool = True, mlp_ratio: float = 4.0, swiglu_mlp: bool = False, scale_mlp: bool = False, scale_attn_inner: bool = False, drop_rate: float = 0.0, pos_drop_rate: float = 0.0, patch_drop_rate: float = 0.0, proj_drop_rate: float = 0.0, attn_drop_rate: float = 0.0, drop_path_rate: float = 0.0, norm_layer: Callable = <class 'timm.layers.norm.LayerNorm'>, init_values: Optional[float] = None, class_token: bool = True, use_abs_pos_emb: bool = True, use_rot_pos_emb: bool = False, use_post_norm: bool = False, ref_feat_shape: Union[int, Tuple[int, int], NoneType] = None, head_init_scale: float = 0.001)\n",
      " |  \n",
      " |  Eva Vision Transformer w/ Abs & Rotary Pos Embed\n",
      " |  \n",
      " |  This class implements the EVA and EVA02 models that were based on the BEiT ViT variant\n",
      " |    * EVA - abs pos embed, global avg pool\n",
      " |    * EVA02 - abs + rope pos embed, global avg pool, SwiGLU, scale Norm in MLP (ala normformer)\n",
      " |  \n",
      " |  Method resolution order:\n",
      " |      Eva\n",
      " |      torch.nn.modules.module.Module\n",
      " |      builtins.object\n",
      " |  \n",
      " |  Methods defined here:\n",
      " |  \n",
      " |  __init__(self, img_size: Union[int, Tuple[int, int]] = 224, patch_size: Union[int, Tuple[int, int]] = 16, in_chans: int = 3, num_classes: int = 1000, global_pool: str = 'avg', embed_dim: int = 768, depth: int = 12, num_heads: int = 12, qkv_bias: bool = True, qkv_fused: bool = True, mlp_ratio: float = 4.0, swiglu_mlp: bool = False, scale_mlp: bool = False, scale_attn_inner: bool = False, drop_rate: float = 0.0, pos_drop_rate: float = 0.0, patch_drop_rate: float = 0.0, proj_drop_rate: float = 0.0, attn_drop_rate: float = 0.0, drop_path_rate: float = 0.0, norm_layer: Callable = <class 'timm.layers.norm.LayerNorm'>, init_values: Optional[float] = None, class_token: bool = True, use_abs_pos_emb: bool = True, use_rot_pos_emb: bool = False, use_post_norm: bool = False, ref_feat_shape: Union[int, Tuple[int, int], NoneType] = None, head_init_scale: float = 0.001)\n",
      " |      Args:\n",
      " |          img_size:\n",
      " |          patch_size:\n",
      " |          in_chans:\n",
      " |          num_classes:\n",
      " |          global_pool:\n",
      " |          embed_dim:\n",
      " |          depth:\n",
      " |          num_heads:\n",
      " |          qkv_bias:\n",
      " |          qkv_fused:\n",
      " |          mlp_ratio:\n",
      " |          swiglu_mlp:\n",
      " |          scale_mlp:\n",
      " |          scale_attn_inner:\n",
      " |          drop_rate:\n",
      " |          pos_drop_rate:\n",
      " |          proj_drop_rate:\n",
      " |          attn_drop_rate:\n",
      " |          drop_path_rate:\n",
      " |          norm_layer:\n",
      " |          init_values:\n",
      " |          class_token:\n",
      " |          use_abs_pos_emb:\n",
      " |          use_rot_pos_emb:\n",
      " |          use_post_norm:\n",
      " |          ref_feat_shape:\n",
      " |          head_init_scale:\n",
      " |  \n",
      " |  fix_init_weight(self)\n",
      " |  \n",
      " |  forward(self, x)\n",
      " |      Defines the computation performed at every call.\n",
      " |      \n",
      " |      Should be overridden by all subclasses.\n",
      " |      \n",
      " |      .. note::\n",
      " |          Although the recipe for forward pass needs to be defined within\n",
      " |          this function, one should call the :class:`Module` instance afterwards\n",
      " |          instead of this since the former takes care of running the\n",
      " |          registered hooks while the latter silently ignores them.\n",
      " |  \n",
      " |  forward_features(self, x)\n",
      " |  \n",
      " |  forward_head(self, x, pre_logits: bool = False)\n",
      " |  \n",
      " |  get_classifier(self)\n",
      " |  \n",
      " |  group_matcher(self, coarse=False)\n",
      " |  \n",
      " |  no_weight_decay(self)\n",
      " |  \n",
      " |  reset_classifier(self, num_classes, global_pool=None)\n",
      " |  \n",
      " |  set_grad_checkpointing(self, enable=True)\n",
      " |  \n",
      " |  ----------------------------------------------------------------------\n",
      " |  Data and other attributes defined here:\n",
      " |  \n",
      " |  __annotations__ = {}\n",
      " |  \n",
      " |  ----------------------------------------------------------------------\n",
      " |  Methods inherited from torch.nn.modules.module.Module:\n",
      " |  \n",
      " |  __call__ = _call_impl(self, *args, **kwargs)\n",
      " |  \n",
      " |  __delattr__(self, name)\n",
      " |      Implement delattr(self, name).\n",
      " |  \n",
      " |  __dir__(self)\n",
      " |      Default dir() implementation.\n",
      " |  \n",
      " |  __getattr__(self, name: str) -> Union[torch.Tensor, ForwardRef('Module')]\n",
      " |  \n",
      " |  __repr__(self)\n",
      " |      Return repr(self).\n",
      " |  \n",
      " |  __setattr__(self, name: str, value: Union[torch.Tensor, ForwardRef('Module')]) -> None\n",
      " |      Implement setattr(self, name, value).\n",
      " |  \n",
      " |  __setstate__(self, state)\n",
      " |  \n",
      " |  add_module(self, name: str, module: Optional[ForwardRef('Module')]) -> None\n",
      " |      Adds a child module to the current module.\n",
      " |      \n",
      " |      The module can be accessed as an attribute using the given name.\n",
      " |      \n",
      " |      Args:\n",
      " |          name (str): name of the child module. The child module can be\n",
      " |              accessed from this module using the given name\n",
      " |          module (Module): child module to be added to the module.\n",
      " |  \n",
      " |  apply(self: ~T, fn: Callable[[ForwardRef('Module')], NoneType]) -> ~T\n",
      " |      Applies ``fn`` recursively to every submodule (as returned by ``.children()``)\n",
      " |      as well as self. Typical use includes initializing the parameters of a model\n",
      " |      (see also :ref:`nn-init-doc`).\n",
      " |      \n",
      " |      Args:\n",
      " |          fn (:class:`Module` -> None): function to be applied to each submodule\n",
      " |      \n",
      " |      Returns:\n",
      " |          Module: self\n",
      " |      \n",
      " |      Example::\n",
      " |      \n",
      " |          >>> @torch.no_grad()\n",
      " |          >>> def init_weights(m):\n",
      " |          >>>     print(m)\n",
      " |          >>>     if type(m) == nn.Linear:\n",
      " |          >>>         m.weight.fill_(1.0)\n",
      " |          >>>         print(m.weight)\n",
      " |          >>> net = nn.Sequential(nn.Linear(2, 2), nn.Linear(2, 2))\n",
      " |          >>> net.apply(init_weights)\n",
      " |          Linear(in_features=2, out_features=2, bias=True)\n",
      " |          Parameter containing:\n",
      " |          tensor([[1., 1.],\n",
      " |                  [1., 1.]], requires_grad=True)\n",
      " |          Linear(in_features=2, out_features=2, bias=True)\n",
      " |          Parameter containing:\n",
      " |          tensor([[1., 1.],\n",
      " |                  [1., 1.]], requires_grad=True)\n",
      " |          Sequential(\n",
      " |            (0): Linear(in_features=2, out_features=2, bias=True)\n",
      " |            (1): Linear(in_features=2, out_features=2, bias=True)\n",
      " |          )\n",
      " |  \n",
      " |  bfloat16(self: ~T) -> ~T\n",
      " |      Casts all floating point parameters and buffers to ``bfloat16`` datatype.\n",
      " |      \n",
      " |      .. note::\n",
      " |          This method modifies the module in-place.\n",
      " |      \n",
      " |      Returns:\n",
      " |          Module: self\n",
      " |  \n",
      " |  buffers(self, recurse: bool = True) -> Iterator[torch.Tensor]\n",
      " |      Returns an iterator over module buffers.\n",
      " |      \n",
      " |      Args:\n",
      " |          recurse (bool): if True, then yields buffers of this module\n",
      " |              and all submodules. Otherwise, yields only buffers that\n",
      " |              are direct members of this module.\n",
      " |      \n",
      " |      Yields:\n",
      " |          torch.Tensor: module buffer\n",
      " |      \n",
      " |      Example::\n",
      " |      \n",
      " |          >>> # xdoctest: +SKIP(\"undefined vars\")\n",
      " |          >>> for buf in model.buffers():\n",
      " |          >>>     print(type(buf), buf.size())\n",
      " |          <class 'torch.Tensor'> (20L,)\n",
      " |          <class 'torch.Tensor'> (20L, 1L, 5L, 5L)\n",
      " |  \n",
      " |  children(self) -> Iterator[ForwardRef('Module')]\n",
      " |      Returns an iterator over immediate children modules.\n",
      " |      \n",
      " |      Yields:\n",
      " |          Module: a child module\n",
      " |  \n",
      " |  cpu(self: ~T) -> ~T\n",
      " |      Moves all model parameters and buffers to the CPU.\n",
      " |      \n",
      " |      .. note::\n",
      " |          This method modifies the module in-place.\n",
      " |      \n",
      " |      Returns:\n",
      " |          Module: self\n",
      " |  \n",
      " |  cuda(self: ~T, device: Union[int, torch.device, NoneType] = None) -> ~T\n",
      " |      Moves all model parameters and buffers to the GPU.\n",
      " |      \n",
      " |      This also makes associated parameters and buffers different objects. So\n",
      " |      it should be called before constructing optimizer if the module will\n",
      " |      live on GPU while being optimized.\n",
      " |      \n",
      " |      .. note::\n",
      " |          This method modifies the module in-place.\n",
      " |      \n",
      " |      Args:\n",
      " |          device (int, optional): if specified, all parameters will be\n",
      " |              copied to that device\n",
      " |      \n",
      " |      Returns:\n",
      " |          Module: self\n",
      " |  \n",
      " |  double(self: ~T) -> ~T\n",
      " |      Casts all floating point parameters and buffers to ``double`` datatype.\n",
      " |      \n",
      " |      .. note::\n",
      " |          This method modifies the module in-place.\n",
      " |      \n",
      " |      Returns:\n",
      " |          Module: self\n",
      " |  \n",
      " |  eval(self: ~T) -> ~T\n",
      " |      Sets the module in evaluation mode.\n",
      " |      \n",
      " |      This has any effect only on certain modules. See documentations of\n",
      " |      particular modules for details of their behaviors in training/evaluation\n",
      " |      mode, if they are affected, e.g. :class:`Dropout`, :class:`BatchNorm`,\n",
      " |      etc.\n",
      " |      \n",
      " |      This is equivalent with :meth:`self.train(False) <torch.nn.Module.train>`.\n",
      " |      \n",
      " |      See :ref:`locally-disable-grad-doc` for a comparison between\n",
      " |      `.eval()` and several similar mechanisms that may be confused with it.\n",
      " |      \n",
      " |      Returns:\n",
      " |          Module: self\n",
      " |  \n",
      " |  extra_repr(self) -> str\n",
      " |      Set the extra representation of the module\n",
      " |      \n",
      " |      To print customized extra information, you should re-implement\n",
      " |      this method in your own modules. Both single-line and multi-line\n",
      " |      strings are acceptable.\n",
      " |  \n",
      " |  float(self: ~T) -> ~T\n",
      " |      Casts all floating point parameters and buffers to ``float`` datatype.\n",
      " |      \n",
      " |      .. note::\n",
      " |          This method modifies the module in-place.\n",
      " |      \n",
      " |      Returns:\n",
      " |          Module: self\n",
      " |  \n",
      " |  get_buffer(self, target: str) -> 'Tensor'\n",
      " |      Returns the buffer given by ``target`` if it exists,\n",
      " |      otherwise throws an error.\n",
      " |      \n",
      " |      See the docstring for ``get_submodule`` for a more detailed\n",
      " |      explanation of this method's functionality as well as how to\n",
      " |      correctly specify ``target``.\n",
      " |      \n",
      " |      Args:\n",
      " |          target: The fully-qualified string name of the buffer\n",
      " |              to look for. (See ``get_submodule`` for how to specify a\n",
      " |              fully-qualified string.)\n",
      " |      \n",
      " |      Returns:\n",
      " |          torch.Tensor: The buffer referenced by ``target``\n",
      " |      \n",
      " |      Raises:\n",
      " |          AttributeError: If the target string references an invalid\n",
      " |              path or resolves to something that is not a\n",
      " |              buffer\n",
      " |  \n",
      " |  get_extra_state(self) -> Any\n",
      " |      Returns any extra state to include in the module's state_dict.\n",
      " |      Implement this and a corresponding :func:`set_extra_state` for your module\n",
      " |      if you need to store extra state. This function is called when building the\n",
      " |      module's `state_dict()`.\n",
      " |      \n",
      " |      Note that extra state should be picklable to ensure working serialization\n",
      " |      of the state_dict. We only provide provide backwards compatibility guarantees\n",
      " |      for serializing Tensors; other objects may break backwards compatibility if\n",
      " |      their serialized pickled form changes.\n",
      " |      \n",
      " |      Returns:\n",
      " |          object: Any extra state to store in the module's state_dict\n",
      " |  \n",
      " |  get_parameter(self, target: str) -> 'Parameter'\n",
      " |      Returns the parameter given by ``target`` if it exists,\n",
      " |      otherwise throws an error.\n",
      " |      \n",
      " |      See the docstring for ``get_submodule`` for a more detailed\n",
      " |      explanation of this method's functionality as well as how to\n",
      " |      correctly specify ``target``.\n",
      " |      \n",
      " |      Args:\n",
      " |          target: The fully-qualified string name of the Parameter\n",
      " |              to look for. (See ``get_submodule`` for how to specify a\n",
      " |              fully-qualified string.)\n",
      " |      \n",
      " |      Returns:\n",
      " |          torch.nn.Parameter: The Parameter referenced by ``target``\n",
      " |      \n",
      " |      Raises:\n",
      " |          AttributeError: If the target string references an invalid\n",
      " |              path or resolves to something that is not an\n",
      " |              ``nn.Parameter``\n",
      " |  \n",
      " |  get_submodule(self, target: str) -> 'Module'\n",
      " |      Returns the submodule given by ``target`` if it exists,\n",
      " |      otherwise throws an error.\n",
      " |      \n",
      " |      For example, let's say you have an ``nn.Module`` ``A`` that\n",
      " |      looks like this:\n",
      " |      \n",
      " |      .. code-block:: text\n",
      " |      \n",
      " |          A(\n",
      " |              (net_b): Module(\n",
      " |                  (net_c): Module(\n",
      " |                      (conv): Conv2d(16, 33, kernel_size=(3, 3), stride=(2, 2))\n",
      " |                  )\n",
      " |                  (linear): Linear(in_features=100, out_features=200, bias=True)\n",
      " |              )\n",
      " |          )\n",
      " |      \n",
      " |      (The diagram shows an ``nn.Module`` ``A``. ``A`` has a nested\n",
      " |      submodule ``net_b``, which itself has two submodules ``net_c``\n",
      " |      and ``linear``. ``net_c`` then has a submodule ``conv``.)\n",
      " |      \n",
      " |      To check whether or not we have the ``linear`` submodule, we\n",
      " |      would call ``get_submodule(\"net_b.linear\")``. To check whether\n",
      " |      we have the ``conv`` submodule, we would call\n",
      " |      ``get_submodule(\"net_b.net_c.conv\")``.\n",
      " |      \n",
      " |      The runtime of ``get_submodule`` is bounded by the degree\n",
      " |      of module nesting in ``target``. A query against\n",
      " |      ``named_modules`` achieves the same result, but it is O(N) in\n",
      " |      the number of transitive modules. So, for a simple check to see\n",
      " |      if some submodule exists, ``get_submodule`` should always be\n",
      " |      used.\n",
      " |      \n",
      " |      Args:\n",
      " |          target: The fully-qualified string name of the submodule\n",
      " |              to look for. (See above example for how to specify a\n",
      " |              fully-qualified string.)\n",
      " |      \n",
      " |      Returns:\n",
      " |          torch.nn.Module: The submodule referenced by ``target``\n",
      " |      \n",
      " |      Raises:\n",
      " |          AttributeError: If the target string references an invalid\n",
      " |              path or resolves to something that is not an\n",
      " |              ``nn.Module``\n",
      " |  \n",
      " |  half(self: ~T) -> ~T\n",
      " |      Casts all floating point parameters and buffers to ``half`` datatype.\n",
      " |      \n",
      " |      .. note::\n",
      " |          This method modifies the module in-place.\n",
      " |      \n",
      " |      Returns:\n",
      " |          Module: self\n",
      " |  \n",
      " |  ipu(self: ~T, device: Union[int, torch.device, NoneType] = None) -> ~T\n",
      " |      Moves all model parameters and buffers to the IPU.\n",
      " |      \n",
      " |      This also makes associated parameters and buffers different objects. So\n",
      " |      it should be called before constructing optimizer if the module will\n",
      " |      live on IPU while being optimized.\n",
      " |      \n",
      " |      .. note::\n",
      " |          This method modifies the module in-place.\n",
      " |      \n",
      " |      Arguments:\n",
      " |          device (int, optional): if specified, all parameters will be\n",
      " |              copied to that device\n",
      " |      \n",
      " |      Returns:\n",
      " |          Module: self\n",
      " |  \n",
      " |  load_state_dict(self, state_dict: Mapping[str, Any], strict: bool = True)\n",
      " |      Copies parameters and buffers from :attr:`state_dict` into\n",
      " |      this module and its descendants. If :attr:`strict` is ``True``, then\n",
      " |      the keys of :attr:`state_dict` must exactly match the keys returned\n",
      " |      by this module's :meth:`~torch.nn.Module.state_dict` function.\n",
      " |      \n",
      " |      Args:\n",
      " |          state_dict (dict): a dict containing parameters and\n",
      " |              persistent buffers.\n",
      " |          strict (bool, optional): whether to strictly enforce that the keys\n",
      " |              in :attr:`state_dict` match the keys returned by this module's\n",
      " |              :meth:`~torch.nn.Module.state_dict` function. Default: ``True``\n",
      " |      \n",
      " |      Returns:\n",
      " |          ``NamedTuple`` with ``missing_keys`` and ``unexpected_keys`` fields:\n",
      " |              * **missing_keys** is a list of str containing the missing keys\n",
      " |              * **unexpected_keys** is a list of str containing the unexpected keys\n",
      " |      \n",
      " |      Note:\n",
      " |          If a parameter or buffer is registered as ``None`` and its corresponding key\n",
      " |          exists in :attr:`state_dict`, :meth:`load_state_dict` will raise a\n",
      " |          ``RuntimeError``.\n",
      " |  \n",
      " |  modules(self) -> Iterator[ForwardRef('Module')]\n",
      " |      Returns an iterator over all modules in the network.\n",
      " |      \n",
      " |      Yields:\n",
      " |          Module: a module in the network\n",
      " |      \n",
      " |      Note:\n",
      " |          Duplicate modules are returned only once. In the following\n",
      " |          example, ``l`` will be returned only once.\n",
      " |      \n",
      " |      Example::\n",
      " |      \n",
      " |          >>> l = nn.Linear(2, 2)\n",
      " |          >>> net = nn.Sequential(l, l)\n",
      " |          >>> for idx, m in enumerate(net.modules()):\n",
      " |          ...     print(idx, '->', m)\n",
      " |      \n",
      " |          0 -> Sequential(\n",
      " |            (0): Linear(in_features=2, out_features=2, bias=True)\n",
      " |            (1): Linear(in_features=2, out_features=2, bias=True)\n",
      " |          )\n",
      " |          1 -> Linear(in_features=2, out_features=2, bias=True)\n",
      " |  \n",
      " |  named_buffers(self, prefix: str = '', recurse: bool = True, remove_duplicate: bool = True) -> Iterator[Tuple[str, torch.Tensor]]\n",
      " |      Returns an iterator over module buffers, yielding both the\n",
      " |      name of the buffer as well as the buffer itself.\n",
      " |      \n",
      " |      Args:\n",
      " |          prefix (str): prefix to prepend to all buffer names.\n",
      " |          recurse (bool, optional): if True, then yields buffers of this module\n",
      " |              and all submodules. Otherwise, yields only buffers that\n",
      " |              are direct members of this module. Defaults to True.\n",
      " |          remove_duplicate (bool, optional): whether to remove the duplicated buffers in the result. Defaults to True.\n",
      " |      \n",
      " |      Yields:\n",
      " |          (str, torch.Tensor): Tuple containing the name and buffer\n",
      " |      \n",
      " |      Example::\n",
      " |      \n",
      " |          >>> # xdoctest: +SKIP(\"undefined vars\")\n",
      " |          >>> for name, buf in self.named_buffers():\n",
      " |          >>>     if name in ['running_var']:\n",
      " |          >>>         print(buf.size())\n",
      " |  \n",
      " |  named_children(self) -> Iterator[Tuple[str, ForwardRef('Module')]]\n",
      " |      Returns an iterator over immediate children modules, yielding both\n",
      " |      the name of the module as well as the module itself.\n",
      " |      \n",
      " |      Yields:\n",
      " |          (str, Module): Tuple containing a name and child module\n",
      " |      \n",
      " |      Example::\n",
      " |      \n",
      " |          >>> # xdoctest: +SKIP(\"undefined vars\")\n",
      " |          >>> for name, module in model.named_children():\n",
      " |          >>>     if name in ['conv4', 'conv5']:\n",
      " |          >>>         print(module)\n",
      " |  \n",
      " |  named_modules(self, memo: Optional[Set[ForwardRef('Module')]] = None, prefix: str = '', remove_duplicate: bool = True)\n",
      " |      Returns an iterator over all modules in the network, yielding\n",
      " |      both the name of the module as well as the module itself.\n",
      " |      \n",
      " |      Args:\n",
      " |          memo: a memo to store the set of modules already added to the result\n",
      " |          prefix: a prefix that will be added to the name of the module\n",
      " |          remove_duplicate: whether to remove the duplicated module instances in the result\n",
      " |              or not\n",
      " |      \n",
      " |      Yields:\n",
      " |          (str, Module): Tuple of name and module\n",
      " |      \n",
      " |      Note:\n",
      " |          Duplicate modules are returned only once. In the following\n",
      " |          example, ``l`` will be returned only once.\n",
      " |      \n",
      " |      Example::\n",
      " |      \n",
      " |          >>> l = nn.Linear(2, 2)\n",
      " |          >>> net = nn.Sequential(l, l)\n",
      " |          >>> for idx, m in enumerate(net.named_modules()):\n",
      " |          ...     print(idx, '->', m)\n",
      " |      \n",
      " |          0 -> ('', Sequential(\n",
      " |            (0): Linear(in_features=2, out_features=2, bias=True)\n",
      " |            (1): Linear(in_features=2, out_features=2, bias=True)\n",
      " |          ))\n",
      " |          1 -> ('0', Linear(in_features=2, out_features=2, bias=True))\n",
      " |  \n",
      " |  named_parameters(self, prefix: str = '', recurse: bool = True, remove_duplicate: bool = True) -> Iterator[Tuple[str, torch.nn.parameter.Parameter]]\n",
      " |      Returns an iterator over module parameters, yielding both the\n",
      " |      name of the parameter as well as the parameter itself.\n",
      " |      \n",
      " |      Args:\n",
      " |          prefix (str): prefix to prepend to all parameter names.\n",
      " |          recurse (bool): if True, then yields parameters of this module\n",
      " |              and all submodules. Otherwise, yields only parameters that\n",
      " |              are direct members of this module.\n",
      " |          remove_duplicate (bool, optional): whether to remove the duplicated\n",
      " |              parameters in the result. Defaults to True.\n",
      " |      \n",
      " |      Yields:\n",
      " |          (str, Parameter): Tuple containing the name and parameter\n",
      " |      \n",
      " |      Example::\n",
      " |      \n",
      " |          >>> # xdoctest: +SKIP(\"undefined vars\")\n",
      " |          >>> for name, param in self.named_parameters():\n",
      " |          >>>     if name in ['bias']:\n",
      " |          >>>         print(param.size())\n",
      " |  \n",
      " |  parameters(self, recurse: bool = True) -> Iterator[torch.nn.parameter.Parameter]\n",
      " |      Returns an iterator over module parameters.\n",
      " |      \n",
      " |      This is typically passed to an optimizer.\n",
      " |      \n",
      " |      Args:\n",
      " |          recurse (bool): if True, then yields parameters of this module\n",
      " |              and all submodules. Otherwise, yields only parameters that\n",
      " |              are direct members of this module.\n",
      " |      \n",
      " |      Yields:\n",
      " |          Parameter: module parameter\n",
      " |      \n",
      " |      Example::\n",
      " |      \n",
      " |          >>> # xdoctest: +SKIP(\"undefined vars\")\n",
      " |          >>> for param in model.parameters():\n",
      " |          >>>     print(type(param), param.size())\n",
      " |          <class 'torch.Tensor'> (20L,)\n",
      " |          <class 'torch.Tensor'> (20L, 1L, 5L, 5L)\n",
      " |  \n",
      " |  register_backward_hook(self, hook: Callable[[ForwardRef('Module'), Union[Tuple[torch.Tensor, ...], torch.Tensor], Union[Tuple[torch.Tensor, ...], torch.Tensor]], Union[NoneType, Tuple[torch.Tensor, ...], torch.Tensor]]) -> torch.utils.hooks.RemovableHandle\n",
      " |      Registers a backward hook on the module.\n",
      " |      \n",
      " |      This function is deprecated in favor of :meth:`~torch.nn.Module.register_full_backward_hook` and\n",
      " |      the behavior of this function will change in future versions.\n",
      " |      \n",
      " |      Returns:\n",
      " |          :class:`torch.utils.hooks.RemovableHandle`:\n",
      " |              a handle that can be used to remove the added hook by calling\n",
      " |              ``handle.remove()``\n",
      " |  \n",
      " |  register_buffer(self, name: str, tensor: Optional[torch.Tensor], persistent: bool = True) -> None\n",
      " |      Adds a buffer to the module.\n",
      " |      \n",
      " |      This is typically used to register a buffer that should not to be\n",
      " |      considered a model parameter. For example, BatchNorm's ``running_mean``\n",
      " |      is not a parameter, but is part of the module's state. Buffers, by\n",
      " |      default, are persistent and will be saved alongside parameters. This\n",
      " |      behavior can be changed by setting :attr:`persistent` to ``False``. The\n",
      " |      only difference between a persistent buffer and a non-persistent buffer\n",
      " |      is that the latter will not be a part of this module's\n",
      " |      :attr:`state_dict`.\n",
      " |      \n",
      " |      Buffers can be accessed as attributes using given names.\n",
      " |      \n",
      " |      Args:\n",
      " |          name (str): name of the buffer. The buffer can be accessed\n",
      " |              from this module using the given name\n",
      " |          tensor (Tensor or None): buffer to be registered. If ``None``, then operations\n",
      " |              that run on buffers, such as :attr:`cuda`, are ignored. If ``None``,\n",
      " |              the buffer is **not** included in the module's :attr:`state_dict`.\n",
      " |          persistent (bool): whether the buffer is part of this module's\n",
      " |              :attr:`state_dict`.\n",
      " |      \n",
      " |      Example::\n",
      " |      \n",
      " |          >>> # xdoctest: +SKIP(\"undefined vars\")\n",
      " |          >>> self.register_buffer('running_mean', torch.zeros(num_features))\n",
      " |  \n",
      " |  register_forward_hook(self, hook: Union[Callable[[~T, Tuple[Any, ...], Any], Optional[Any]], Callable[[~T, Tuple[Any, ...], Dict[str, Any], Any], Optional[Any]]], *, prepend: bool = False, with_kwargs: bool = False) -> torch.utils.hooks.RemovableHandle\n",
      " |      Registers a forward hook on the module.\n",
      " |      \n",
      " |      The hook will be called every time after :func:`forward` has computed an output.\n",
      " |      \n",
      " |      If ``with_kwargs`` is ``False`` or not specified, the input contains only\n",
      " |      the positional arguments given to the module. Keyword arguments won't be\n",
      " |      passed to the hooks and only to the ``forward``. The hook can modify the\n",
      " |      output. It can modify the input inplace but it will not have effect on\n",
      " |      forward since this is called after :func:`forward` is called. The hook\n",
      " |      should have the following signature::\n",
      " |      \n",
      " |          hook(module, args, output) -> None or modified output\n",
      " |      \n",
      " |      If ``with_kwargs`` is ``True``, the forward hook will be passed the\n",
      " |      ``kwargs`` given to the forward function and be expected to return the\n",
      " |      output possibly modified. The hook should have the following signature::\n",
      " |      \n",
      " |          hook(module, args, kwargs, output) -> None or modified output\n",
      " |      \n",
      " |      Args:\n",
      " |          hook (Callable): The user defined hook to be registered.\n",
      " |          prepend (bool): If ``True``, the provided ``hook`` will be fired\n",
      " |              before all existing ``forward`` hooks on this\n",
      " |              :class:`torch.nn.modules.Module`. Otherwise, the provided\n",
      " |              ``hook`` will be fired after all existing ``forward`` hooks on\n",
      " |              this :class:`torch.nn.modules.Module`. Note that global\n",
      " |              ``forward`` hooks registered with\n",
      " |              :func:`register_module_forward_hook` will fire before all hooks\n",
      " |              registered by this method.\n",
      " |              Default: ``False``\n",
      " |          with_kwargs (bool): If ``True``, the ``hook`` will be passed the\n",
      " |              kwargs given to the forward function.\n",
      " |              Default: ``False``\n",
      " |      \n",
      " |      Returns:\n",
      " |          :class:`torch.utils.hooks.RemovableHandle`:\n",
      " |              a handle that can be used to remove the added hook by calling\n",
      " |              ``handle.remove()``\n",
      " |  \n",
      " |  register_forward_pre_hook(self, hook: Union[Callable[[~T, Tuple[Any, ...]], Optional[Any]], Callable[[~T, Tuple[Any, ...], Dict[str, Any]], Optional[Tuple[Any, Dict[str, Any]]]]], *, prepend: bool = False, with_kwargs: bool = False) -> torch.utils.hooks.RemovableHandle\n",
      " |      Registers a forward pre-hook on the module.\n",
      " |      \n",
      " |      The hook will be called every time before :func:`forward` is invoked.\n",
      " |      \n",
      " |      \n",
      " |      If ``with_kwargs`` is false or not specified, the input contains only\n",
      " |      the positional arguments given to the module. Keyword arguments won't be\n",
      " |      passed to the hooks and only to the ``forward``. The hook can modify the\n",
      " |      input. User can either return a tuple or a single modified value in the\n",
      " |      hook. We will wrap the value into a tuple if a single value is returned\n",
      " |      (unless that value is already a tuple). The hook should have the\n",
      " |      following signature::\n",
      " |      \n",
      " |          hook(module, args) -> None or modified input\n",
      " |      \n",
      " |      If ``with_kwargs`` is true, the forward pre-hook will be passed the\n",
      " |      kwargs given to the forward function. And if the hook modifies the\n",
      " |      input, both the args and kwargs should be returned. The hook should have\n",
      " |      the following signature::\n",
      " |      \n",
      " |          hook(module, args, kwargs) -> None or a tuple of modified input and kwargs\n",
      " |      \n",
      " |      Args:\n",
      " |          hook (Callable): The user defined hook to be registered.\n",
      " |          prepend (bool): If true, the provided ``hook`` will be fired before\n",
      " |              all existing ``forward_pre`` hooks on this\n",
      " |              :class:`torch.nn.modules.Module`. Otherwise, the provided\n",
      " |              ``hook`` will be fired after all existing ``forward_pre`` hooks\n",
      " |              on this :class:`torch.nn.modules.Module`. Note that global\n",
      " |              ``forward_pre`` hooks registered with\n",
      " |              :func:`register_module_forward_pre_hook` will fire before all\n",
      " |              hooks registered by this method.\n",
      " |              Default: ``False``\n",
      " |          with_kwargs (bool): If true, the ``hook`` will be passed the kwargs\n",
      " |              given to the forward function.\n",
      " |              Default: ``False``\n",
      " |      \n",
      " |      Returns:\n",
      " |          :class:`torch.utils.hooks.RemovableHandle`:\n",
      " |              a handle that can be used to remove the added hook by calling\n",
      " |              ``handle.remove()``\n",
      " |  \n",
      " |  register_full_backward_hook(self, hook: Callable[[ForwardRef('Module'), Union[Tuple[torch.Tensor, ...], torch.Tensor], Union[Tuple[torch.Tensor, ...], torch.Tensor]], Union[NoneType, Tuple[torch.Tensor, ...], torch.Tensor]], prepend: bool = False) -> torch.utils.hooks.RemovableHandle\n",
      " |      Registers a backward hook on the module.\n",
      " |      \n",
      " |      The hook will be called every time the gradients with respect to a module\n",
      " |      are computed, i.e. the hook will execute if and only if the gradients with\n",
      " |      respect to module outputs are computed. The hook should have the following\n",
      " |      signature::\n",
      " |      \n",
      " |          hook(module, grad_input, grad_output) -> tuple(Tensor) or None\n",
      " |      \n",
      " |      The :attr:`grad_input` and :attr:`grad_output` are tuples that contain the gradients\n",
      " |      with respect to the inputs and outputs respectively. The hook should\n",
      " |      not modify its arguments, but it can optionally return a new gradient with\n",
      " |      respect to the input that will be used in place of :attr:`grad_input` in\n",
      " |      subsequent computations. :attr:`grad_input` will only correspond to the inputs given\n",
      " |      as positional arguments and all kwarg arguments are ignored. Entries\n",
      " |      in :attr:`grad_input` and :attr:`grad_output` will be ``None`` for all non-Tensor\n",
      " |      arguments.\n",
      " |      \n",
      " |      For technical reasons, when this hook is applied to a Module, its forward function will\n",
      " |      receive a view of each Tensor passed to the Module. Similarly the caller will receive a view\n",
      " |      of each Tensor returned by the Module's forward function.\n",
      " |      \n",
      " |      .. warning ::\n",
      " |          Modifying inputs or outputs inplace is not allowed when using backward hooks and\n",
      " |          will raise an error.\n",
      " |      \n",
      " |      Args:\n",
      " |          hook (Callable): The user-defined hook to be registered.\n",
      " |          prepend (bool): If true, the provided ``hook`` will be fired before\n",
      " |              all existing ``backward`` hooks on this\n",
      " |              :class:`torch.nn.modules.Module`. Otherwise, the provided\n",
      " |              ``hook`` will be fired after all existing ``backward`` hooks on\n",
      " |              this :class:`torch.nn.modules.Module`. Note that global\n",
      " |              ``backward`` hooks registered with\n",
      " |              :func:`register_module_full_backward_hook` will fire before\n",
      " |              all hooks registered by this method.\n",
      " |      \n",
      " |      Returns:\n",
      " |          :class:`torch.utils.hooks.RemovableHandle`:\n",
      " |              a handle that can be used to remove the added hook by calling\n",
      " |              ``handle.remove()``\n",
      " |  \n",
      " |  register_full_backward_pre_hook(self, hook: Callable[[ForwardRef('Module'), Union[Tuple[torch.Tensor, ...], torch.Tensor]], Union[NoneType, Tuple[torch.Tensor, ...], torch.Tensor]], prepend: bool = False) -> torch.utils.hooks.RemovableHandle\n",
      " |      Registers a backward pre-hook on the module.\n",
      " |      \n",
      " |      The hook will be called every time the gradients for the module are computed.\n",
      " |      The hook should have the following signature::\n",
      " |      \n",
      " |          hook(module, grad_output) -> Tensor or None\n",
      " |      \n",
      " |      The :attr:`grad_output` is a tuple. The hook should\n",
      " |      not modify its arguments, but it can optionally return a new gradient with\n",
      " |      respect to the output that will be used in place of :attr:`grad_output` in\n",
      " |      subsequent computations. Entries in :attr:`grad_output` will be ``None`` for\n",
      " |      all non-Tensor arguments.\n",
      " |      \n",
      " |      For technical reasons, when this hook is applied to a Module, its forward function will\n",
      " |      receive a view of each Tensor passed to the Module. Similarly the caller will receive a view\n",
      " |      of each Tensor returned by the Module's forward function.\n",
      " |      \n",
      " |      .. warning ::\n",
      " |          Modifying inputs inplace is not allowed when using backward hooks and\n",
      " |          will raise an error.\n",
      " |      \n",
      " |      Args:\n",
      " |          hook (Callable): The user-defined hook to be registered.\n",
      " |          prepend (bool): If true, the provided ``hook`` will be fired before\n",
      " |              all existing ``backward_pre`` hooks on this\n",
      " |              :class:`torch.nn.modules.Module`. Otherwise, the provided\n",
      " |              ``hook`` will be fired after all existing ``backward_pre`` hooks\n",
      " |              on this :class:`torch.nn.modules.Module`. Note that global\n",
      " |              ``backward_pre`` hooks registered with\n",
      " |              :func:`register_module_full_backward_pre_hook` will fire before\n",
      " |              all hooks registered by this method.\n",
      " |      \n",
      " |      Returns:\n",
      " |          :class:`torch.utils.hooks.RemovableHandle`:\n",
      " |              a handle that can be used to remove the added hook by calling\n",
      " |              ``handle.remove()``\n",
      " |  \n",
      " |  register_load_state_dict_post_hook(self, hook)\n",
      " |      Registers a post hook to be run after module's ``load_state_dict``\n",
      " |      is called.\n",
      " |      \n",
      " |      It should have the following signature::\n",
      " |          hook(module, incompatible_keys) -> None\n",
      " |      \n",
      " |      The ``module`` argument is the current module that this hook is registered\n",
      " |      on, and the ``incompatible_keys`` argument is a ``NamedTuple`` consisting\n",
      " |      of attributes ``missing_keys`` and ``unexpected_keys``. ``missing_keys``\n",
      " |      is a ``list`` of ``str`` containing the missing keys and\n",
      " |      ``unexpected_keys`` is a ``list`` of ``str`` containing the unexpected keys.\n",
      " |      \n",
      " |      The given incompatible_keys can be modified inplace if needed.\n",
      " |      \n",
      " |      Note that the checks performed when calling :func:`load_state_dict` with\n",
      " |      ``strict=True`` are affected by modifications the hook makes to\n",
      " |      ``missing_keys`` or ``unexpected_keys``, as expected. Additions to either\n",
      " |      set of keys will result in an error being thrown when ``strict=True``, and\n",
      " |      clearing out both missing and unexpected keys will avoid an error.\n",
      " |      \n",
      " |      Returns:\n",
      " |          :class:`torch.utils.hooks.RemovableHandle`:\n",
      " |              a handle that can be used to remove the added hook by calling\n",
      " |              ``handle.remove()``\n",
      " |  \n",
      " |  register_module(self, name: str, module: Optional[ForwardRef('Module')]) -> None\n",
      " |      Alias for :func:`add_module`.\n",
      " |  \n",
      " |  register_parameter(self, name: str, param: Optional[torch.nn.parameter.Parameter]) -> None\n",
      " |      Adds a parameter to the module.\n",
      " |      \n",
      " |      The parameter can be accessed as an attribute using given name.\n",
      " |      \n",
      " |      Args:\n",
      " |          name (str): name of the parameter. The parameter can be accessed\n",
      " |              from this module using the given name\n",
      " |          param (Parameter or None): parameter to be added to the module. If\n",
      " |              ``None``, then operations that run on parameters, such as :attr:`cuda`,\n",
      " |              are ignored. If ``None``, the parameter is **not** included in the\n",
      " |              module's :attr:`state_dict`.\n",
      " |  \n",
      " |  register_state_dict_pre_hook(self, hook)\n",
      " |      These hooks will be called with arguments: ``self``, ``prefix``,\n",
      " |      and ``keep_vars`` before calling ``state_dict`` on ``self``. The registered\n",
      " |      hooks can be used to perform pre-processing before the ``state_dict``\n",
      " |      call is made.\n",
      " |  \n",
      " |  requires_grad_(self: ~T, requires_grad: bool = True) -> ~T\n",
      " |      Change if autograd should record operations on parameters in this\n",
      " |      module.\n",
      " |      \n",
      " |      This method sets the parameters' :attr:`requires_grad` attributes\n",
      " |      in-place.\n",
      " |      \n",
      " |      This method is helpful for freezing part of the module for finetuning\n",
      " |      or training parts of a model individually (e.g., GAN training).\n",
      " |      \n",
      " |      See :ref:`locally-disable-grad-doc` for a comparison between\n",
      " |      `.requires_grad_()` and several similar mechanisms that may be confused with it.\n",
      " |      \n",
      " |      Args:\n",
      " |          requires_grad (bool): whether autograd should record operations on\n",
      " |                                parameters in this module. Default: ``True``.\n",
      " |      \n",
      " |      Returns:\n",
      " |          Module: self\n",
      " |  \n",
      " |  set_extra_state(self, state: Any)\n",
      " |      This function is called from :func:`load_state_dict` to handle any extra state\n",
      " |      found within the `state_dict`. Implement this function and a corresponding\n",
      " |      :func:`get_extra_state` for your module if you need to store extra state within its\n",
      " |      `state_dict`.\n",
      " |      \n",
      " |      Args:\n",
      " |          state (dict): Extra state from the `state_dict`\n",
      " |  \n",
      " |  share_memory(self: ~T) -> ~T\n",
      " |      See :meth:`torch.Tensor.share_memory_`\n",
      " |  \n",
      " |  state_dict(self, *args, destination=None, prefix='', keep_vars=False)\n",
      " |      Returns a dictionary containing references to the whole state of the module.\n",
      " |      \n",
      " |      Both parameters and persistent buffers (e.g. running averages) are\n",
      " |      included. Keys are corresponding parameter and buffer names.\n",
      " |      Parameters and buffers set to ``None`` are not included.\n",
      " |      \n",
      " |      .. note::\n",
      " |          The returned object is a shallow copy. It contains references\n",
      " |          to the module's parameters and buffers.\n",
      " |      \n",
      " |      .. warning::\n",
      " |          Currently ``state_dict()`` also accepts positional arguments for\n",
      " |          ``destination``, ``prefix`` and ``keep_vars`` in order. However,\n",
      " |          this is being deprecated and keyword arguments will be enforced in\n",
      " |          future releases.\n",
      " |      \n",
      " |      .. warning::\n",
      " |          Please avoid the use of argument ``destination`` as it is not\n",
      " |          designed for end-users.\n",
      " |      \n",
      " |      Args:\n",
      " |          destination (dict, optional): If provided, the state of module will\n",
      " |              be updated into the dict and the same object is returned.\n",
      " |              Otherwise, an ``OrderedDict`` will be created and returned.\n",
      " |              Default: ``None``.\n",
      " |          prefix (str, optional): a prefix added to parameter and buffer\n",
      " |              names to compose the keys in state_dict. Default: ``''``.\n",
      " |          keep_vars (bool, optional): by default the :class:`~torch.Tensor` s\n",
      " |              returned in the state dict are detached from autograd. If it's\n",
      " |              set to ``True``, detaching will not be performed.\n",
      " |              Default: ``False``.\n",
      " |      \n",
      " |      Returns:\n",
      " |          dict:\n",
      " |              a dictionary containing a whole state of the module\n",
      " |      \n",
      " |      Example::\n",
      " |      \n",
      " |          >>> # xdoctest: +SKIP(\"undefined vars\")\n",
      " |          >>> module.state_dict().keys()\n",
      " |          ['bias', 'weight']\n",
      " |  \n",
      " |  to(self, *args, **kwargs)\n",
      " |      Moves and/or casts the parameters and buffers.\n",
      " |      \n",
      " |      This can be called as\n",
      " |      \n",
      " |      .. function:: to(device=None, dtype=None, non_blocking=False)\n",
      " |         :noindex:\n",
      " |      \n",
      " |      .. function:: to(dtype, non_blocking=False)\n",
      " |         :noindex:\n",
      " |      \n",
      " |      .. function:: to(tensor, non_blocking=False)\n",
      " |         :noindex:\n",
      " |      \n",
      " |      .. function:: to(memory_format=torch.channels_last)\n",
      " |         :noindex:\n",
      " |      \n",
      " |      Its signature is similar to :meth:`torch.Tensor.to`, but only accepts\n",
      " |      floating point or complex :attr:`dtype`\\ s. In addition, this method will\n",
      " |      only cast the floating point or complex parameters and buffers to :attr:`dtype`\n",
      " |      (if given). The integral parameters and buffers will be moved\n",
      " |      :attr:`device`, if that is given, but with dtypes unchanged. When\n",
      " |      :attr:`non_blocking` is set, it tries to convert/move asynchronously\n",
      " |      with respect to the host if possible, e.g., moving CPU Tensors with\n",
      " |      pinned memory to CUDA devices.\n",
      " |      \n",
      " |      See below for examples.\n",
      " |      \n",
      " |      .. note::\n",
      " |          This method modifies the module in-place.\n",
      " |      \n",
      " |      Args:\n",
      " |          device (:class:`torch.device`): the desired device of the parameters\n",
      " |              and buffers in this module\n",
      " |          dtype (:class:`torch.dtype`): the desired floating point or complex dtype of\n",
      " |              the parameters and buffers in this module\n",
      " |          tensor (torch.Tensor): Tensor whose dtype and device are the desired\n",
      " |              dtype and device for all parameters and buffers in this module\n",
      " |          memory_format (:class:`torch.memory_format`): the desired memory\n",
      " |              format for 4D parameters and buffers in this module (keyword\n",
      " |              only argument)\n",
      " |      \n",
      " |      Returns:\n",
      " |          Module: self\n",
      " |      \n",
      " |      Examples::\n",
      " |      \n",
      " |          >>> # xdoctest: +IGNORE_WANT(\"non-deterministic\")\n",
      " |          >>> linear = nn.Linear(2, 2)\n",
      " |          >>> linear.weight\n",
      " |          Parameter containing:\n",
      " |          tensor([[ 0.1913, -0.3420],\n",
      " |                  [-0.5113, -0.2325]])\n",
      " |          >>> linear.to(torch.double)\n",
      " |          Linear(in_features=2, out_features=2, bias=True)\n",
      " |          >>> linear.weight\n",
      " |          Parameter containing:\n",
      " |          tensor([[ 0.1913, -0.3420],\n",
      " |                  [-0.5113, -0.2325]], dtype=torch.float64)\n",
      " |          >>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_CUDA1)\n",
      " |          >>> gpu1 = torch.device(\"cuda:1\")\n",
      " |          >>> linear.to(gpu1, dtype=torch.half, non_blocking=True)\n",
      " |          Linear(in_features=2, out_features=2, bias=True)\n",
      " |          >>> linear.weight\n",
      " |          Parameter containing:\n",
      " |          tensor([[ 0.1914, -0.3420],\n",
      " |                  [-0.5112, -0.2324]], dtype=torch.float16, device='cuda:1')\n",
      " |          >>> cpu = torch.device(\"cpu\")\n",
      " |          >>> linear.to(cpu)\n",
      " |          Linear(in_features=2, out_features=2, bias=True)\n",
      " |          >>> linear.weight\n",
      " |          Parameter containing:\n",
      " |          tensor([[ 0.1914, -0.3420],\n",
      " |                  [-0.5112, -0.2324]], dtype=torch.float16)\n",
      " |      \n",
      " |          >>> linear = nn.Linear(2, 2, bias=None).to(torch.cdouble)\n",
      " |          >>> linear.weight\n",
      " |          Parameter containing:\n",
      " |          tensor([[ 0.3741+0.j,  0.2382+0.j],\n",
      " |                  [ 0.5593+0.j, -0.4443+0.j]], dtype=torch.complex128)\n",
      " |          >>> linear(torch.ones(3, 2, dtype=torch.cdouble))\n",
      " |          tensor([[0.6122+0.j, 0.1150+0.j],\n",
      " |                  [0.6122+0.j, 0.1150+0.j],\n",
      " |                  [0.6122+0.j, 0.1150+0.j]], dtype=torch.complex128)\n",
      " |  \n",
      " |  to_empty(self: ~T, *, device: Union[str, torch.device]) -> ~T\n",
      " |      Moves the parameters and buffers to the specified device without copying storage.\n",
      " |      \n",
      " |      Args:\n",
      " |          device (:class:`torch.device`): The desired device of the parameters\n",
      " |              and buffers in this module.\n",
      " |      \n",
      " |      Returns:\n",
      " |          Module: self\n",
      " |  \n",
      " |  train(self: ~T, mode: bool = True) -> ~T\n",
      " |      Sets the module in training mode.\n",
      " |      \n",
      " |      This has any effect only on certain modules. See documentations of\n",
      " |      particular modules for details of their behaviors in training/evaluation\n",
      " |      mode, if they are affected, e.g. :class:`Dropout`, :class:`BatchNorm`,\n",
      " |      etc.\n",
      " |      \n",
      " |      Args:\n",
      " |          mode (bool): whether to set training mode (``True``) or evaluation\n",
      " |                       mode (``False``). Default: ``True``.\n",
      " |      \n",
      " |      Returns:\n",
      " |          Module: self\n",
      " |  \n",
      " |  type(self: ~T, dst_type: Union[torch.dtype, str]) -> ~T\n",
      " |      Casts all parameters and buffers to :attr:`dst_type`.\n",
      " |      \n",
      " |      .. note::\n",
      " |          This method modifies the module in-place.\n",
      " |      \n",
      " |      Args:\n",
      " |          dst_type (type or string): the desired type\n",
      " |      \n",
      " |      Returns:\n",
      " |          Module: self\n",
      " |  \n",
      " |  xpu(self: ~T, device: Union[int, torch.device, NoneType] = None) -> ~T\n",
      " |      Moves all model parameters and buffers to the XPU.\n",
      " |      \n",
      " |      This also makes associated parameters and buffers different objects. So\n",
      " |      it should be called before constructing optimizer if the module will\n",
      " |      live on XPU while being optimized.\n",
      " |      \n",
      " |      .. note::\n",
      " |          This method modifies the module in-place.\n",
      " |      \n",
      " |      Arguments:\n",
      " |          device (int, optional): if specified, all parameters will be\n",
      " |              copied to that device\n",
      " |      \n",
      " |      Returns:\n",
      " |          Module: self\n",
      " |  \n",
      " |  zero_grad(self, set_to_none: bool = True) -> None\n",
      " |      Sets gradients of all model parameters to zero. See similar function\n",
      " |      under :class:`torch.optim.Optimizer` for more context.\n",
      " |      \n",
      " |      Args:\n",
      " |          set_to_none (bool): instead of setting to zero, set the grads to None.\n",
      " |              See :meth:`torch.optim.Optimizer.zero_grad` for details.\n",
      " |  \n",
      " |  ----------------------------------------------------------------------\n",
      " |  Data descriptors inherited from torch.nn.modules.module.Module:\n",
      " |  \n",
      " |  __dict__\n",
      " |      dictionary for instance variables (if defined)\n",
      " |  \n",
      " |  __weakref__\n",
      " |      list of weak references to the object (if defined)\n",
      " |  \n",
      " |  ----------------------------------------------------------------------\n",
      " |  Data and other attributes inherited from torch.nn.modules.module.Module:\n",
      " |  \n",
      " |  T_destination = ~T_destination\n",
      " |  \n",
      " |  call_super_init = False\n",
      " |  \n",
      " |  dump_patches = False\n",
      "\n"
     ]
    }
   ],
   "source": [
    "help(eva02_model)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "2f5ac1a7-6f1b-4417-8a67-1b2e32d385dd",
   "metadata": {},
   "source": [
    "# DETR"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 33,
   "id": "5c3ade1b-18ea-4368-abd9-53be1fdfb610",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[2023-08-28 01:51:14,033] [INFO] [real_accelerator.py:133:get_accelerator] Setting ds_accelerator to cuda (auto detect)\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "The `max_size` parameter is deprecated and will be removed in v4.26. Please specify in `size['longest_edge'] instead`.\n"
     ]
    }
   ],
   "source": [
    "from transformers import DetrImageProcessor, DetrForObjectDetection\n",
    "import torch\n",
    "from PIL import Image\n",
    "import requests\n",
    "\n",
    "url = \"http://images.cocodataset.org/val2017/000000039769.jpg\"\n",
    "image = Image.open(requests.get(url, stream=True).raw)\n",
    "\n",
    "processor = DetrImageProcessor.from_pretrained(\"facebook/detr-resnet-50\", cache_dir='/fsx/proj-fmri/shared/cache')\n",
    "model = DetrForObjectDetection.from_pretrained(\"facebook/detr-resnet-50\", cache_dir='/fsx/proj-fmri/shared/cache')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 34,
   "id": "1d5aa2d7-4868-4751-8d90-7c52be028cd9",
   "metadata": {},
   "outputs": [],
   "source": [
    "inputs = processor(images=image, return_tensors=\"pt\")\n",
    "outputs = model(**inputs)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 35,
   "id": "ae6bafc6-cee4-4e59-b7ba-12efc2a65b74",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Detected remote with confidence 0.998 at location [40.16, 70.81, 175.55, 117.98]\n",
      "Detected remote with confidence 0.996 at location [333.24, 72.55, 368.33, 187.66]\n",
      "Detected couch with confidence 0.995 at location [-0.02, 1.15, 639.73, 473.76]\n",
      "Detected cat with confidence 0.999 at location [13.24, 52.05, 314.02, 470.93]\n",
      "Detected cat with confidence 0.999 at location [345.4, 23.85, 640.37, 368.72]\n"
     ]
    }
   ],
   "source": [
    "# convert outputs (bounding boxes and class logits) to COCO API\n",
    "# let's only keep detections with score > 0.9\n",
    "target_sizes = torch.tensor([image.size[::-1]])\n",
    "results = processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.9)[0]\n",
    "\n",
    "for score, label, box in zip(results[\"scores\"], results[\"labels\"], results[\"boxes\"]):\n",
    "    box = [round(i, 2) for i in box.tolist()]\n",
    "    print(\n",
    "            f\"Detected {model.config.id2label[label.item()]} with confidence \"\n",
    "            f\"{round(score.item(), 3)} at location {box}\"\n",
    "    )"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 36,
   "id": "6dcc5934-79d4-4062-8b32-e42b3ebcdc0f",
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "DetrImageProcessor {\n",
       "  \"do_normalize\": true,\n",
       "  \"do_pad\": true,\n",
       "  \"do_rescale\": true,\n",
       "  \"do_resize\": true,\n",
       "  \"feature_extractor_type\": \"DetrFeatureExtractor\",\n",
       "  \"format\": \"coco_detection\",\n",
       "  \"image_mean\": [\n",
       "    0.485,\n",
       "    0.456,\n",
       "    0.406\n",
       "  ],\n",
       "  \"image_processor_type\": \"DetrImageProcessor\",\n",
       "  \"image_std\": [\n",
       "    0.229,\n",
       "    0.224,\n",
       "    0.225\n",
       "  ],\n",
       "  \"resample\": 2,\n",
       "  \"rescale_factor\": 0.00392156862745098,\n",
       "  \"size\": {\n",
       "    \"longest_edge\": 1333,\n",
       "    \"shortest_edge\": 800\n",
       "  }\n",
       "}"
      ]
     },
     "execution_count": 36,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "processor"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "db1d89cc-b432-473e-af69-d81c435ac731",
   "metadata": {},
   "source": [
    "# CLIPSeg"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 37,
   "id": "15db14d1-ee4d-4429-9286-054c4498293b",
   "metadata": {},
   "outputs": [],
   "source": [
    "from transformers import CLIPSegProcessor, CLIPSegForImageSegmentation\n",
    "\n",
    "processor = CLIPSegProcessor.from_pretrained(\"CIDAS/clipseg-rd16\",cache_dir='/fsx/proj-fmri/shared/cache')\n",
    "model = CLIPSegForImageSegmentation.from_pretrained(\"CIDAS/clipseg-rd16\",cache_dir='/fsx/proj-fmri/shared/cache')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 38,
   "id": "4aa225d4-5a3b-4dbb-ae57-dea2872ff492",
   "metadata": {},
   "outputs": [
    {
     "ename": "AttributeError",
     "evalue": "'JpegImageFile' object has no attribute 'shape'",
     "output_type": "error",
     "traceback": [
      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[0;31mAttributeError\u001b[0m                            Traceback (most recent call last)",
      "Cell \u001b[0;32mIn[38], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[43mimage\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mshape\u001b[49m\n",
      "\u001b[0;31mAttributeError\u001b[0m: 'JpegImageFile' object has no attribute 'shape'"
     ]
    }
   ],
   "source": [
    "image.shape"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "ad7e2daf-0c7c-4fec-b29e-9ba47a037c6b",
   "metadata": {},
   "outputs": [],
   "source": [
    "from PIL import Image\n",
    "import requests\n",
    "import h5py\n",
    "\n",
    "# url = \"https://unsplash.com/photos/8Nc_oQsc2qQ/download?ixid=MnwxMjA3fDB8MXxhbGx8fHx8fHx8fHwxNjcxMjAwNzI0&force=true&w=640\"\n",
    "# image = Image.open(requests.get(url, stream=True).raw)\n",
    "\n",
    "image_path = \"/fsx/proj-fmri/shared/mindeyev2_dataset/coco_images_224_float16.hdf5\"\n",
    "with h5py.File(image_path, 'r') as file:\n",
    "    image = file['images'][0]\n",
    "image = np.moveaxis(image, 0, -1).astype(np.float32)\n",
    "plt.imshow(image)\n",
    "\n",
    "prompts = [\"person\",\"animal\",\"object\",\"background\"]\n",
    "import torch\n",
    "\n",
    "# Rescale to [0, 255]\n",
    "array = (image * 255).astype(np.uint8)\n",
    "\n",
    "# Convert to PIL image\n",
    "image = Image.fromarray(array)\n",
    "\n",
    "inputs = processor(text=prompts, images=[image] * len(prompts), padding=\"max_length\", return_tensors=\"pt\")\n",
    "# predict\n",
    "with torch.no_grad():\n",
    "  outputs = model(**inputs)\n",
    "preds = outputs.logits.unsqueeze(1)\n",
    "print(preds.shape)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "131eb5b7-2f16-4a79-8402-edc1a1d8c348",
   "metadata": {},
   "outputs": [],
   "source": [
    "preds = ((preds[0] + preds[1] + preds[2] + preds[-1].max() - preds[-1]) / 4)[None]\n",
    "preds.shape"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "e2bf99e7-064d-4c22-997f-aa1a35dbab82",
   "metadata": {},
   "outputs": [],
   "source": [
    "_, ax = plt.subplots(1, len(prompts) + 1, figsize=(3*(len(prompts) + 1), 4))\n",
    "[a.axis('off') for a in ax.flatten()]\n",
    "ax[0].imshow(image)\n",
    "[ax[i+1].imshow(torch.sigmoid(preds[i][0])) for i in range(1)];\n",
    "# [ax[i+1].text(0, -15, prompt) for i, prompt in enumerate(prompts)];"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "b58b926f-a2b2-423b-b367-18808cf6b4f7",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.8"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}