See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: unsloth/gemma-2-2b
bf16: true
chat_template: llama3
data_processes: 56
dataset_prepared_path: null
datasets:
- data_files:
- ad15d34493388077_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/ad15d34493388077_train_data.json
type:
field_input: document_description
field_instruction: document_type
field_output: generated_text
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
device_map: auto
distributed_training:
multi_gpu: true
num_gpus: 2
do_eval: true
early_stopping_patience: 4
eval_batch_size: 8
eval_max_new_tokens: 128
eval_steps: 150
eval_table_size: null
evals_per_epoch: null
flash_attention: true
fp16: false
fsdp:
- full_shard
- cpu_offload
fsdp_config:
cpu_offload: true
mixed_precision: true
sharding_strategy: FULL_SHARD
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: true
hub_model_id: cimol/ec60756e-f241-4bf6-b4fc-27db961e8a33
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 8.0e-05
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 128
lora_dropout: 0.04
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
lr_scheduler_warmup_steps: 50
max_grad_norm: 1.0
max_steps: 2850
micro_batch_size: 4
mlflow_experiment_name: /tmp/ad15d34493388077_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optim_args:
adam_beta1: 0.9
adam_beta2: 0.95
adam_epsilon: 1e-8
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 150
saves_per_epoch: null
seed: 17333
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
total_train_batch_size: 16
train_batch_size: 16
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: c14c8534-b36a-469b-aa5d-bef0fc990a0b
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: c14c8534-b36a-469b-aa5d-bef0fc990a0b
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
ec60756e-f241-4bf6-b4fc-27db961e8a33
This model is a fine-tuned version of unsloth/gemma-2-2b on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.8035
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 8e-05
- train_batch_size: 4
- eval_batch_size: 8
- seed: 17333
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- total_eval_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-8
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 2850
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.7784 | 0.0006 | 1 | 1.4497 |
1.7915 | 0.0906 | 150 | 1.0063 |
1.609 | 0.1813 | 300 | 0.9535 |
1.5236 | 0.2719 | 450 | 0.9209 |
1.5994 | 0.3625 | 600 | 0.8973 |
1.4063 | 0.4532 | 750 | 0.8783 |
1.319 | 0.5438 | 900 | 0.8662 |
1.6625 | 0.6344 | 1050 | 0.8540 |
1.722 | 0.7251 | 1200 | 0.8401 |
1.7885 | 0.8157 | 1350 | 0.8311 |
1.6219 | 0.9063 | 1500 | 0.8221 |
1.4787 | 0.9970 | 1650 | 0.8151 |
0.7906 | 1.0876 | 1800 | 0.8175 |
0.818 | 1.1782 | 1950 | 0.8140 |
0.8121 | 1.2689 | 2100 | 0.8089 |
0.8442 | 1.3595 | 2250 | 0.8085 |
0.7529 | 1.4502 | 2400 | 0.8056 |
0.8249 | 1.5408 | 2550 | 0.8048 |
0.8182 | 1.6314 | 2700 | 0.8035 |
0.7966 | 1.7221 | 2850 | 0.8035 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 3
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no pipeline_tag.
Model tree for cimol/ec60756e-f241-4bf6-b4fc-27db961e8a33
Base model
unsloth/gemma-2-2b