Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: unsloth/gemma-2-2b
bf16: true
chat_template: llama3
data_processes: 56
dataset_prepared_path: null
datasets:
- data_files:
  - ad15d34493388077_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/ad15d34493388077_train_data.json
  type:
    field_input: document_description
    field_instruction: document_type
    field_output: generated_text
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
device_map: auto
distributed_training:
  multi_gpu: true
  num_gpus: 2
do_eval: true
early_stopping_patience: 4
eval_batch_size: 8
eval_max_new_tokens: 128
eval_steps: 150
eval_table_size: null
evals_per_epoch: null
flash_attention: true
fp16: false
fsdp:
- full_shard
- cpu_offload
fsdp_config:
  cpu_offload: true
  mixed_precision: true
  sharding_strategy: FULL_SHARD
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: true
hub_model_id: cimol/ec60756e-f241-4bf6-b4fc-27db961e8a33
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 8.0e-05
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 128
lora_dropout: 0.04
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
lr_scheduler_warmup_steps: 50
max_grad_norm: 1.0
max_steps: 2850
micro_batch_size: 4
mlflow_experiment_name: /tmp/ad15d34493388077_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optim_args:
  adam_beta1: 0.9
  adam_beta2: 0.95
  adam_epsilon: 1e-8
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 150
saves_per_epoch: null
seed: 17333
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
total_train_batch_size: 16
train_batch_size: 16
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: c14c8534-b36a-469b-aa5d-bef0fc990a0b
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: c14c8534-b36a-469b-aa5d-bef0fc990a0b
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null

ec60756e-f241-4bf6-b4fc-27db961e8a33

This model is a fine-tuned version of unsloth/gemma-2-2b on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8035

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 8e-05
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 17333
  • distributed_type: multi-GPU
  • num_devices: 2
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • total_eval_batch_size: 16
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-8
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 2850

Training results

Training Loss Epoch Step Validation Loss
0.7784 0.0006 1 1.4497
1.7915 0.0906 150 1.0063
1.609 0.1813 300 0.9535
1.5236 0.2719 450 0.9209
1.5994 0.3625 600 0.8973
1.4063 0.4532 750 0.8783
1.319 0.5438 900 0.8662
1.6625 0.6344 1050 0.8540
1.722 0.7251 1200 0.8401
1.7885 0.8157 1350 0.8311
1.6219 0.9063 1500 0.8221
1.4787 0.9970 1650 0.8151
0.7906 1.0876 1800 0.8175
0.818 1.1782 1950 0.8140
0.8121 1.2689 2100 0.8089
0.8442 1.3595 2250 0.8085
0.7529 1.4502 2400 0.8056
0.8249 1.5408 2550 0.8048
0.8182 1.6314 2700 0.8035
0.7966 1.7221 2850 0.8035

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
3
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for cimol/ec60756e-f241-4bf6-b4fc-27db961e8a33

Base model

unsloth/gemma-2-2b
Adapter
(282)
this model