Perceptual Metrics
Collection
https://github.com/fra31/perceptual-metrics
•
8 items
•
Updated
Robust perceptual metric, based on DINO model facebook/dinov2-base
.
Adversarially fine-tuned with FARE (Schlarmann et al. (2024)) on ImageNet with infinity-norm and radius 4/255.
preprocessor = transforms.Compose([
transforms.Resize(256, interpolation=3),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
])
model = AutoModel.from_pretrained("ch20/dinov2-base-fare4")
If you find this model useful, please consider citing our papers:
@inproceedings{croce2024adversarially,
title={Adversarially Robust CLIP Models Can Induce Better (Robust) Perceptual Metrics},
author={Croce, Francesco and Schlarmann, Christian and Singh, Naman Deep and Hein, Matthias},
year={2025},
booktitle={{SaTML}}
}
@inproceedings{schlarmann2024robustclip,
title={Robust CLIP: Unsupervised Adversarial Fine-Tuning of Vision Embeddings for Robust Large Vision-Language
Models},
author={Schlarmann, Christian and Singh, Naman Deep and Croce, Francesco and Hein, Matthias},
year={2024},
booktitle={{ICML}}
}
Base model
facebook/dinov2-base