Watermark Remover β€” Multi-Model v2

6 specialized UNet++ segmentation models for watermark detection, combined with pixel-wise max fusion.

Models

File Specialty Encoder Best Val IoU Size
segmenter_centered_text.pth centered_text efficientnet-b4 N/A 84.0 MB
segmenter_line_pattern.pth line_pattern efficientnet-b4 N/A 84.0 MB
segmenter_logo.pth logo efficientnet-b4 N/A 84.0 MB
segmenter_overlay_text.pth overlay_text efficientnet-b4 N/A 84.0 MB
segmenter_repeated_text.pth repeated_text efficientnet-b4 N/A 84.0 MB
segmenter_tiny_corner.pth tiny_corner efficientnet-b4 N/A 84.0 MB

Architecture

Image β†’ [Model A, B, C, D, E, F] β†’ pixel-wise max(masks) β†’ LaMa inpainting β†’ Clean image

Each model is trained on synthetic watermarks matching its specialty. Fusion strategy: pixel_max (logical OR of all masks).

Usage

import segmentation_models_pytorch as smp
import torch

model = smp.UnetPlusPlus(encoder_name="efficientnet-b4", encoder_weights=None, in_channels=3, classes=1)
state_dict = torch.load("segmenter_repeated_text.pth", map_location="cpu")
model.load_state_dict(state_dict)
model.eval()

License

Apache-2.0

Author

DevynLabs β€” AI tools for creators.

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support