chrisekwugum commited on
Commit
17ff38c
·
verified ·
1 Parent(s): 4edd7cf

Add new SentenceTransformer model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,737 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: apache-2.0
5
+ tags:
6
+ - sentence-transformers
7
+ - sentence-similarity
8
+ - feature-extraction
9
+ - generated_from_trainer
10
+ - dataset_size:5822
11
+ - loss:MatryoshkaLoss
12
+ - loss:MultipleNegativesRankingLoss
13
+ base_model: nomic-ai/modernbert-embed-base
14
+ widget:
15
+ - source_sentence: "VCH qualifies as a service-disabled veteran-owned small business\
16
+ \ and is an actual offeror on the \nSDVOSB Pool Solicitation under the Polaris\
17
+ \ Program. VCH Compl. ¶¶ 2, 5. Both SHS and VCH \nalso claim to be prospective\
18
+ \ offerors on the SB Pool Solicitation. SHS Compl. ¶ 5; VCH Compl. \n¶ 5. Both\
19
+ \ SHS and VCH state they have prepared, but not yet formally submitted, proposals\
20
+ \ in"
21
+ sentences:
22
+ - What type of request must be submitted according to the information security procedures?
23
+ - On which solicitation is VCH an actual offeror?
24
+ - According to which U.S. Code section is the term 'infrastructure security information'
25
+ defined?
26
+ - source_sentence: "Count Nine in No. 11-444: May 13, 2010 FOIA Request to the CIA\
27
+ \ \nFirst, the CIA refused to process the plaintiff’s FOIA request which sought\
28
+ \ “a \nrepresentative sample of [CIA] analytical reports and memoranda presenting\
29
+ \ psychological \nanalyses or profiles of foreign government officials, terrorist\
30
+ \ leaders, international criminals,"
31
+ sentences:
32
+ - Under what section were 'Regional Boards' considered 'agencies'?
33
+ - What is the count number associated with the May 13, 2010 FOIA Request to the
34
+ CIA?
35
+ - What type of contracts does FAR 37.102(a) most prefer?
36
+ - source_sentence: "records referencing FOIA and Privacy Act requests submitted by\
37
+ \ [ten listed parties] that contain \nremarks, comments, notes, explanations,\
38
+ \ etc. made by CIA personnel or contractors about the \nprocessing of these requests\
39
+ \ (and appeals, if appropriate), the invocations of exemptions, or \nrelated matters.”\
40
+ \ See Decl. of Martha M. Lutz (Sept. 26, 2012) (“Third Lutz Decl.”) Ex. A at\
41
+ \ 1,"
42
+ sentences:
43
+ - What is mentioned as possibly contradicting the defendant's statement?
44
+ - On what date is the document 'Third Lutz Decl.' declared?
45
+ - What does the plaintiff argue regarding the phrase 'on notice'?
46
+ - source_sentence: "“[a]gencies shall evaluate all proposals in accordance with 15.305(a),\
47
+ \ and, if discussions are to be \nconducted, establish the competitive range.\
48
+ \ Based on the ratings of each proposal against all \nevaluation criteria, the\
49
+ \ contracting officer shall establish a competitive range comprised of all of\
50
+ \ \nthe most highly rated proposals . . . .” FAR 15.306(c)(1) (emphasis added).\
51
+ \ This last provision"
52
+ sentences:
53
+ - Who establishes the competitive range based on proposal ratings?
54
+ - What type of basis are the services to be acquired on?
55
+ - What is the source of the statement quoted about the agencies and advisory committees?
56
+ - source_sentence: "for a specific procurement through separate joint ventures with\
57
+ \ different protégés.” Id. The SBA \nunderscored this purpose by highlighting\
58
+ \ that in acquiring a second protégé, the mentor “has \nalready assured SBA that\
59
+ \ the two protégés would not be competitors. If the two mentor-protégé \nrelationships\
60
+ \ were approved in the same [North American Industry Classification System] code,"
61
+ sentences:
62
+ - Where can the details of the CIA's framing of the plaintiff's injury be found?
63
+ - What is the context of the mentor-protégé relationships mentioned?
64
+ - What requirement does the FOIA have regarding the release of segregable portions
65
+ of a record?
66
+ pipeline_tag: sentence-similarity
67
+ library_name: sentence-transformers
68
+ metrics:
69
+ - cosine_accuracy@1
70
+ - cosine_accuracy@3
71
+ - cosine_accuracy@5
72
+ - cosine_accuracy@10
73
+ - cosine_precision@1
74
+ - cosine_precision@3
75
+ - cosine_precision@5
76
+ - cosine_precision@10
77
+ - cosine_recall@1
78
+ - cosine_recall@3
79
+ - cosine_recall@5
80
+ - cosine_recall@10
81
+ - cosine_ndcg@10
82
+ - cosine_mrr@10
83
+ - cosine_map@100
84
+ model-index:
85
+ - name: ModernBERT Embed base Legal Matryoshka
86
+ results:
87
+ - task:
88
+ type: information-retrieval
89
+ name: Information Retrieval
90
+ dataset:
91
+ name: dim 768
92
+ type: dim_768
93
+ metrics:
94
+ - type: cosine_accuracy@1
95
+ value: 0.5564142194744977
96
+ name: Cosine Accuracy@1
97
+ - type: cosine_accuracy@3
98
+ value: 0.6058732612055642
99
+ name: Cosine Accuracy@3
100
+ - type: cosine_accuracy@5
101
+ value: 0.6955177743431221
102
+ name: Cosine Accuracy@5
103
+ - type: cosine_accuracy@10
104
+ value: 0.7758887171561051
105
+ name: Cosine Accuracy@10
106
+ - type: cosine_precision@1
107
+ value: 0.5564142194744977
108
+ name: Cosine Precision@1
109
+ - type: cosine_precision@3
110
+ value: 0.5265327150953116
111
+ name: Cosine Precision@3
112
+ - type: cosine_precision@5
113
+ value: 0.40216383307573417
114
+ name: Cosine Precision@5
115
+ - type: cosine_precision@10
116
+ value: 0.23879443585780524
117
+ name: Cosine Precision@10
118
+ - type: cosine_recall@1
119
+ value: 0.19770736733642452
120
+ name: Cosine Recall@1
121
+ - type: cosine_recall@3
122
+ value: 0.5216383307573416
123
+ name: Cosine Recall@3
124
+ - type: cosine_recall@5
125
+ value: 0.6432251416795467
126
+ name: Cosine Recall@5
127
+ - type: cosine_recall@10
128
+ value: 0.755280783101494
129
+ name: Cosine Recall@10
130
+ - type: cosine_ndcg@10
131
+ value: 0.6620393079072384
132
+ name: Cosine Ndcg@10
133
+ - type: cosine_mrr@10
134
+ value: 0.6046944383111306
135
+ name: Cosine Mrr@10
136
+ - type: cosine_map@100
137
+ value: 0.6446423018095604
138
+ name: Cosine Map@100
139
+ - task:
140
+ type: information-retrieval
141
+ name: Information Retrieval
142
+ dataset:
143
+ name: dim 512
144
+ type: dim_512
145
+ metrics:
146
+ - type: cosine_accuracy@1
147
+ value: 0.5440494590417311
148
+ name: Cosine Accuracy@1
149
+ - type: cosine_accuracy@3
150
+ value: 0.5873261205564142
151
+ name: Cosine Accuracy@3
152
+ - type: cosine_accuracy@5
153
+ value: 0.6846986089644513
154
+ name: Cosine Accuracy@5
155
+ - type: cosine_accuracy@10
156
+ value: 0.7604327666151468
157
+ name: Cosine Accuracy@10
158
+ - type: cosine_precision@1
159
+ value: 0.5440494590417311
160
+ name: Cosine Precision@1
161
+ - type: cosine_precision@3
162
+ value: 0.5105615662029882
163
+ name: Cosine Precision@3
164
+ - type: cosine_precision@5
165
+ value: 0.3935085007727976
166
+ name: Cosine Precision@5
167
+ - type: cosine_precision@10
168
+ value: 0.23431221020092735
169
+ name: Cosine Precision@10
170
+ - type: cosine_recall@1
171
+ value: 0.1947449768160742
172
+ name: Cosine Recall@1
173
+ - type: cosine_recall@3
174
+ value: 0.5066975785677487
175
+ name: Cosine Recall@3
176
+ - type: cosine_recall@5
177
+ value: 0.6317619783616693
178
+ name: Cosine Recall@5
179
+ - type: cosine_recall@10
180
+ value: 0.7434312210200927
181
+ name: Cosine Recall@10
182
+ - type: cosine_ndcg@10
183
+ value: 0.6493066767347394
184
+ name: Cosine Ndcg@10
185
+ - type: cosine_mrr@10
186
+ value: 0.591142268344741
187
+ name: Cosine Mrr@10
188
+ - type: cosine_map@100
189
+ value: 0.6320199198507571
190
+ name: Cosine Map@100
191
+ - task:
192
+ type: information-retrieval
193
+ name: Information Retrieval
194
+ dataset:
195
+ name: dim 256
196
+ type: dim_256
197
+ metrics:
198
+ - type: cosine_accuracy@1
199
+ value: 0.5131375579598145
200
+ name: Cosine Accuracy@1
201
+ - type: cosine_accuracy@3
202
+ value: 0.5548686244204019
203
+ name: Cosine Accuracy@3
204
+ - type: cosine_accuracy@5
205
+ value: 0.6383307573415765
206
+ name: Cosine Accuracy@5
207
+ - type: cosine_accuracy@10
208
+ value: 0.7078825347758887
209
+ name: Cosine Accuracy@10
210
+ - type: cosine_precision@1
211
+ value: 0.5131375579598145
212
+ name: Cosine Precision@1
213
+ - type: cosine_precision@3
214
+ value: 0.4848016486347243
215
+ name: Cosine Precision@3
216
+ - type: cosine_precision@5
217
+ value: 0.3712519319938176
218
+ name: Cosine Precision@5
219
+ - type: cosine_precision@10
220
+ value: 0.2185471406491499
221
+ name: Cosine Precision@10
222
+ - type: cosine_recall@1
223
+ value: 0.18019062339000513
224
+ name: Cosine Recall@1
225
+ - type: cosine_recall@3
226
+ value: 0.47797527047913446
227
+ name: Cosine Recall@3
228
+ - type: cosine_recall@5
229
+ value: 0.5926069036579084
230
+ name: Cosine Recall@5
231
+ - type: cosine_recall@10
232
+ value: 0.693070582174137
233
+ name: Cosine Recall@10
234
+ - type: cosine_ndcg@10
235
+ value: 0.6070012758911372
236
+ name: Cosine Ndcg@10
237
+ - type: cosine_mrr@10
238
+ value: 0.5553402762444491
239
+ name: Cosine Mrr@10
240
+ - type: cosine_map@100
241
+ value: 0.5963300240538415
242
+ name: Cosine Map@100
243
+ - task:
244
+ type: information-retrieval
245
+ name: Information Retrieval
246
+ dataset:
247
+ name: dim 128
248
+ type: dim_128
249
+ metrics:
250
+ - type: cosine_accuracy@1
251
+ value: 0.45904173106646057
252
+ name: Cosine Accuracy@1
253
+ - type: cosine_accuracy@3
254
+ value: 0.5115919629057187
255
+ name: Cosine Accuracy@3
256
+ - type: cosine_accuracy@5
257
+ value: 0.5873261205564142
258
+ name: Cosine Accuracy@5
259
+ - type: cosine_accuracy@10
260
+ value: 0.6553323029366306
261
+ name: Cosine Accuracy@10
262
+ - type: cosine_precision@1
263
+ value: 0.45904173106646057
264
+ name: Cosine Precision@1
265
+ - type: cosine_precision@3
266
+ value: 0.43379701184956204
267
+ name: Cosine Precision@3
268
+ - type: cosine_precision@5
269
+ value: 0.3372488408037094
270
+ name: Cosine Precision@5
271
+ - type: cosine_precision@10
272
+ value: 0.2017001545595054
273
+ name: Cosine Precision@10
274
+ - type: cosine_recall@1
275
+ value: 0.16679546625450797
276
+ name: Cosine Recall@1
277
+ - type: cosine_recall@3
278
+ value: 0.4330242143225141
279
+ name: Cosine Recall@3
280
+ - type: cosine_recall@5
281
+ value: 0.5422462648119527
282
+ name: Cosine Recall@5
283
+ - type: cosine_recall@10
284
+ value: 0.6388459556929419
285
+ name: Cosine Recall@10
286
+ - type: cosine_ndcg@10
287
+ value: 0.5563637742997848
288
+ name: Cosine Ndcg@10
289
+ - type: cosine_mrr@10
290
+ value: 0.50374622801207
291
+ name: Cosine Mrr@10
292
+ - type: cosine_map@100
293
+ value: 0.546814426794716
294
+ name: Cosine Map@100
295
+ - task:
296
+ type: information-retrieval
297
+ name: Information Retrieval
298
+ dataset:
299
+ name: dim 64
300
+ type: dim_64
301
+ metrics:
302
+ - type: cosine_accuracy@1
303
+ value: 0.36476043276661513
304
+ name: Cosine Accuracy@1
305
+ - type: cosine_accuracy@3
306
+ value: 0.40494590417310666
307
+ name: Cosine Accuracy@3
308
+ - type: cosine_accuracy@5
309
+ value: 0.47449768160741884
310
+ name: Cosine Accuracy@5
311
+ - type: cosine_accuracy@10
312
+ value: 0.5409582689335394
313
+ name: Cosine Accuracy@10
314
+ - type: cosine_precision@1
315
+ value: 0.36476043276661513
316
+ name: Cosine Precision@1
317
+ - type: cosine_precision@3
318
+ value: 0.3482740855229263
319
+ name: Cosine Precision@3
320
+ - type: cosine_precision@5
321
+ value: 0.2741885625965997
322
+ name: Cosine Precision@5
323
+ - type: cosine_precision@10
324
+ value: 0.16599690880989182
325
+ name: Cosine Precision@10
326
+ - type: cosine_recall@1
327
+ value: 0.1281555899021123
328
+ name: Cosine Recall@1
329
+ - type: cosine_recall@3
330
+ value: 0.34119010819165374
331
+ name: Cosine Recall@3
332
+ - type: cosine_recall@5
333
+ value: 0.4383049974240082
334
+ name: Cosine Recall@5
335
+ - type: cosine_recall@10
336
+ value: 0.5255023183925811
337
+ name: Cosine Recall@10
338
+ - type: cosine_ndcg@10
339
+ value: 0.44955240085023923
340
+ name: Cosine Ndcg@10
341
+ - type: cosine_mrr@10
342
+ value: 0.40338436250337323
343
+ name: Cosine Mrr@10
344
+ - type: cosine_map@100
345
+ value: 0.4452507749409145
346
+ name: Cosine Map@100
347
+ ---
348
+
349
+ # ModernBERT Embed base Legal Matryoshka
350
+
351
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [nomic-ai/modernbert-embed-base](https://huggingface.co/nomic-ai/modernbert-embed-base) on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
352
+
353
+ ## Model Details
354
+
355
+ ### Model Description
356
+ - **Model Type:** Sentence Transformer
357
+ - **Base model:** [nomic-ai/modernbert-embed-base](https://huggingface.co/nomic-ai/modernbert-embed-base) <!-- at revision d556a88e332558790b210f7bdbe87da2fa94a8d8 -->
358
+ - **Maximum Sequence Length:** 8192 tokens
359
+ - **Output Dimensionality:** 768 dimensions
360
+ - **Similarity Function:** Cosine Similarity
361
+ - **Training Dataset:**
362
+ - json
363
+ - **Language:** en
364
+ - **License:** apache-2.0
365
+
366
+ ### Model Sources
367
+
368
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
369
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
370
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
371
+
372
+ ### Full Model Architecture
373
+
374
+ ```
375
+ SentenceTransformer(
376
+ (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: ModernBertModel
377
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
378
+ (2): Normalize()
379
+ )
380
+ ```
381
+
382
+ ## Usage
383
+
384
+ ### Direct Usage (Sentence Transformers)
385
+
386
+ First install the Sentence Transformers library:
387
+
388
+ ```bash
389
+ pip install -U sentence-transformers
390
+ ```
391
+
392
+ Then you can load this model and run inference.
393
+ ```python
394
+ from sentence_transformers import SentenceTransformer
395
+
396
+ # Download from the 🤗 Hub
397
+ model = SentenceTransformer("chrisekwugum/modernbert-embed-base-legal-matryoshka-2")
398
+ # Run inference
399
+ sentences = [
400
+ 'for a specific procurement through separate joint ventures with different protégés.” Id. The SBA \nunderscored this purpose by highlighting that in acquiring a second protégé, the mentor “has \nalready assured SBA that the two protégés would not be competitors. If the two mentor-protégé \nrelationships were approved in the same [North American Industry Classification System] code,',
401
+ 'What is the context of the mentor-protégé relationships mentioned?',
402
+ "Where can the details of the CIA's framing of the plaintiff's injury be found?",
403
+ ]
404
+ embeddings = model.encode(sentences)
405
+ print(embeddings.shape)
406
+ # [3, 768]
407
+
408
+ # Get the similarity scores for the embeddings
409
+ similarities = model.similarity(embeddings, embeddings)
410
+ print(similarities.shape)
411
+ # [3, 3]
412
+ ```
413
+
414
+ <!--
415
+ ### Direct Usage (Transformers)
416
+
417
+ <details><summary>Click to see the direct usage in Transformers</summary>
418
+
419
+ </details>
420
+ -->
421
+
422
+ <!--
423
+ ### Downstream Usage (Sentence Transformers)
424
+
425
+ You can finetune this model on your own dataset.
426
+
427
+ <details><summary>Click to expand</summary>
428
+
429
+ </details>
430
+ -->
431
+
432
+ <!--
433
+ ### Out-of-Scope Use
434
+
435
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
436
+ -->
437
+
438
+ ## Evaluation
439
+
440
+ ### Metrics
441
+
442
+ #### Information Retrieval
443
+
444
+ * Datasets: `dim_768`, `dim_512`, `dim_256`, `dim_128` and `dim_64`
445
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
446
+
447
+ | Metric | dim_768 | dim_512 | dim_256 | dim_128 | dim_64 |
448
+ |:--------------------|:----------|:-----------|:----------|:-----------|:-----------|
449
+ | cosine_accuracy@1 | 0.5564 | 0.544 | 0.5131 | 0.459 | 0.3648 |
450
+ | cosine_accuracy@3 | 0.6059 | 0.5873 | 0.5549 | 0.5116 | 0.4049 |
451
+ | cosine_accuracy@5 | 0.6955 | 0.6847 | 0.6383 | 0.5873 | 0.4745 |
452
+ | cosine_accuracy@10 | 0.7759 | 0.7604 | 0.7079 | 0.6553 | 0.541 |
453
+ | cosine_precision@1 | 0.5564 | 0.544 | 0.5131 | 0.459 | 0.3648 |
454
+ | cosine_precision@3 | 0.5265 | 0.5106 | 0.4848 | 0.4338 | 0.3483 |
455
+ | cosine_precision@5 | 0.4022 | 0.3935 | 0.3713 | 0.3372 | 0.2742 |
456
+ | cosine_precision@10 | 0.2388 | 0.2343 | 0.2185 | 0.2017 | 0.166 |
457
+ | cosine_recall@1 | 0.1977 | 0.1947 | 0.1802 | 0.1668 | 0.1282 |
458
+ | cosine_recall@3 | 0.5216 | 0.5067 | 0.478 | 0.433 | 0.3412 |
459
+ | cosine_recall@5 | 0.6432 | 0.6318 | 0.5926 | 0.5422 | 0.4383 |
460
+ | cosine_recall@10 | 0.7553 | 0.7434 | 0.6931 | 0.6388 | 0.5255 |
461
+ | **cosine_ndcg@10** | **0.662** | **0.6493** | **0.607** | **0.5564** | **0.4496** |
462
+ | cosine_mrr@10 | 0.6047 | 0.5911 | 0.5553 | 0.5037 | 0.4034 |
463
+ | cosine_map@100 | 0.6446 | 0.632 | 0.5963 | 0.5468 | 0.4453 |
464
+
465
+ <!--
466
+ ## Bias, Risks and Limitations
467
+
468
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
469
+ -->
470
+
471
+ <!--
472
+ ### Recommendations
473
+
474
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
475
+ -->
476
+
477
+ ## Training Details
478
+
479
+ ### Training Dataset
480
+
481
+ #### json
482
+
483
+ * Dataset: json
484
+ * Size: 5,822 training samples
485
+ * Columns: <code>positive</code> and <code>anchor</code>
486
+ * Approximate statistics based on the first 1000 samples:
487
+ | | positive | anchor |
488
+ |:--------|:------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
489
+ | type | string | string |
490
+ | details | <ul><li>min: 28 tokens</li><li>mean: 97.21 tokens</li><li>max: 170 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 16.7 tokens</li><li>max: 39 tokens</li></ul> |
491
+ * Samples:
492
+ | positive | anchor |
493
+ |:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------|
494
+ | <code>Counts Seven, Nine, and Ten in No. 11-445: February 6, 2010 FOIA <br> Requests to the CIA, State Department, and NSA <br>On February 6, 2010, the plaintiff submitted three substantially identical FOIA <br>requests—one to the CIA, one to the State Department, and one to the National Security Agency <br>(“NSA”). The request to the CIA sought “all current training handbooks, manuals, guidelines,</code> | <code>What is the number associated with the case involving Counts Seven, Nine, and Ten?</code> |
495
+ | <code>The Government’s notion of a categorical principle stems mainly from a series of <br>decisions in this District. Defs.’ Mem. at 14; Defs.’ Reply at 9 n.2. The first was Gates v. <br>Schlesinger, 366 F. Supp. 797 (D.D.C. 1973), which stated that “an advisory committee is not an <br>‘agency.’” Id. at 799. <br> <br>Gates’s first rationale for this conclusion was that FACA “utilizes the definition of</code> | <code>From where does the Government's notion of a categorical principle mainly stem?</code> |
496
+ | <code>sort its incoming FOIA requests based on fee categories.” First Lutz Decl. ¶ 11. The CIA’s <br>declarant also states that “this information [i.e., fee category] is not included in the electronic <br>system,” though the CIA’s declarant also avers that “[f]ee category is not a mandatory field,” and <br>thus “this information is often not included in a FOIA request record.” Id. The plaintiff focuses</code> | <code>According to the CIA's declarant, is fee category a mandatory field?</code> |
497
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
498
+ ```json
499
+ {
500
+ "loss": "MultipleNegativesRankingLoss",
501
+ "matryoshka_dims": [
502
+ 768,
503
+ 512,
504
+ 256,
505
+ 128,
506
+ 64
507
+ ],
508
+ "matryoshka_weights": [
509
+ 1,
510
+ 1,
511
+ 1,
512
+ 1,
513
+ 1
514
+ ],
515
+ "n_dims_per_step": -1
516
+ }
517
+ ```
518
+
519
+ ### Training Hyperparameters
520
+ #### Non-Default Hyperparameters
521
+
522
+ - `eval_strategy`: epoch
523
+ - `per_device_train_batch_size`: 32
524
+ - `per_device_eval_batch_size`: 16
525
+ - `gradient_accumulation_steps`: 16
526
+ - `learning_rate`: 2e-05
527
+ - `num_train_epochs`: 4
528
+ - `lr_scheduler_type`: cosine
529
+ - `warmup_ratio`: 0.1
530
+ - `bf16`: True
531
+ - `tf32`: False
532
+ - `load_best_model_at_end`: True
533
+ - `optim`: adamw_torch_fused
534
+ - `batch_sampler`: no_duplicates
535
+
536
+ #### All Hyperparameters
537
+ <details><summary>Click to expand</summary>
538
+
539
+ - `overwrite_output_dir`: False
540
+ - `do_predict`: False
541
+ - `eval_strategy`: epoch
542
+ - `prediction_loss_only`: True
543
+ - `per_device_train_batch_size`: 32
544
+ - `per_device_eval_batch_size`: 16
545
+ - `per_gpu_train_batch_size`: None
546
+ - `per_gpu_eval_batch_size`: None
547
+ - `gradient_accumulation_steps`: 16
548
+ - `eval_accumulation_steps`: None
549
+ - `torch_empty_cache_steps`: None
550
+ - `learning_rate`: 2e-05
551
+ - `weight_decay`: 0.0
552
+ - `adam_beta1`: 0.9
553
+ - `adam_beta2`: 0.999
554
+ - `adam_epsilon`: 1e-08
555
+ - `max_grad_norm`: 1.0
556
+ - `num_train_epochs`: 4
557
+ - `max_steps`: -1
558
+ - `lr_scheduler_type`: cosine
559
+ - `lr_scheduler_kwargs`: {}
560
+ - `warmup_ratio`: 0.1
561
+ - `warmup_steps`: 0
562
+ - `log_level`: passive
563
+ - `log_level_replica`: warning
564
+ - `log_on_each_node`: True
565
+ - `logging_nan_inf_filter`: True
566
+ - `save_safetensors`: True
567
+ - `save_on_each_node`: False
568
+ - `save_only_model`: False
569
+ - `restore_callback_states_from_checkpoint`: False
570
+ - `no_cuda`: False
571
+ - `use_cpu`: False
572
+ - `use_mps_device`: False
573
+ - `seed`: 42
574
+ - `data_seed`: None
575
+ - `jit_mode_eval`: False
576
+ - `use_ipex`: False
577
+ - `bf16`: True
578
+ - `fp16`: False
579
+ - `fp16_opt_level`: O1
580
+ - `half_precision_backend`: auto
581
+ - `bf16_full_eval`: False
582
+ - `fp16_full_eval`: False
583
+ - `tf32`: False
584
+ - `local_rank`: 0
585
+ - `ddp_backend`: None
586
+ - `tpu_num_cores`: None
587
+ - `tpu_metrics_debug`: False
588
+ - `debug`: []
589
+ - `dataloader_drop_last`: False
590
+ - `dataloader_num_workers`: 0
591
+ - `dataloader_prefetch_factor`: None
592
+ - `past_index`: -1
593
+ - `disable_tqdm`: False
594
+ - `remove_unused_columns`: True
595
+ - `label_names`: None
596
+ - `load_best_model_at_end`: True
597
+ - `ignore_data_skip`: False
598
+ - `fsdp`: []
599
+ - `fsdp_min_num_params`: 0
600
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
601
+ - `fsdp_transformer_layer_cls_to_wrap`: None
602
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
603
+ - `deepspeed`: None
604
+ - `label_smoothing_factor`: 0.0
605
+ - `optim`: adamw_torch_fused
606
+ - `optim_args`: None
607
+ - `adafactor`: False
608
+ - `group_by_length`: False
609
+ - `length_column_name`: length
610
+ - `ddp_find_unused_parameters`: None
611
+ - `ddp_bucket_cap_mb`: None
612
+ - `ddp_broadcast_buffers`: False
613
+ - `dataloader_pin_memory`: True
614
+ - `dataloader_persistent_workers`: False
615
+ - `skip_memory_metrics`: True
616
+ - `use_legacy_prediction_loop`: False
617
+ - `push_to_hub`: False
618
+ - `resume_from_checkpoint`: None
619
+ - `hub_model_id`: None
620
+ - `hub_strategy`: every_save
621
+ - `hub_private_repo`: None
622
+ - `hub_always_push`: False
623
+ - `gradient_checkpointing`: False
624
+ - `gradient_checkpointing_kwargs`: None
625
+ - `include_inputs_for_metrics`: False
626
+ - `include_for_metrics`: []
627
+ - `eval_do_concat_batches`: True
628
+ - `fp16_backend`: auto
629
+ - `push_to_hub_model_id`: None
630
+ - `push_to_hub_organization`: None
631
+ - `mp_parameters`:
632
+ - `auto_find_batch_size`: False
633
+ - `full_determinism`: False
634
+ - `torchdynamo`: None
635
+ - `ray_scope`: last
636
+ - `ddp_timeout`: 1800
637
+ - `torch_compile`: False
638
+ - `torch_compile_backend`: None
639
+ - `torch_compile_mode`: None
640
+ - `dispatch_batches`: None
641
+ - `split_batches`: None
642
+ - `include_tokens_per_second`: False
643
+ - `include_num_input_tokens_seen`: False
644
+ - `neftune_noise_alpha`: None
645
+ - `optim_target_modules`: None
646
+ - `batch_eval_metrics`: False
647
+ - `eval_on_start`: False
648
+ - `use_liger_kernel`: False
649
+ - `eval_use_gather_object`: False
650
+ - `average_tokens_across_devices`: False
651
+ - `prompts`: None
652
+ - `batch_sampler`: no_duplicates
653
+ - `multi_dataset_batch_sampler`: proportional
654
+
655
+ </details>
656
+
657
+ ### Training Logs
658
+ | Epoch | Step | Training Loss | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
659
+ |:-------:|:------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|
660
+ | 0.8791 | 10 | 91.392 | - | - | - | - | - |
661
+ | 1.0 | 12 | - | 0.6238 | 0.6027 | 0.5669 | 0.5230 | 0.4009 |
662
+ | 1.7033 | 20 | 38.8819 | - | - | - | - | - |
663
+ | 2.0 | 24 | - | 0.6596 | 0.6423 | 0.5986 | 0.5491 | 0.4384 |
664
+ | 2.5275 | 30 | 28.6263 | - | - | - | - | - |
665
+ | **3.0** | **36** | **-** | **0.6615** | **0.6502** | **0.6058** | **0.5575** | **0.4486** |
666
+ | 3.3516 | 40 | 25.2135 | - | - | - | - | - |
667
+ | 3.7033 | 44 | - | 0.6620 | 0.6493 | 0.6070 | 0.5564 | 0.4496 |
668
+
669
+ * The bold row denotes the saved checkpoint.
670
+
671
+ ### Framework Versions
672
+ - Python: 3.11.11
673
+ - Sentence Transformers: 3.4.1
674
+ - Transformers: 4.48.3
675
+ - PyTorch: 2.5.1+cu124
676
+ - Accelerate: 1.3.0
677
+ - Datasets: 3.3.1
678
+ - Tokenizers: 0.21.0
679
+
680
+ ## Citation
681
+
682
+ ### BibTeX
683
+
684
+ #### Sentence Transformers
685
+ ```bibtex
686
+ @inproceedings{reimers-2019-sentence-bert,
687
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
688
+ author = "Reimers, Nils and Gurevych, Iryna",
689
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
690
+ month = "11",
691
+ year = "2019",
692
+ publisher = "Association for Computational Linguistics",
693
+ url = "https://arxiv.org/abs/1908.10084",
694
+ }
695
+ ```
696
+
697
+ #### MatryoshkaLoss
698
+ ```bibtex
699
+ @misc{kusupati2024matryoshka,
700
+ title={Matryoshka Representation Learning},
701
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
702
+ year={2024},
703
+ eprint={2205.13147},
704
+ archivePrefix={arXiv},
705
+ primaryClass={cs.LG}
706
+ }
707
+ ```
708
+
709
+ #### MultipleNegativesRankingLoss
710
+ ```bibtex
711
+ @misc{henderson2017efficient,
712
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
713
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
714
+ year={2017},
715
+ eprint={1705.00652},
716
+ archivePrefix={arXiv},
717
+ primaryClass={cs.CL}
718
+ }
719
+ ```
720
+
721
+ <!--
722
+ ## Glossary
723
+
724
+ *Clearly define terms in order to be accessible across audiences.*
725
+ -->
726
+
727
+ <!--
728
+ ## Model Card Authors
729
+
730
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
731
+ -->
732
+
733
+ <!--
734
+ ## Model Card Contact
735
+
736
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
737
+ -->
config.json ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "nomic-ai/modernbert-embed-base",
3
+ "architectures": [
4
+ "ModernBertModel"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "bos_token_id": 50281,
9
+ "classifier_activation": "gelu",
10
+ "classifier_bias": false,
11
+ "classifier_dropout": 0.0,
12
+ "classifier_pooling": "mean",
13
+ "cls_token_id": 50281,
14
+ "decoder_bias": true,
15
+ "deterministic_flash_attn": false,
16
+ "embedding_dropout": 0.0,
17
+ "eos_token_id": 50282,
18
+ "global_attn_every_n_layers": 3,
19
+ "global_rope_theta": 160000.0,
20
+ "gradient_checkpointing": false,
21
+ "hidden_activation": "gelu",
22
+ "hidden_size": 768,
23
+ "initializer_cutoff_factor": 2.0,
24
+ "initializer_range": 0.02,
25
+ "intermediate_size": 1152,
26
+ "layer_norm_eps": 1e-05,
27
+ "local_attention": 128,
28
+ "local_rope_theta": 10000.0,
29
+ "max_position_embeddings": 8192,
30
+ "mlp_bias": false,
31
+ "mlp_dropout": 0.0,
32
+ "model_type": "modernbert",
33
+ "norm_bias": false,
34
+ "norm_eps": 1e-05,
35
+ "num_attention_heads": 12,
36
+ "num_hidden_layers": 22,
37
+ "pad_token_id": 50283,
38
+ "position_embedding_type": "absolute",
39
+ "reference_compile": true,
40
+ "repad_logits_with_grad": false,
41
+ "sep_token_id": 50282,
42
+ "sparse_pred_ignore_index": -100,
43
+ "sparse_prediction": false,
44
+ "torch_dtype": "float32",
45
+ "transformers_version": "4.48.3",
46
+ "vocab_size": 50368
47
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.4.1",
4
+ "transformers": "4.48.3",
5
+ "pytorch": "2.5.1+cu124"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8e068a21f2649606e1c7bd024521fde76ad8dfedf5ad61a7996226ebbdfd3511
3
+ size 596070136
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 8192,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": true,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,945 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "|||IP_ADDRESS|||",
5
+ "lstrip": false,
6
+ "normalized": true,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": false
10
+ },
11
+ "1": {
12
+ "content": "<|padding|>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "50254": {
20
+ "content": " ",
21
+ "lstrip": false,
22
+ "normalized": true,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": false
26
+ },
27
+ "50255": {
28
+ "content": " ",
29
+ "lstrip": false,
30
+ "normalized": true,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": false
34
+ },
35
+ "50256": {
36
+ "content": " ",
37
+ "lstrip": false,
38
+ "normalized": true,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": false
42
+ },
43
+ "50257": {
44
+ "content": " ",
45
+ "lstrip": false,
46
+ "normalized": true,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": false
50
+ },
51
+ "50258": {
52
+ "content": " ",
53
+ "lstrip": false,
54
+ "normalized": true,
55
+ "rstrip": false,
56
+ "single_word": false,
57
+ "special": false
58
+ },
59
+ "50259": {
60
+ "content": " ",
61
+ "lstrip": false,
62
+ "normalized": true,
63
+ "rstrip": false,
64
+ "single_word": false,
65
+ "special": false
66
+ },
67
+ "50260": {
68
+ "content": " ",
69
+ "lstrip": false,
70
+ "normalized": true,
71
+ "rstrip": false,
72
+ "single_word": false,
73
+ "special": false
74
+ },
75
+ "50261": {
76
+ "content": " ",
77
+ "lstrip": false,
78
+ "normalized": true,
79
+ "rstrip": false,
80
+ "single_word": false,
81
+ "special": false
82
+ },
83
+ "50262": {
84
+ "content": " ",
85
+ "lstrip": false,
86
+ "normalized": true,
87
+ "rstrip": false,
88
+ "single_word": false,
89
+ "special": false
90
+ },
91
+ "50263": {
92
+ "content": " ",
93
+ "lstrip": false,
94
+ "normalized": true,
95
+ "rstrip": false,
96
+ "single_word": false,
97
+ "special": false
98
+ },
99
+ "50264": {
100
+ "content": " ",
101
+ "lstrip": false,
102
+ "normalized": true,
103
+ "rstrip": false,
104
+ "single_word": false,
105
+ "special": false
106
+ },
107
+ "50265": {
108
+ "content": " ",
109
+ "lstrip": false,
110
+ "normalized": true,
111
+ "rstrip": false,
112
+ "single_word": false,
113
+ "special": false
114
+ },
115
+ "50266": {
116
+ "content": " ",
117
+ "lstrip": false,
118
+ "normalized": true,
119
+ "rstrip": false,
120
+ "single_word": false,
121
+ "special": false
122
+ },
123
+ "50267": {
124
+ "content": " ",
125
+ "lstrip": false,
126
+ "normalized": true,
127
+ "rstrip": false,
128
+ "single_word": false,
129
+ "special": false
130
+ },
131
+ "50268": {
132
+ "content": " ",
133
+ "lstrip": false,
134
+ "normalized": true,
135
+ "rstrip": false,
136
+ "single_word": false,
137
+ "special": false
138
+ },
139
+ "50269": {
140
+ "content": " ",
141
+ "lstrip": false,
142
+ "normalized": true,
143
+ "rstrip": false,
144
+ "single_word": false,
145
+ "special": false
146
+ },
147
+ "50270": {
148
+ "content": " ",
149
+ "lstrip": false,
150
+ "normalized": true,
151
+ "rstrip": false,
152
+ "single_word": false,
153
+ "special": false
154
+ },
155
+ "50271": {
156
+ "content": " ",
157
+ "lstrip": false,
158
+ "normalized": true,
159
+ "rstrip": false,
160
+ "single_word": false,
161
+ "special": false
162
+ },
163
+ "50272": {
164
+ "content": " ",
165
+ "lstrip": false,
166
+ "normalized": true,
167
+ "rstrip": false,
168
+ "single_word": false,
169
+ "special": false
170
+ },
171
+ "50273": {
172
+ "content": " ",
173
+ "lstrip": false,
174
+ "normalized": true,
175
+ "rstrip": false,
176
+ "single_word": false,
177
+ "special": false
178
+ },
179
+ "50274": {
180
+ "content": " ",
181
+ "lstrip": false,
182
+ "normalized": true,
183
+ "rstrip": false,
184
+ "single_word": false,
185
+ "special": false
186
+ },
187
+ "50275": {
188
+ "content": " ",
189
+ "lstrip": false,
190
+ "normalized": true,
191
+ "rstrip": false,
192
+ "single_word": false,
193
+ "special": false
194
+ },
195
+ "50276": {
196
+ "content": " ",
197
+ "lstrip": false,
198
+ "normalized": true,
199
+ "rstrip": false,
200
+ "single_word": false,
201
+ "special": false
202
+ },
203
+ "50277": {
204
+ "content": "|||EMAIL_ADDRESS|||",
205
+ "lstrip": false,
206
+ "normalized": true,
207
+ "rstrip": false,
208
+ "single_word": false,
209
+ "special": false
210
+ },
211
+ "50278": {
212
+ "content": "|||PHONE_NUMBER|||",
213
+ "lstrip": false,
214
+ "normalized": true,
215
+ "rstrip": false,
216
+ "single_word": false,
217
+ "special": false
218
+ },
219
+ "50279": {
220
+ "content": "<|endoftext|>",
221
+ "lstrip": false,
222
+ "normalized": false,
223
+ "rstrip": false,
224
+ "single_word": false,
225
+ "special": true
226
+ },
227
+ "50280": {
228
+ "content": "[UNK]",
229
+ "lstrip": false,
230
+ "normalized": false,
231
+ "rstrip": false,
232
+ "single_word": false,
233
+ "special": true
234
+ },
235
+ "50281": {
236
+ "content": "[CLS]",
237
+ "lstrip": false,
238
+ "normalized": false,
239
+ "rstrip": false,
240
+ "single_word": false,
241
+ "special": true
242
+ },
243
+ "50282": {
244
+ "content": "[SEP]",
245
+ "lstrip": false,
246
+ "normalized": false,
247
+ "rstrip": false,
248
+ "single_word": false,
249
+ "special": true
250
+ },
251
+ "50283": {
252
+ "content": "[PAD]",
253
+ "lstrip": false,
254
+ "normalized": false,
255
+ "rstrip": false,
256
+ "single_word": false,
257
+ "special": true
258
+ },
259
+ "50284": {
260
+ "content": "[MASK]",
261
+ "lstrip": true,
262
+ "normalized": false,
263
+ "rstrip": false,
264
+ "single_word": false,
265
+ "special": true
266
+ },
267
+ "50285": {
268
+ "content": "[unused0]",
269
+ "lstrip": false,
270
+ "normalized": true,
271
+ "rstrip": false,
272
+ "single_word": false,
273
+ "special": false
274
+ },
275
+ "50286": {
276
+ "content": "[unused1]",
277
+ "lstrip": false,
278
+ "normalized": true,
279
+ "rstrip": false,
280
+ "single_word": false,
281
+ "special": false
282
+ },
283
+ "50287": {
284
+ "content": "[unused2]",
285
+ "lstrip": false,
286
+ "normalized": true,
287
+ "rstrip": false,
288
+ "single_word": false,
289
+ "special": false
290
+ },
291
+ "50288": {
292
+ "content": "[unused3]",
293
+ "lstrip": false,
294
+ "normalized": true,
295
+ "rstrip": false,
296
+ "single_word": false,
297
+ "special": false
298
+ },
299
+ "50289": {
300
+ "content": "[unused4]",
301
+ "lstrip": false,
302
+ "normalized": true,
303
+ "rstrip": false,
304
+ "single_word": false,
305
+ "special": false
306
+ },
307
+ "50290": {
308
+ "content": "[unused5]",
309
+ "lstrip": false,
310
+ "normalized": true,
311
+ "rstrip": false,
312
+ "single_word": false,
313
+ "special": false
314
+ },
315
+ "50291": {
316
+ "content": "[unused6]",
317
+ "lstrip": false,
318
+ "normalized": true,
319
+ "rstrip": false,
320
+ "single_word": false,
321
+ "special": false
322
+ },
323
+ "50292": {
324
+ "content": "[unused7]",
325
+ "lstrip": false,
326
+ "normalized": true,
327
+ "rstrip": false,
328
+ "single_word": false,
329
+ "special": false
330
+ },
331
+ "50293": {
332
+ "content": "[unused8]",
333
+ "lstrip": false,
334
+ "normalized": true,
335
+ "rstrip": false,
336
+ "single_word": false,
337
+ "special": false
338
+ },
339
+ "50294": {
340
+ "content": "[unused9]",
341
+ "lstrip": false,
342
+ "normalized": true,
343
+ "rstrip": false,
344
+ "single_word": false,
345
+ "special": false
346
+ },
347
+ "50295": {
348
+ "content": "[unused10]",
349
+ "lstrip": false,
350
+ "normalized": true,
351
+ "rstrip": false,
352
+ "single_word": false,
353
+ "special": false
354
+ },
355
+ "50296": {
356
+ "content": "[unused11]",
357
+ "lstrip": false,
358
+ "normalized": true,
359
+ "rstrip": false,
360
+ "single_word": false,
361
+ "special": false
362
+ },
363
+ "50297": {
364
+ "content": "[unused12]",
365
+ "lstrip": false,
366
+ "normalized": true,
367
+ "rstrip": false,
368
+ "single_word": false,
369
+ "special": false
370
+ },
371
+ "50298": {
372
+ "content": "[unused13]",
373
+ "lstrip": false,
374
+ "normalized": true,
375
+ "rstrip": false,
376
+ "single_word": false,
377
+ "special": false
378
+ },
379
+ "50299": {
380
+ "content": "[unused14]",
381
+ "lstrip": false,
382
+ "normalized": true,
383
+ "rstrip": false,
384
+ "single_word": false,
385
+ "special": false
386
+ },
387
+ "50300": {
388
+ "content": "[unused15]",
389
+ "lstrip": false,
390
+ "normalized": true,
391
+ "rstrip": false,
392
+ "single_word": false,
393
+ "special": false
394
+ },
395
+ "50301": {
396
+ "content": "[unused16]",
397
+ "lstrip": false,
398
+ "normalized": true,
399
+ "rstrip": false,
400
+ "single_word": false,
401
+ "special": false
402
+ },
403
+ "50302": {
404
+ "content": "[unused17]",
405
+ "lstrip": false,
406
+ "normalized": true,
407
+ "rstrip": false,
408
+ "single_word": false,
409
+ "special": false
410
+ },
411
+ "50303": {
412
+ "content": "[unused18]",
413
+ "lstrip": false,
414
+ "normalized": true,
415
+ "rstrip": false,
416
+ "single_word": false,
417
+ "special": false
418
+ },
419
+ "50304": {
420
+ "content": "[unused19]",
421
+ "lstrip": false,
422
+ "normalized": true,
423
+ "rstrip": false,
424
+ "single_word": false,
425
+ "special": false
426
+ },
427
+ "50305": {
428
+ "content": "[unused20]",
429
+ "lstrip": false,
430
+ "normalized": true,
431
+ "rstrip": false,
432
+ "single_word": false,
433
+ "special": false
434
+ },
435
+ "50306": {
436
+ "content": "[unused21]",
437
+ "lstrip": false,
438
+ "normalized": true,
439
+ "rstrip": false,
440
+ "single_word": false,
441
+ "special": false
442
+ },
443
+ "50307": {
444
+ "content": "[unused22]",
445
+ "lstrip": false,
446
+ "normalized": true,
447
+ "rstrip": false,
448
+ "single_word": false,
449
+ "special": false
450
+ },
451
+ "50308": {
452
+ "content": "[unused23]",
453
+ "lstrip": false,
454
+ "normalized": true,
455
+ "rstrip": false,
456
+ "single_word": false,
457
+ "special": false
458
+ },
459
+ "50309": {
460
+ "content": "[unused24]",
461
+ "lstrip": false,
462
+ "normalized": true,
463
+ "rstrip": false,
464
+ "single_word": false,
465
+ "special": false
466
+ },
467
+ "50310": {
468
+ "content": "[unused25]",
469
+ "lstrip": false,
470
+ "normalized": true,
471
+ "rstrip": false,
472
+ "single_word": false,
473
+ "special": false
474
+ },
475
+ "50311": {
476
+ "content": "[unused26]",
477
+ "lstrip": false,
478
+ "normalized": true,
479
+ "rstrip": false,
480
+ "single_word": false,
481
+ "special": false
482
+ },
483
+ "50312": {
484
+ "content": "[unused27]",
485
+ "lstrip": false,
486
+ "normalized": true,
487
+ "rstrip": false,
488
+ "single_word": false,
489
+ "special": false
490
+ },
491
+ "50313": {
492
+ "content": "[unused28]",
493
+ "lstrip": false,
494
+ "normalized": true,
495
+ "rstrip": false,
496
+ "single_word": false,
497
+ "special": false
498
+ },
499
+ "50314": {
500
+ "content": "[unused29]",
501
+ "lstrip": false,
502
+ "normalized": true,
503
+ "rstrip": false,
504
+ "single_word": false,
505
+ "special": false
506
+ },
507
+ "50315": {
508
+ "content": "[unused30]",
509
+ "lstrip": false,
510
+ "normalized": true,
511
+ "rstrip": false,
512
+ "single_word": false,
513
+ "special": false
514
+ },
515
+ "50316": {
516
+ "content": "[unused31]",
517
+ "lstrip": false,
518
+ "normalized": true,
519
+ "rstrip": false,
520
+ "single_word": false,
521
+ "special": false
522
+ },
523
+ "50317": {
524
+ "content": "[unused32]",
525
+ "lstrip": false,
526
+ "normalized": true,
527
+ "rstrip": false,
528
+ "single_word": false,
529
+ "special": false
530
+ },
531
+ "50318": {
532
+ "content": "[unused33]",
533
+ "lstrip": false,
534
+ "normalized": true,
535
+ "rstrip": false,
536
+ "single_word": false,
537
+ "special": false
538
+ },
539
+ "50319": {
540
+ "content": "[unused34]",
541
+ "lstrip": false,
542
+ "normalized": true,
543
+ "rstrip": false,
544
+ "single_word": false,
545
+ "special": false
546
+ },
547
+ "50320": {
548
+ "content": "[unused35]",
549
+ "lstrip": false,
550
+ "normalized": true,
551
+ "rstrip": false,
552
+ "single_word": false,
553
+ "special": false
554
+ },
555
+ "50321": {
556
+ "content": "[unused36]",
557
+ "lstrip": false,
558
+ "normalized": true,
559
+ "rstrip": false,
560
+ "single_word": false,
561
+ "special": false
562
+ },
563
+ "50322": {
564
+ "content": "[unused37]",
565
+ "lstrip": false,
566
+ "normalized": true,
567
+ "rstrip": false,
568
+ "single_word": false,
569
+ "special": false
570
+ },
571
+ "50323": {
572
+ "content": "[unused38]",
573
+ "lstrip": false,
574
+ "normalized": true,
575
+ "rstrip": false,
576
+ "single_word": false,
577
+ "special": false
578
+ },
579
+ "50324": {
580
+ "content": "[unused39]",
581
+ "lstrip": false,
582
+ "normalized": true,
583
+ "rstrip": false,
584
+ "single_word": false,
585
+ "special": false
586
+ },
587
+ "50325": {
588
+ "content": "[unused40]",
589
+ "lstrip": false,
590
+ "normalized": true,
591
+ "rstrip": false,
592
+ "single_word": false,
593
+ "special": false
594
+ },
595
+ "50326": {
596
+ "content": "[unused41]",
597
+ "lstrip": false,
598
+ "normalized": true,
599
+ "rstrip": false,
600
+ "single_word": false,
601
+ "special": false
602
+ },
603
+ "50327": {
604
+ "content": "[unused42]",
605
+ "lstrip": false,
606
+ "normalized": true,
607
+ "rstrip": false,
608
+ "single_word": false,
609
+ "special": false
610
+ },
611
+ "50328": {
612
+ "content": "[unused43]",
613
+ "lstrip": false,
614
+ "normalized": true,
615
+ "rstrip": false,
616
+ "single_word": false,
617
+ "special": false
618
+ },
619
+ "50329": {
620
+ "content": "[unused44]",
621
+ "lstrip": false,
622
+ "normalized": true,
623
+ "rstrip": false,
624
+ "single_word": false,
625
+ "special": false
626
+ },
627
+ "50330": {
628
+ "content": "[unused45]",
629
+ "lstrip": false,
630
+ "normalized": true,
631
+ "rstrip": false,
632
+ "single_word": false,
633
+ "special": false
634
+ },
635
+ "50331": {
636
+ "content": "[unused46]",
637
+ "lstrip": false,
638
+ "normalized": true,
639
+ "rstrip": false,
640
+ "single_word": false,
641
+ "special": false
642
+ },
643
+ "50332": {
644
+ "content": "[unused47]",
645
+ "lstrip": false,
646
+ "normalized": true,
647
+ "rstrip": false,
648
+ "single_word": false,
649
+ "special": false
650
+ },
651
+ "50333": {
652
+ "content": "[unused48]",
653
+ "lstrip": false,
654
+ "normalized": true,
655
+ "rstrip": false,
656
+ "single_word": false,
657
+ "special": false
658
+ },
659
+ "50334": {
660
+ "content": "[unused49]",
661
+ "lstrip": false,
662
+ "normalized": true,
663
+ "rstrip": false,
664
+ "single_word": false,
665
+ "special": false
666
+ },
667
+ "50335": {
668
+ "content": "[unused50]",
669
+ "lstrip": false,
670
+ "normalized": true,
671
+ "rstrip": false,
672
+ "single_word": false,
673
+ "special": false
674
+ },
675
+ "50336": {
676
+ "content": "[unused51]",
677
+ "lstrip": false,
678
+ "normalized": true,
679
+ "rstrip": false,
680
+ "single_word": false,
681
+ "special": false
682
+ },
683
+ "50337": {
684
+ "content": "[unused52]",
685
+ "lstrip": false,
686
+ "normalized": true,
687
+ "rstrip": false,
688
+ "single_word": false,
689
+ "special": false
690
+ },
691
+ "50338": {
692
+ "content": "[unused53]",
693
+ "lstrip": false,
694
+ "normalized": true,
695
+ "rstrip": false,
696
+ "single_word": false,
697
+ "special": false
698
+ },
699
+ "50339": {
700
+ "content": "[unused54]",
701
+ "lstrip": false,
702
+ "normalized": true,
703
+ "rstrip": false,
704
+ "single_word": false,
705
+ "special": false
706
+ },
707
+ "50340": {
708
+ "content": "[unused55]",
709
+ "lstrip": false,
710
+ "normalized": true,
711
+ "rstrip": false,
712
+ "single_word": false,
713
+ "special": false
714
+ },
715
+ "50341": {
716
+ "content": "[unused56]",
717
+ "lstrip": false,
718
+ "normalized": true,
719
+ "rstrip": false,
720
+ "single_word": false,
721
+ "special": false
722
+ },
723
+ "50342": {
724
+ "content": "[unused57]",
725
+ "lstrip": false,
726
+ "normalized": true,
727
+ "rstrip": false,
728
+ "single_word": false,
729
+ "special": false
730
+ },
731
+ "50343": {
732
+ "content": "[unused58]",
733
+ "lstrip": false,
734
+ "normalized": true,
735
+ "rstrip": false,
736
+ "single_word": false,
737
+ "special": false
738
+ },
739
+ "50344": {
740
+ "content": "[unused59]",
741
+ "lstrip": false,
742
+ "normalized": true,
743
+ "rstrip": false,
744
+ "single_word": false,
745
+ "special": false
746
+ },
747
+ "50345": {
748
+ "content": "[unused60]",
749
+ "lstrip": false,
750
+ "normalized": true,
751
+ "rstrip": false,
752
+ "single_word": false,
753
+ "special": false
754
+ },
755
+ "50346": {
756
+ "content": "[unused61]",
757
+ "lstrip": false,
758
+ "normalized": true,
759
+ "rstrip": false,
760
+ "single_word": false,
761
+ "special": false
762
+ },
763
+ "50347": {
764
+ "content": "[unused62]",
765
+ "lstrip": false,
766
+ "normalized": true,
767
+ "rstrip": false,
768
+ "single_word": false,
769
+ "special": false
770
+ },
771
+ "50348": {
772
+ "content": "[unused63]",
773
+ "lstrip": false,
774
+ "normalized": true,
775
+ "rstrip": false,
776
+ "single_word": false,
777
+ "special": false
778
+ },
779
+ "50349": {
780
+ "content": "[unused64]",
781
+ "lstrip": false,
782
+ "normalized": true,
783
+ "rstrip": false,
784
+ "single_word": false,
785
+ "special": false
786
+ },
787
+ "50350": {
788
+ "content": "[unused65]",
789
+ "lstrip": false,
790
+ "normalized": true,
791
+ "rstrip": false,
792
+ "single_word": false,
793
+ "special": false
794
+ },
795
+ "50351": {
796
+ "content": "[unused66]",
797
+ "lstrip": false,
798
+ "normalized": true,
799
+ "rstrip": false,
800
+ "single_word": false,
801
+ "special": false
802
+ },
803
+ "50352": {
804
+ "content": "[unused67]",
805
+ "lstrip": false,
806
+ "normalized": true,
807
+ "rstrip": false,
808
+ "single_word": false,
809
+ "special": false
810
+ },
811
+ "50353": {
812
+ "content": "[unused68]",
813
+ "lstrip": false,
814
+ "normalized": true,
815
+ "rstrip": false,
816
+ "single_word": false,
817
+ "special": false
818
+ },
819
+ "50354": {
820
+ "content": "[unused69]",
821
+ "lstrip": false,
822
+ "normalized": true,
823
+ "rstrip": false,
824
+ "single_word": false,
825
+ "special": false
826
+ },
827
+ "50355": {
828
+ "content": "[unused70]",
829
+ "lstrip": false,
830
+ "normalized": true,
831
+ "rstrip": false,
832
+ "single_word": false,
833
+ "special": false
834
+ },
835
+ "50356": {
836
+ "content": "[unused71]",
837
+ "lstrip": false,
838
+ "normalized": true,
839
+ "rstrip": false,
840
+ "single_word": false,
841
+ "special": false
842
+ },
843
+ "50357": {
844
+ "content": "[unused72]",
845
+ "lstrip": false,
846
+ "normalized": true,
847
+ "rstrip": false,
848
+ "single_word": false,
849
+ "special": false
850
+ },
851
+ "50358": {
852
+ "content": "[unused73]",
853
+ "lstrip": false,
854
+ "normalized": true,
855
+ "rstrip": false,
856
+ "single_word": false,
857
+ "special": false
858
+ },
859
+ "50359": {
860
+ "content": "[unused74]",
861
+ "lstrip": false,
862
+ "normalized": true,
863
+ "rstrip": false,
864
+ "single_word": false,
865
+ "special": false
866
+ },
867
+ "50360": {
868
+ "content": "[unused75]",
869
+ "lstrip": false,
870
+ "normalized": true,
871
+ "rstrip": false,
872
+ "single_word": false,
873
+ "special": false
874
+ },
875
+ "50361": {
876
+ "content": "[unused76]",
877
+ "lstrip": false,
878
+ "normalized": true,
879
+ "rstrip": false,
880
+ "single_word": false,
881
+ "special": false
882
+ },
883
+ "50362": {
884
+ "content": "[unused77]",
885
+ "lstrip": false,
886
+ "normalized": true,
887
+ "rstrip": false,
888
+ "single_word": false,
889
+ "special": false
890
+ },
891
+ "50363": {
892
+ "content": "[unused78]",
893
+ "lstrip": false,
894
+ "normalized": true,
895
+ "rstrip": false,
896
+ "single_word": false,
897
+ "special": false
898
+ },
899
+ "50364": {
900
+ "content": "[unused79]",
901
+ "lstrip": false,
902
+ "normalized": true,
903
+ "rstrip": false,
904
+ "single_word": false,
905
+ "special": false
906
+ },
907
+ "50365": {
908
+ "content": "[unused80]",
909
+ "lstrip": false,
910
+ "normalized": true,
911
+ "rstrip": false,
912
+ "single_word": false,
913
+ "special": false
914
+ },
915
+ "50366": {
916
+ "content": "[unused81]",
917
+ "lstrip": false,
918
+ "normalized": true,
919
+ "rstrip": false,
920
+ "single_word": false,
921
+ "special": false
922
+ },
923
+ "50367": {
924
+ "content": "[unused82]",
925
+ "lstrip": false,
926
+ "normalized": true,
927
+ "rstrip": false,
928
+ "single_word": false,
929
+ "special": false
930
+ }
931
+ },
932
+ "clean_up_tokenization_spaces": true,
933
+ "cls_token": "[CLS]",
934
+ "extra_special_tokens": {},
935
+ "mask_token": "[MASK]",
936
+ "model_input_names": [
937
+ "input_ids",
938
+ "attention_mask"
939
+ ],
940
+ "model_max_length": 8192,
941
+ "pad_token": "[PAD]",
942
+ "sep_token": "[SEP]",
943
+ "tokenizer_class": "PreTrainedTokenizerFast",
944
+ "unk_token": "[UNK]"
945
+ }