ModernBERT Embed base Legal Matryoshka

This is a sentence-transformers model finetuned from nomic-ai/modernbert-embed-base on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: nomic-ai/modernbert-embed-base
  • Maximum Sequence Length: 8192 tokens
  • Output Dimensionality: 768 dimensions
  • Similarity Function: Cosine Similarity
  • Training Dataset:
    • json
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: ModernBertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("chrisekwugum/modernbert-embed-base-legal-matryoshka-2")
# Run inference
sentences = [
    'for a specific procurement through separate joint ventures with different protégés.”  Id.  The SBA \nunderscored this purpose by highlighting that in acquiring a second protégé, the mentor “has \nalready assured SBA that the two protégés would not be competitors.  If the two mentor-protégé \nrelationships were approved in the same [North American Industry Classification System] code,',
    'What is the context of the mentor-protégé relationships mentioned?',
    "Where can the details of the CIA's framing of the plaintiff's injury be found?",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric dim_768 dim_512 dim_256 dim_128 dim_64
cosine_accuracy@1 0.5564 0.544 0.5131 0.459 0.3648
cosine_accuracy@3 0.6059 0.5873 0.5549 0.5116 0.4049
cosine_accuracy@5 0.6955 0.6847 0.6383 0.5873 0.4745
cosine_accuracy@10 0.7759 0.7604 0.7079 0.6553 0.541
cosine_precision@1 0.5564 0.544 0.5131 0.459 0.3648
cosine_precision@3 0.5265 0.5106 0.4848 0.4338 0.3483
cosine_precision@5 0.4022 0.3935 0.3713 0.3372 0.2742
cosine_precision@10 0.2388 0.2343 0.2185 0.2017 0.166
cosine_recall@1 0.1977 0.1947 0.1802 0.1668 0.1282
cosine_recall@3 0.5216 0.5067 0.478 0.433 0.3412
cosine_recall@5 0.6432 0.6318 0.5926 0.5422 0.4383
cosine_recall@10 0.7553 0.7434 0.6931 0.6388 0.5255
cosine_ndcg@10 0.662 0.6493 0.607 0.5564 0.4496
cosine_mrr@10 0.6047 0.5911 0.5553 0.5037 0.4034
cosine_map@100 0.6446 0.632 0.5963 0.5468 0.4453

Training Details

Training Dataset

json

  • Dataset: json
  • Size: 5,822 training samples
  • Columns: positive and anchor
  • Approximate statistics based on the first 1000 samples:
    positive anchor
    type string string
    details
    • min: 28 tokens
    • mean: 97.21 tokens
    • max: 170 tokens
    • min: 7 tokens
    • mean: 16.7 tokens
    • max: 39 tokens
  • Samples:
    positive anchor
    Counts Seven, Nine, and Ten in No. 11-445: February 6, 2010 FOIA
    Requests to the CIA, State Department, and NSA
    On February 6, 2010, the plaintiff submitted three substantially identical FOIA
    requests—one to the CIA, one to the State Department, and one to the National Security Agency
    (“NSA”). The request to the CIA sought “all current training handbooks, manuals, guidelines,
    What is the number associated with the case involving Counts Seven, Nine, and Ten?
    The Government’s notion of a categorical principle stems mainly from a series of
    decisions in this District. Defs.’ Mem. at 14; Defs.’ Reply at 9 n.2. The first was Gates v.
    Schlesinger, 366 F. Supp. 797 (D.D.C. 1973), which stated that “an advisory committee is not an
    ‘agency.’” Id. at 799.

    Gates’s first rationale for this conclusion was that FACA “utilizes the definition of
    From where does the Government's notion of a categorical principle mainly stem?
    sort its incoming FOIA requests based on fee categories.” First Lutz Decl. ¶ 11. The CIA’s
    declarant also states that “this information [i.e., fee category] is not included in the electronic
    system,” though the CIA’s declarant also avers that “[f]ee category is not a mandatory field,” and
    thus “this information is often not included in a FOIA request record.” Id. The plaintiff focuses
    According to the CIA's declarant, is fee category a mandatory field?
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            768,
            512,
            256,
            128,
            64
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 16
  • gradient_accumulation_steps: 16
  • learning_rate: 2e-05
  • num_train_epochs: 4
  • lr_scheduler_type: cosine
  • warmup_ratio: 0.1
  • bf16: True
  • tf32: False
  • load_best_model_at_end: True
  • optim: adamw_torch_fused
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 16
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 4
  • max_steps: -1
  • lr_scheduler_type: cosine
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: False
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss dim_768_cosine_ndcg@10 dim_512_cosine_ndcg@10 dim_256_cosine_ndcg@10 dim_128_cosine_ndcg@10 dim_64_cosine_ndcg@10
0.8791 10 91.392 - - - - -
1.0 12 - 0.6238 0.6027 0.5669 0.5230 0.4009
1.7033 20 38.8819 - - - - -
2.0 24 - 0.6596 0.6423 0.5986 0.5491 0.4384
2.5275 30 28.6263 - - - - -
3.0 36 - 0.6615 0.6502 0.6058 0.5575 0.4486
3.3516 40 25.2135 - - - - -
3.7033 44 - 0.6620 0.6493 0.6070 0.5564 0.4496
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.11.11
  • Sentence Transformers: 3.4.1
  • Transformers: 4.48.3
  • PyTorch: 2.5.1+cu124
  • Accelerate: 1.3.0
  • Datasets: 3.3.1
  • Tokenizers: 0.21.0

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
11
Safetensors
Model size
149M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for chrisekwugum/modernbert-embed-base-legal-matryoshka-2

Finetuned
(30)
this model

Evaluation results