w2v-bert-punjabi_v2

This model is a fine-tuned version of facebook/w2v-bert-2.0 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2031
  • Wer: 0.1135

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 60000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.4419 0.2174 2000 0.3828 0.2268
0.3492 0.4348 4000 0.3401 0.1836
0.3205 0.6522 6000 0.2932 0.1712
0.2813 0.8696 8000 0.2844 0.1590
0.255 1.0870 10000 0.2562 0.1469
0.2451 1.3043 12000 0.2431 0.1386
0.2305 1.5217 14000 0.2299 0.1312
0.2156 1.7391 16000 0.2191 0.1274
0.2119 1.9565 18000 0.2269 0.1205
0.182 2.1739 20000 0.2091 0.1181
0.1789 2.3913 22000 0.1980 0.1136
0.1766 2.6087 24000 0.1945 0.1092
0.1657 2.8261 26000 0.1881 0.1079
0.1461 3.0435 28000 0.1809 0.1050
0.1454 3.2609 30000 0.1810 0.1029
0.1697 3.4783 32000 0.2085 0.1210
0.1763 3.6957 34000 0.2017 0.1172
0.1642 3.9130 36000 0.2031 0.1135

Framework versions

  • Transformers 4.48.0
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
9
Safetensors
Model size
606M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for cdactvm/w2v-bert-punjabi_v2

Finetuned
(252)
this model