ModernBERT-large-roman-urdu-binary
This model is a fine-tuned version of answerdotai/ModernBERT-large on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.3226
- Accuracy: 0.8832
- Precision: 0.8841
- Recall: 0.8857
- F1: 0.8831
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 128
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Use adamw_hf with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
1.5453 | 0.9933 | 112 | 0.3860 | 0.8277 | 0.8311 | 0.8314 | 0.8277 |
1.0577 | 1.9933 | 224 | 0.2918 | 0.8777 | 0.8843 | 0.8731 | 0.8757 |
0.6143 | 2.9933 | 336 | 0.3023 | 0.8876 | 0.8871 | 0.8888 | 0.8874 |
0.2438 | 3.9933 | 448 | 0.6792 | 0.8652 | 0.8714 | 0.8606 | 0.8630 |
0.063 | 4.9933 | 560 | 0.7500 | 0.8789 | 0.8817 | 0.8758 | 0.8776 |
0.052 | 5.9933 | 672 | 0.8892 | 0.8777 | 0.8832 | 0.8735 | 0.8758 |
0.0005 | 6.9933 | 784 | 0.9423 | 0.8801 | 0.8863 | 0.8758 | 0.8783 |
0.0002 | 7.9933 | 896 | 0.8404 | 0.8752 | 0.8777 | 0.8722 | 0.8738 |
0.0 | 8.9933 | 1008 | 0.8774 | 0.8777 | 0.8823 | 0.8738 | 0.8760 |
0.0 | 9.9933 | 1120 | 0.8828 | 0.8777 | 0.8823 | 0.8738 | 0.8760 |
Framework versions
- Transformers 4.48.2
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 41
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for callmesan/ModernBERT-large-roman-urdu-binary
Base model
answerdotai/ModernBERT-large