koelectra-small-v2-discriminator-finetuned-korspeech-step
This model is a fine-tuned version of monologg/koelectra-small-v2-discriminator on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.6570
- Macro F1: 0.7817
- Accuracy: 0.7819
- Weighted f1: 0.7817
- Micro f1: 0.7819
- Weighted recall: 0.7819
- Micro recall: 0.7819
- Macro recall: 0.7819
- Weighted precision: 0.7821
- Micro precision: 0.7819
- Macro precision: 0.7821
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- lr_scheduler_warmup_steps: 100
- num_epochs: 6
Training results
Training Loss | Epoch | Step | Validation Loss | Macro F1 | Accuracy | Weighted f1 | Micro f1 | Weighted recall | Micro recall | Macro recall | Weighted precision | Micro precision | Macro precision |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.0661 | 0.57 | 100 | 0.8942 | 0.6723 | 0.6818 | 0.6723 | 0.6818 | 0.6818 | 0.6818 | 0.6818 | 0.6754 | 0.6818 | 0.6754 |
0.872 | 1.13 | 200 | 0.7197 | 0.7352 | 0.7322 | 0.7352 | 0.7322 | 0.7322 | 0.7322 | 0.7322 | 0.7415 | 0.7322 | 0.7415 |
0.7092 | 1.7 | 300 | 0.6572 | 0.7518 | 0.7528 | 0.7518 | 0.7528 | 0.7528 | 0.7528 | 0.7528 | 0.7624 | 0.7528 | 0.7624 |
0.5971 | 2.27 | 400 | 0.6379 | 0.7635 | 0.7628 | 0.7635 | 0.7628 | 0.7628 | 0.7628 | 0.7628 | 0.7710 | 0.7628 | 0.7710 |
0.543 | 2.84 | 500 | 0.6091 | 0.7791 | 0.7770 | 0.7791 | 0.7770 | 0.7770 | 0.7770 | 0.7770 | 0.7836 | 0.7770 | 0.7836 |
0.4953 | 3.4 | 600 | 0.6025 | 0.7867 | 0.7876 | 0.7867 | 0.7876 | 0.7876 | 0.7876 | 0.7876 | 0.7877 | 0.7876 | 0.7877 |
0.4473 | 3.97 | 700 | 0.6006 | 0.7841 | 0.7827 | 0.7841 | 0.7827 | 0.7827 | 0.7827 | 0.7827 | 0.7901 | 0.7827 | 0.7901 |
0.4067 | 4.54 | 800 | 0.5991 | 0.7899 | 0.7891 | 0.7899 | 0.7891 | 0.7891 | 0.7891 | 0.7891 | 0.7919 | 0.7891 | 0.7919 |
0.3849 | 5.11 | 900 | 0.6101 | 0.7817 | 0.7812 | 0.7817 | 0.7812 | 0.7812 | 0.7812 | 0.7812 | 0.7843 | 0.7812 | 0.7843 |
0.3623 | 5.67 | 1000 | 0.6069 | 0.7923 | 0.7933 | 0.7923 | 0.7933 | 0.7933 | 0.7933 | 0.7933 | 0.7935 | 0.7933 | 0.7935 |
Framework versions
- Transformers 4.30.2
- Pytorch 2.0.0
- Datasets 2.1.0
- Tokenizers 0.13.3
- Downloads last month
- 9
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.