bugdaryan's picture
Update README.md
dfad5b9
|
raw
history blame
4.9 kB
metadata
license: openrail
datasets:
  - bugdaryan/spider-natsql-wikisql-instruct
language:
  - en
tags:
  - cod

Wizard Coder SQL-Generation Model

Overview

Description

This is a fine-tuned version of the Wizard Coder 15B model specifically designed for SQL generation tasks. The model has been fine-tuned on the bugdaryan/spider-natsql-wikisql-instruct dataset to empower it with the ability to generate SQL queries based on natural language instructions.

Model Details

  • Base Model: Wizard Coder 15B
  • Fine-Tuned Model Name: WizardCoderSQL-15B-V1.0
  • Fine-Tuning Parameters:
    • QLoRA Parameters:
      • LoRA Attention Dimension (lora_r): 64
      • LoRA Alpha Parameter (lora_alpha): 16
      • LoRA Dropout Probability (lora_dropout): 0.1
    • bitsandbytes Parameters:
      • Use 4-bit Precision Base Model (use_4bit): True
      • Compute Dtype for 4-bit Base Models (bnb_4bit_compute_dtype): float16
      • Quantization Type (bnb_4bit_quant_type): nf4
      • Activate Nested Quantization (use_nested_quant): False
    • TrainingArguments Parameters:
      • Number of Training Epochs (num_train_epochs): 1
      • Enable FP16/BF16 Training (fp16/bf16): False/True
      • Batch Size per GPU for Training (per_device_train_batch_size): 48
      • Batch Size per GPU for Evaluation (per_device_eval_batch_size): 4
      • Gradient Accumulation Steps (gradient_accumulation_steps): 1
      • Enable Gradient Checkpointing (gradient_checkpointing): True
      • Maximum Gradient Norm (max_grad_norm): 0.3
      • Initial Learning Rate (learning_rate): 2e-4
      • Weight Decay (weight_decay): 0.001
      • Optimizer (optim): paged_adamw_32bit
      • Learning Rate Scheduler Type (lr_scheduler_type): cosine
      • Maximum Training Steps (max_steps): -1
      • Warmup Ratio (warmup_ratio): 0.03
      • Group Sequences into Batches with Same Length (group_by_length): True
      • Save Checkpoint Every X Update Steps (save_steps): 0
      • Log Every X Update Steps (logging_steps): 25
    • SFT Parameters:
      • Maximum Sequence Length (max_seq_length): 500

Performance

  • Fine-Tuned Model Metrics: (Provide any relevant evaluation metrics if available)

Dataset

  • Fine-Tuned Dataset: bugdaryan/spider-natsql-wikisql-instruct
  • Dataset Description: This dataset contains natural language instructions paired with SQL queries. It serves as the training data for fine-tuning the Wizard Coder model for SQL generation tasks.

Model Card Information

  • Maintainer: Spartak Bughdaryan
  • Contact: [email protected]
  • Date Created: September 15, 2023
  • Last Updated: September 15, 2023

Usage

To use this fine-tuned model for SQL generation tasks, you can load it using the Hugging Face Transformers library in Python. Here's an example of how to use it:

from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    pipeline
)
import torch

model_name = 'bugdaryan/WizardCoderSQL-15B-V1.0'

model = AutoModelForCausalLM.from_pretrained(model_name, device_map='auto')
tokenizer = AutoTokenizer.from_pretrained(model_name)

pipe = pipeline('text-generation', model=model, tokenizer=tokenizer)

tables = "CREATE TABLE sales ( sale_id number PRIMARY KEY, product_id number, customer_id number, salesperson_id number, sale_date DATE, quantity number, FOREIGN KEY (product_id) REFERENCES products(product_id), FOREIGN KEY (customer_id) REFERENCES customers(customer_id), FOREIGN KEY (salesperson_id) REFERENCES salespeople(salesperson_id)); CREATE TABLE product_suppliers ( supplier_id number PRIMARY KEY, product_id number, supply_price number, FOREIGN KEY (product_id) REFERENCES products(product_id)); CREATE TABLE customers ( customer_id number PRIMARY KEY, name text, address text ); CREATE TABLE salespeople ( salesperson_id number PRIMARY KEY, name text, region text ); CREATE TABLE product_suppliers ( supplier_id number PRIMARY KEY, product_id number, supply_price number );"

question = 'Find the salesperson who made the most sales.'

prompt = f"Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. ### Instruction: Convert text to SQLite query: {question} {tables} ### Response:"

ans = pipe(prompt, max_new_tokens=200)
print(ans[0]['generated_text'])