File size: 5,251 Bytes
b337288 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 |
---
license: apache-2.0
base_model: distilbert-base-cased
tags:
- generated_from_trainer
model-index:
- name: distilbert
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert
This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0005
- `o` precision: 0.9946
- `o` recall: 0.9960
- `o` f1: 0.9953
- `i` precision: 0.9994
- `i` recall: 0.9993
- `i` f1: 0.9994
- Weighted avg f1: 0.9989
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 426
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss | `o` precision | `o` recall | `o` f1 | `i` precision | `i` recall | `i` f1 | Weighted avg f1 |
|:-------------:|:-----:|:-----:|:---------------:|:-------------:|:----------:|:------:|:-------------:|:----------:|:------:|:---------------:|
| 0.0187 | 0.08 | 500 | 0.0033 | 0.9363 | 0.9990 | 0.9666 | 0.9999 | 0.9906 | 0.9952 | 0.9918 |
| 0.002 | 0.16 | 1000 | 0.0014 | 0.9762 | 0.9947 | 0.9854 | 0.9993 | 0.9967 | 0.9980 | 0.9964 |
| 0.0016 | 0.24 | 1500 | 0.0012 | 0.9813 | 0.9918 | 0.9865 | 0.9989 | 0.9974 | 0.9981 | 0.9967 |
| 0.0015 | 0.32 | 2000 | 0.0012 | 0.9801 | 0.9960 | 0.9880 | 0.9994 | 0.9972 | 0.9983 | 0.9971 |
| 0.0013 | 0.4 | 2500 | 0.0010 | 0.9834 | 0.9960 | 0.9896 | 0.9994 | 0.9977 | 0.9986 | 0.9975 |
| 0.001 | 0.48 | 3000 | 0.0008 | 0.9881 | 0.9959 | 0.9920 | 0.9994 | 0.9983 | 0.9989 | 0.9980 |
| 0.0009 | 0.56 | 3500 | 0.0009 | 0.9854 | 0.9955 | 0.9904 | 0.9994 | 0.9980 | 0.9987 | 0.9977 |
| 0.0009 | 0.64 | 4000 | 0.0008 | 0.9883 | 0.9946 | 0.9914 | 0.9993 | 0.9984 | 0.9988 | 0.9979 |
| 0.0009 | 0.72 | 4500 | 0.0009 | 0.9935 | 0.9884 | 0.9910 | 0.9984 | 0.9991 | 0.9988 | 0.9978 |
| 0.0008 | 0.8 | 5000 | 0.0008 | 0.9913 | 0.9926 | 0.9920 | 0.9990 | 0.9988 | 0.9989 | 0.9981 |
| 0.0008 | 0.88 | 5500 | 0.0007 | 0.9874 | 0.9976 | 0.9925 | 0.9997 | 0.9982 | 0.9990 | 0.9982 |
| 0.0008 | 0.96 | 6000 | 0.0008 | 0.9924 | 0.9923 | 0.9923 | 0.9989 | 0.9990 | 0.9989 | 0.9982 |
| 0.0005 | 1.04 | 6500 | 0.0007 | 0.9924 | 0.9948 | 0.9936 | 0.9993 | 0.9990 | 0.9991 | 0.9985 |
| 0.0005 | 1.12 | 7000 | 0.0007 | 0.9885 | 0.9973 | 0.9929 | 0.9996 | 0.9984 | 0.9990 | 0.9983 |
| 0.0005 | 1.2 | 7500 | 0.0007 | 0.9890 | 0.9970 | 0.9930 | 0.9996 | 0.9985 | 0.9990 | 0.9983 |
| 0.0006 | 1.28 | 8000 | 0.0006 | 0.9927 | 0.9965 | 0.9946 | 0.9995 | 0.9990 | 0.9993 | 0.9987 |
| 0.0004 | 1.36 | 8500 | 0.0005 | 0.9934 | 0.9962 | 0.9948 | 0.9995 | 0.9991 | 0.9993 | 0.9987 |
| 0.0004 | 1.44 | 9000 | 0.0006 | 0.9941 | 0.9953 | 0.9947 | 0.9994 | 0.9992 | 0.9993 | 0.9987 |
| 0.0004 | 1.52 | 9500 | 0.0005 | 0.9940 | 0.9951 | 0.9946 | 0.9993 | 0.9992 | 0.9993 | 0.9987 |
| 0.0004 | 1.6 | 10000 | 0.0005 | 0.9942 | 0.9958 | 0.9950 | 0.9994 | 0.9992 | 0.9993 | 0.9988 |
| 0.0003 | 1.68 | 10500 | 0.0006 | 0.9940 | 0.9951 | 0.9945 | 0.9993 | 0.9992 | 0.9992 | 0.9987 |
| 0.0005 | 1.76 | 11000 | 0.0005 | 0.9953 | 0.9947 | 0.9950 | 0.9993 | 0.9994 | 0.9993 | 0.9988 |
| 0.0004 | 1.84 | 11500 | 0.0005 | 0.9944 | 0.9958 | 0.9951 | 0.9994 | 0.9992 | 0.9993 | 0.9988 |
| 0.0004 | 1.92 | 12000 | 0.0005 | 0.9943 | 0.9962 | 0.9953 | 0.9995 | 0.9992 | 0.9993 | 0.9989 |
| 0.0004 | 2.0 | 12500 | 0.0005 | 0.9946 | 0.9960 | 0.9953 | 0.9994 | 0.9993 | 0.9994 | 0.9989 |
### Framework versions
- Transformers 4.34.1
- Pytorch 2.1.0
- Datasets 2.14.6
- Tokenizers 0.14.1
|