distilbert
This model is a fine-tuned version of distilbert-base-cased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0005
o
precision: 0.9946o
recall: 0.9960o
f1: 0.9953i
precision: 0.9994i
recall: 0.9993i
f1: 0.9994- Weighted avg f1: 0.9989
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 426
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss | o precision |
o recall |
o f1 |
i precision |
i recall |
i f1 |
Weighted avg f1 |
---|---|---|---|---|---|---|---|---|---|---|
0.0187 | 0.08 | 500 | 0.0033 | 0.9363 | 0.9990 | 0.9666 | 0.9999 | 0.9906 | 0.9952 | 0.9918 |
0.002 | 0.16 | 1000 | 0.0014 | 0.9762 | 0.9947 | 0.9854 | 0.9993 | 0.9967 | 0.9980 | 0.9964 |
0.0016 | 0.24 | 1500 | 0.0012 | 0.9813 | 0.9918 | 0.9865 | 0.9989 | 0.9974 | 0.9981 | 0.9967 |
0.0015 | 0.32 | 2000 | 0.0012 | 0.9801 | 0.9960 | 0.9880 | 0.9994 | 0.9972 | 0.9983 | 0.9971 |
0.0013 | 0.4 | 2500 | 0.0010 | 0.9834 | 0.9960 | 0.9896 | 0.9994 | 0.9977 | 0.9986 | 0.9975 |
0.001 | 0.48 | 3000 | 0.0008 | 0.9881 | 0.9959 | 0.9920 | 0.9994 | 0.9983 | 0.9989 | 0.9980 |
0.0009 | 0.56 | 3500 | 0.0009 | 0.9854 | 0.9955 | 0.9904 | 0.9994 | 0.9980 | 0.9987 | 0.9977 |
0.0009 | 0.64 | 4000 | 0.0008 | 0.9883 | 0.9946 | 0.9914 | 0.9993 | 0.9984 | 0.9988 | 0.9979 |
0.0009 | 0.72 | 4500 | 0.0009 | 0.9935 | 0.9884 | 0.9910 | 0.9984 | 0.9991 | 0.9988 | 0.9978 |
0.0008 | 0.8 | 5000 | 0.0008 | 0.9913 | 0.9926 | 0.9920 | 0.9990 | 0.9988 | 0.9989 | 0.9981 |
0.0008 | 0.88 | 5500 | 0.0007 | 0.9874 | 0.9976 | 0.9925 | 0.9997 | 0.9982 | 0.9990 | 0.9982 |
0.0008 | 0.96 | 6000 | 0.0008 | 0.9924 | 0.9923 | 0.9923 | 0.9989 | 0.9990 | 0.9989 | 0.9982 |
0.0005 | 1.04 | 6500 | 0.0007 | 0.9924 | 0.9948 | 0.9936 | 0.9993 | 0.9990 | 0.9991 | 0.9985 |
0.0005 | 1.12 | 7000 | 0.0007 | 0.9885 | 0.9973 | 0.9929 | 0.9996 | 0.9984 | 0.9990 | 0.9983 |
0.0005 | 1.2 | 7500 | 0.0007 | 0.9890 | 0.9970 | 0.9930 | 0.9996 | 0.9985 | 0.9990 | 0.9983 |
0.0006 | 1.28 | 8000 | 0.0006 | 0.9927 | 0.9965 | 0.9946 | 0.9995 | 0.9990 | 0.9993 | 0.9987 |
0.0004 | 1.36 | 8500 | 0.0005 | 0.9934 | 0.9962 | 0.9948 | 0.9995 | 0.9991 | 0.9993 | 0.9987 |
0.0004 | 1.44 | 9000 | 0.0006 | 0.9941 | 0.9953 | 0.9947 | 0.9994 | 0.9992 | 0.9993 | 0.9987 |
0.0004 | 1.52 | 9500 | 0.0005 | 0.9940 | 0.9951 | 0.9946 | 0.9993 | 0.9992 | 0.9993 | 0.9987 |
0.0004 | 1.6 | 10000 | 0.0005 | 0.9942 | 0.9958 | 0.9950 | 0.9994 | 0.9992 | 0.9993 | 0.9988 |
0.0003 | 1.68 | 10500 | 0.0006 | 0.9940 | 0.9951 | 0.9945 | 0.9993 | 0.9992 | 0.9992 | 0.9987 |
0.0005 | 1.76 | 11000 | 0.0005 | 0.9953 | 0.9947 | 0.9950 | 0.9993 | 0.9994 | 0.9993 | 0.9988 |
0.0004 | 1.84 | 11500 | 0.0005 | 0.9944 | 0.9958 | 0.9951 | 0.9994 | 0.9992 | 0.9993 | 0.9988 |
0.0004 | 1.92 | 12000 | 0.0005 | 0.9943 | 0.9962 | 0.9953 | 0.9995 | 0.9992 | 0.9993 | 0.9989 |
0.0004 | 2.0 | 12500 | 0.0005 | 0.9946 | 0.9960 | 0.9953 | 0.9994 | 0.9993 | 0.9994 | 0.9989 |
Framework versions
- Transformers 4.34.1
- Pytorch 2.1.0
- Datasets 2.14.6
- Tokenizers 0.14.1
- Downloads last month
- 1
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for bsharpataz/distilbert
Base model
distilbert/distilbert-base-cased