|
--- |
|
license: mit |
|
base_model: flax-community/spanish-t5-small |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: clinical_document_summarization |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# clinical_document_summarization |
|
|
|
This model is a fine-tuned version of [flax-community/spanish-t5-small](https://huggingface.co/flax-community/spanish-t5-small) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.4429 |
|
- Rouge1: 0.3814 |
|
- Rouge2: 0.3162 |
|
- Rougel: 0.3727 |
|
- Rougelsum: 0.3727 |
|
- Gen Len: 19.0 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 8 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| |
|
| 0.9449 | 1.0 | 592 | 0.6076 | 0.3739 | 0.303 | 0.3633 | 0.3632 | 18.9996 | |
|
| 0.6902 | 2.0 | 1184 | 0.5278 | 0.3771 | 0.3101 | 0.3686 | 0.3685 | 19.0 | |
|
| 0.601 | 3.0 | 1776 | 0.4962 | 0.3797 | 0.3143 | 0.3721 | 0.3721 | 19.0 | |
|
| 0.568 | 4.0 | 2368 | 0.4721 | 0.3792 | 0.3134 | 0.3701 | 0.3701 | 19.0 | |
|
| 0.5334 | 5.0 | 2960 | 0.4597 | 0.3795 | 0.3143 | 0.3713 | 0.3713 | 19.0 | |
|
| 0.4968 | 6.0 | 3552 | 0.4496 | 0.3816 | 0.3165 | 0.3729 | 0.3729 | 19.0 | |
|
| 0.4873 | 7.0 | 4144 | 0.4449 | 0.3812 | 0.316 | 0.3726 | 0.3726 | 19.0 | |
|
| 0.4794 | 8.0 | 4736 | 0.4429 | 0.3814 | 0.3162 | 0.3727 | 0.3727 | 19.0 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.38.2 |
|
- Pytorch 2.1.0+cu121 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.15.2 |
|
|