Model Description
This model is a fine-tuned version of nllb-200-distilled-600M, specifically adapted for French-Wolof and Wolof-French translation. It was trained using the bilalfaye/english-wolof-french-translation and bilalfaye/english-wolof-french-translation-bis datasets, which underwent significant preprocessing to enhance translation quality.
The model supports bidirectional translation:
- Wolof to French
- French to Wolof
- English to Wolof
- Wolof to English
- French to English
- English to French
Test application on : https://huggingface.co/spaces/bilalfaye/WoFrEn-Translator
How to Use
1. Inference Manually
Install the required library:
!pip install transformers
Python code for translation:
from transformers import NllbTokenizer, AutoModelForSeq2SeqLM
import torch
device = "cuda" if torch.cuda.is_available() else "cpu"
model_load_name = 'bilalfaye/nllb-200-distilled-600M-wo-fr-en'
# Load model and tokenizer
model = AutoModelForSeq2SeqLM.from_pretrained(model_load_name).to(device)
tokenizer = NllbTokenizer.from_pretrained(model_load_name)
def translate(
text, src_lang='wol_Latn', tgt_lang='french_Latn',
a=32, b=3, max_input_length=1024, num_beams=4, **kwargs
):
"""Turn a text or a list of texts into a list of translations"""
tokenizer.src_lang = src_lang
tokenizer.tgt_lang = tgt_lang
inputs = tokenizer(
text, return_tensors='pt', padding=True, truncation=True,
max_length=max_input_length
)
model.eval()
result = model.generate(
**inputs.to(model.device),
forced_bos_token_id=tokenizer.convert_tokens_to_ids(tgt_lang),
max_new_tokens=int(a + b * inputs.input_ids.shape[1]),
num_beams=num_beams, **kwargs
)
return tokenizer.batch_decode(result, skip_special_tokens=True)
# Example usage
print(translate("Ndax mën nga ko waxaat su la neexee?", src_lang="wol_Latn", tgt_lang="french_Latn")[0])
print(translate("Ndax mën nga ko waxaat su la neexee?", src_lang="wol_Latn", tgt_lang="eng_Latn")[0])
print(translate("Bonjour, où allez-vous?", src_lang="fra_Latn", tgt_lang="wol_Latn")[0])
print(translate("Bonjour, où allez-vous?", src_lang="fra_Latn", tgt_lang="eng_Latn")[0])
print(translate("Hello, how are you?", src_lang="eng_Latn", tgt_lang="wol_Latn")[0])
print(translate("Hello, how are you?", src_lang="eng_Latn", tgt_lang="fr_Latn")[0])
2. Inference with Pipeline
Install the required library:
!pip install transformers
Python code using the pipeline:
from transformers import pipeline
model_name = 'bilalfaye/nllb-200-distilled-600M-wo-fr-en'
device = "cuda" if torch.cuda.is_available() else "cpu"
translator = pipeline("translation", model=model_name, device=device)
print(translator("Ndax mën nga ko waxaat su la neexee?", src_lang="wol_Latn", tgt_lang="fra_Latn")[0]['translation_text'])
print(translator("Bonjour, où allez-vous?", src_lang="fra_Latn", tgt_lang="wol_Latn")[0]['translation_text'])
Package Versions
This model was developed and tested using the following package versions:
- transformers: 4.41.2
- torch: 2.4.0+cu121
- datasets: 3.2.0
- sentencepiece: 0.2.0
- sacrebleu: 2.5.1
Author
Bila Faye
Feel free to reach out for questions or improvements!
- Downloads last month
- 20
Model tree for bilalfaye/nllb-200-distilled-600M-wo-fr-en
Base model
facebook/nllb-200-distilled-600M