SpanMarker with roberta-base on conll2003
This is a SpanMarker model trained on the conll2003 dataset that can be used for Named Entity Recognition. This SpanMarker model uses roberta-base as the underlying encoder.
Model Details
Model Description
- Model Type: SpanMarker
- Encoder: roberta-base
- Maximum Sequence Length: 256 tokens
- Maximum Entity Length: 6 words
- Training Dataset: conll2003
- Language: en
- License: apache-2.0
Model Sources
- Repository: SpanMarker on GitHub
- Thesis: SpanMarker For Named Entity Recognition
Model Labels
Label | Examples |
---|---|
LOC | "BRUSSELS", "Britain", "Germany" |
MISC | "British", "EU-wide", "German" |
ORG | "EU", "European Commission", "European Union" |
PER | "Werner Zwingmann", "Nikolaus van der Pas", "Peter Blackburn" |
Evaluation
Metrics
Label | Precision | Recall | F1 |
---|---|---|---|
all | 0.8944 | 0.9102 | 0.9022 |
LOC | 0.9220 | 0.9215 | 0.9217 |
MISC | 0.7332 | 0.7949 | 0.7628 |
ORG | 0.8764 | 0.8964 | 0.8863 |
PER | 0.9605 | 0.9629 | 0.9617 |
Uses
Direct Use for Inference
from span_marker import SpanMarkerModel
# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("span_marker_model_id")
# Run inference
entities = model.predict("3. Tristan Hoffman (Netherlands) TVM same time")
Downstream Use
You can finetune this model on your own dataset.
Click to expand
from span_marker import SpanMarkerModel, Trainer
# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("span_marker_model_id")
# Specify a Dataset with "tokens" and "ner_tag" columns
dataset = load_dataset("conll2003") # For example CoNLL2003
# Initialize a Trainer using the pretrained model & dataset
trainer = Trainer(
model=model,
train_dataset=dataset["train"],
eval_dataset=dataset["validation"],
)
trainer.train()
trainer.save_model("span_marker_model_id-finetuned")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Sentence length | 1 | 14.5019 | 113 |
Entities per sentence | 0 | 1.6736 | 20 |
Training Hyperparameters
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
- mixed_precision_training: Native AMP
Training Results
Epoch | Step | Validation Loss | Validation Precision | Validation Recall | Validation F1 | Validation Accuracy |
---|---|---|---|---|---|---|
0.2775 | 500 | 0.0282 | 0.9105 | 0.8355 | 0.8714 | 0.9670 |
0.5549 | 1000 | 0.0166 | 0.9215 | 0.9205 | 0.9210 | 0.9824 |
0.8324 | 1500 | 0.0151 | 0.9247 | 0.9346 | 0.9296 | 0.9853 |
Framework Versions
- Python: 3.10.12
- SpanMarker: 1.5.0
- Transformers: 4.41.2
- PyTorch: 2.3.0+cu121
- Datasets: 2.20.0
- Tokenizers: 0.19.1
Citation
BibTeX
@software{Aarsen_SpanMarker,
author = {Aarsen, Tom},
license = {Apache-2.0},
title = {{SpanMarker for Named Entity Recognition}},
url = {https://github.com/tomaarsen/SpanMarkerNER}
}
- Downloads last month
- 3
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for bhadauriaupendra062/span-marker-roberta-base-conll03
Base model
FacebookAI/roberta-baseDataset used to train bhadauriaupendra062/span-marker-roberta-base-conll03
Evaluation results
- F1 on Unknowntest set self-reported0.902
- Precision on Unknowntest set self-reported0.894
- Recall on Unknowntest set self-reported0.910