distilbert-base-cased-wikiann
This model is a fine-tuned version of distilbert-base-cased on the wikiann dataset. It achieves the following results on the evaluation set:
- Loss: 0.2549
- Precision: 0.7963
- Recall: 0.8242
- F1: 0.8100
- Accuracy: 0.9262
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 101
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.3137 | 1.0 | 1250 | 0.2685 | 0.7716 | 0.8027 | 0.7868 | 0.9181 |
0.2199 | 2.0 | 2500 | 0.2526 | 0.7765 | 0.8132 | 0.7944 | 0.9220 |
0.1613 | 3.0 | 3750 | 0.2549 | 0.7963 | 0.8242 | 0.8100 | 0.9262 |
Framework versions
- Transformers 4.34.1
- Pytorch 2.0.1+cu117
- Datasets 2.14.6
- Tokenizers 0.14.1
- Downloads last month
- 10
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for ben-epstein/output
Base model
distilbert/distilbert-base-casedDataset used to train ben-epstein/output
Evaluation results
- Precision on wikiannvalidation set self-reported0.796
- Recall on wikiannvalidation set self-reported0.824
- F1 on wikiannvalidation set self-reported0.810
- Accuracy on wikiannvalidation set self-reported0.926