neuralmind/bert-base-portuguese-cased

This model is a fine-tuned version of neuralmind/bert-base-portuguese-cased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0505
  • Accuracy: 0.7211
  • F1: 0.6737
  • Recall: 0.7341
  • Precision: 0.6706

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 5151
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 120
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Recall Precision
0.0685 1.0 18 0.0667 0.3571 0.3563 0.4877 0.4864
0.0642 2.0 36 0.0655 0.5268 0.5020 0.5461 0.5354
0.0629 3.0 54 0.0641 0.6607 0.6052 0.6253 0.6036
0.0614 4.0 72 0.0618 0.6964 0.6569 0.6942 0.6551
0.0583 5.0 90 0.0584 0.7054 0.6773 0.7339 0.6816
0.0549 6.0 108 0.0548 0.7321 0.6930 0.7295 0.6862
0.048 7.0 126 0.0553 0.7768 0.7124 0.7148 0.7102
0.0391 8.0 144 0.0521 0.7768 0.7460 0.7933 0.7360
0.032 9.0 162 0.0523 0.7679 0.7208 0.7424 0.7103
0.0222 10.0 180 0.0585 0.7946 0.7354 0.7381 0.7329
0.0181 11.0 198 0.0809 0.8036 0.7083 0.6880 0.7561

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
161
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for belisards/azmn-bertimbau-posicao

Finetuned
(109)
this model