Llamacpp Quantizations of Fimbulvetr-Kuro-Lotus-10.7B
Using llama.cpp release b2440 for quantization.
Original model: https://huggingface.co/saishf/Fimbulvetr-Kuro-Lotus-10.7B
Download a file (not the whole branch) from below:
Filename | Quant type | File Size | Description |
---|---|---|---|
Fimbulvetr-Kuro-Lotus-10.7B-Q8_0.gguf | Q8_0 | 11.40GB | Extremely high quality, generally unneeded but max available quant. |
Fimbulvetr-Kuro-Lotus-10.7B-Q6_K.gguf | Q6_K | 8.80GB | Very high quality, near perfect, recommended. |
Fimbulvetr-Kuro-Lotus-10.7B-Q5_K_M.gguf | Q5_K_M | 7.59GB | High quality, very usable. |
Fimbulvetr-Kuro-Lotus-10.7B-Q5_K_S.gguf | Q5_K_S | 7.39GB | High quality, very usable. |
Fimbulvetr-Kuro-Lotus-10.7B-Q5_0.gguf | Q5_0 | 7.39GB | High quality, older format, generally not recommended. |
Fimbulvetr-Kuro-Lotus-10.7B-Q4_K_M.gguf | Q4_K_M | 6.46GB | Good quality, similar to 4.25 bpw. |
Fimbulvetr-Kuro-Lotus-10.7B-Q4_K_S.gguf | Q4_K_S | 6.11GB | Slightly lower quality with small space savings. |
Fimbulvetr-Kuro-Lotus-10.7B-Q4_0.gguf | Q4_0 | 6.07GB | Decent quality, older format, generally not recommended. |
Fimbulvetr-Kuro-Lotus-10.7B-Q3_K_L.gguf | Q3_K_L | 5.65GB | Lower quality but usable, good for low RAM availability. |
Fimbulvetr-Kuro-Lotus-10.7B-Q3_K_M.gguf | Q3_K_M | 5.19GB | Even lower quality. |
Fimbulvetr-Kuro-Lotus-10.7B-Q3_K_S.gguf | Q3_K_S | 4.66GB | Low quality, not recommended. |
Fimbulvetr-Kuro-Lotus-10.7B-Q2_K.gguf | Q2_K | 4.00GB | Extremely low quality, not recommended. |
Want to support my work? Visit my ko-fi page here: https://ko-fi.com/bartowski
- Downloads last month
- 454
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for bartowski/Fimbulvetr-Kuro-Lotus-10.7B-GGUF
Evaluation results
- normalized accuracy on AI2 Reasoning Challenge (25-Shot)test set Open LLM Leaderboard69.540
- normalized accuracy on HellaSwag (10-Shot)validation set Open LLM Leaderboard87.870
- accuracy on MMLU (5-Shot)test set Open LLM Leaderboard66.990
- mc2 on TruthfulQA (0-shot)validation set Open LLM Leaderboard60.950
- accuracy on Winogrande (5-shot)validation set Open LLM Leaderboard84.140
- accuracy on GSM8k (5-shot)test set Open LLM Leaderboard66.870