rtdetr
This model is a fine-tuned version of PekingU/rtdetr_r50vd_coco_o365 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 10.4377
- Map: 0.2587
- Map 50: 0.4214
- Map 75: 0.2668
- Map Small: 0.0132
- Map Medium: 0.0707
- Map Large: 0.3083
- Mar 1: 0.2412
- Mar 10: 0.4736
- Mar 100: 0.4998
- Mar Small: 0.0211
- Mar Medium: 0.1684
- Mar Large: 0.5787
- Map Person: 0.6872
- Mar 100 Person: 0.7948
- Map Ear: 0.3267
- Mar 100 Ear: 0.4363
- Map Earmuffs: 0.1061
- Mar 100 Earmuffs: 0.3967
- Map Face: 0.5362
- Mar 100 Face: 0.6549
- Map Face-guard: 0.0236
- Mar 100 Face-guard: 0.51
- Map Face-mask-medical: 0.1466
- Mar 100 Face-mask-medical: 0.3479
- Map Foot: 0.1167
- Mar 100 Foot: 0.3963
- Map Tools: 0.125
- Mar 100 Tools: 0.3664
- Map Glasses: 0.2452
- Mar 100 Glasses: 0.4355
- Map Gloves: 0.3086
- Mar 100 Gloves: 0.4919
- Map Helmet: 0.2733
- Mar 100 Helmet: 0.4595
- Map Hands: 0.4959
- Mar 100 Hands: 0.6459
- Map Head: 0.6255
- Mar 100 Head: 0.7222
- Map Medical-suit: 0.0071
- Mar 100 Medical-suit: 0.6667
- Map Shoes: 0.2826
- Mar 100 Shoes: 0.4203
- Map Safety-suit: 0.0628
- Mar 100 Safety-suit: 0.6043
- Map Safety-vest: 0.0284
- Mar 100 Safety-vest: 0.1479
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Map | Map 50 | Map 75 | Map Small | Map Medium | Map Large | Mar 1 | Mar 10 | Mar 100 | Mar Small | Mar Medium | Mar Large | Map Person | Mar 100 Person | Map Ear | Mar 100 Ear | Map Earmuffs | Mar 100 Earmuffs | Map Face | Mar 100 Face | Map Face-guard | Mar 100 Face-guard | Map Face-mask-medical | Mar 100 Face-mask-medical | Map Foot | Mar 100 Foot | Map Tools | Mar 100 Tools | Map Glasses | Mar 100 Glasses | Map Gloves | Mar 100 Gloves | Map Helmet | Mar 100 Helmet | Map Hands | Mar 100 Hands | Map Head | Mar 100 Head | Map Medical-suit | Mar 100 Medical-suit | Map Shoes | Mar 100 Shoes | Map Safety-suit | Mar 100 Safety-suit | Map Safety-vest | Mar 100 Safety-vest |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
No log | 1.0 | 230 | 11.8687 | 0.1809 | 0.2959 | 0.1854 | 0.0001 | 0.0405 | 0.2126 | 0.1745 | 0.3538 | 0.3831 | 0.0003 | 0.1392 | 0.4463 | 0.6713 | 0.7877 | 0.2916 | 0.3832 | 0.0012 | 0.27 | 0.4942 | 0.6099 | 0.0003 | 0.11 | 0.0051 | 0.2792 | 0.0203 | 0.2963 | 0.0294 | 0.2341 | 0.1226 | 0.3419 | 0.1196 | 0.4622 | 0.0861 | 0.3709 | 0.4235 | 0.6114 | 0.5619 | 0.6973 | 0.0033 | 0.3333 | 0.2386 | 0.4097 | 0.0057 | 0.3043 | 0.0 | 0.0106 |
No log | 2.0 | 460 | 11.2318 | 0.2049 | 0.3336 | 0.2104 | 0.0001 | 0.0546 | 0.2415 | 0.2033 | 0.4067 | 0.4298 | 0.0009 | 0.1818 | 0.4943 | 0.6806 | 0.7963 | 0.299 | 0.4008 | 0.0019 | 0.2967 | 0.5212 | 0.6258 | 0.0013 | 0.3 | 0.0672 | 0.3167 | 0.0227 | 0.3556 | 0.0463 | 0.2657 | 0.1828 | 0.3808 | 0.2148 | 0.4744 | 0.1592 | 0.4101 | 0.4415 | 0.6258 | 0.5971 | 0.708 | 0.0043 | 0.45 | 0.2338 | 0.4048 | 0.0095 | 0.4696 | 0.0001 | 0.0255 |
21.6045 | 3.0 | 690 | 10.5848 | 0.228 | 0.3728 | 0.2323 | 0.0023 | 0.0556 | 0.2715 | 0.229 | 0.4415 | 0.472 | 0.0054 | 0.1589 | 0.5472 | 0.6736 | 0.7933 | 0.3235 | 0.4293 | 0.015 | 0.3133 | 0.5366 | 0.6397 | 0.0043 | 0.46 | 0.1355 | 0.3646 | 0.0585 | 0.3759 | 0.0672 | 0.3417 | 0.213 | 0.425 | 0.2673 | 0.4793 | 0.2207 | 0.4772 | 0.4553 | 0.6371 | 0.6186 | 0.7185 | 0.0054 | 0.575 | 0.2525 | 0.4074 | 0.0273 | 0.4957 | 0.0018 | 0.0904 |
21.6045 | 4.0 | 920 | 10.5421 | 0.2332 | 0.3782 | 0.2411 | 0.0009 | 0.0614 | 0.2771 | 0.223 | 0.4435 | 0.4738 | 0.0048 | 0.1859 | 0.5433 | 0.6844 | 0.797 | 0.3263 | 0.4265 | 0.0182 | 0.3733 | 0.5415 | 0.651 | 0.0071 | 0.35 | 0.1292 | 0.3625 | 0.0606 | 0.3815 | 0.0843 | 0.3587 | 0.213 | 0.4349 | 0.2804 | 0.4659 | 0.2003 | 0.4418 | 0.4684 | 0.6475 | 0.6229 | 0.7196 | 0.0096 | 0.6083 | 0.2897 | 0.4371 | 0.0254 | 0.5217 | 0.0029 | 0.0777 |
16.2105 | 5.0 | 1150 | 10.5670 | 0.2425 | 0.4026 | 0.2462 | 0.0026 | 0.0678 | 0.2876 | 0.2248 | 0.4572 | 0.49 | 0.0084 | 0.175 | 0.5649 | 0.6759 | 0.7959 | 0.3303 | 0.4287 | 0.051 | 0.37 | 0.5377 | 0.6458 | 0.0389 | 0.54 | 0.1382 | 0.3313 | 0.0542 | 0.3833 | 0.0967 | 0.339 | 0.2201 | 0.4081 | 0.2746 | 0.4821 | 0.2307 | 0.4747 | 0.4704 | 0.6355 | 0.6247 | 0.727 | 0.0079 | 0.6833 | 0.2719 | 0.4297 | 0.0787 | 0.5174 | 0.0212 | 0.1372 |
16.2105 | 6.0 | 1380 | 10.5205 | 0.2454 | 0.4021 | 0.2486 | 0.004 | 0.0642 | 0.2915 | 0.2318 | 0.466 | 0.4921 | 0.009 | 0.2002 | 0.565 | 0.6883 | 0.7967 | 0.3229 | 0.4303 | 0.0432 | 0.4167 | 0.533 | 0.6475 | 0.0206 | 0.49 | 0.134 | 0.3417 | 0.0763 | 0.3759 | 0.1108 | 0.3549 | 0.2424 | 0.4302 | 0.2975 | 0.4923 | 0.2172 | 0.4481 | 0.4765 | 0.6418 | 0.622 | 0.7188 | 0.0088 | 0.675 | 0.2824 | 0.4318 | 0.08 | 0.5478 | 0.0164 | 0.1255 |
14.9514 | 7.0 | 1610 | 10.4281 | 0.2503 | 0.4074 | 0.2573 | 0.0122 | 0.071 | 0.2971 | 0.2336 | 0.4732 | 0.5003 | 0.0192 | 0.1699 | 0.5787 | 0.6909 | 0.797 | 0.3294 | 0.4358 | 0.0799 | 0.3767 | 0.5398 | 0.6511 | 0.0195 | 0.55 | 0.1253 | 0.3229 | 0.0995 | 0.4037 | 0.1184 | 0.3798 | 0.2401 | 0.4262 | 0.3016 | 0.4878 | 0.2372 | 0.4582 | 0.4943 | 0.6485 | 0.6247 | 0.7213 | 0.0081 | 0.6583 | 0.2781 | 0.4214 | 0.0502 | 0.6087 | 0.019 | 0.1574 |
14.9514 | 8.0 | 1840 | 10.4168 | 0.2591 | 0.4207 | 0.2665 | 0.0129 | 0.069 | 0.3082 | 0.2426 | 0.471 | 0.5001 | 0.0198 | 0.1687 | 0.5777 | 0.6901 | 0.7971 | 0.3275 | 0.4379 | 0.0953 | 0.3833 | 0.539 | 0.6537 | 0.0503 | 0.54 | 0.1408 | 0.3333 | 0.1041 | 0.387 | 0.1254 | 0.3735 | 0.2417 | 0.4314 | 0.3014 | 0.4854 | 0.2689 | 0.4557 | 0.4984 | 0.6511 | 0.6291 | 0.725 | 0.0068 | 0.6667 | 0.2833 | 0.4224 | 0.0785 | 0.6217 | 0.0245 | 0.1372 |
14.5079 | 9.0 | 2070 | 10.4207 | 0.2605 | 0.4265 | 0.2676 | 0.013 | 0.072 | 0.3104 | 0.2384 | 0.4779 | 0.5015 | 0.0212 | 0.1712 | 0.5805 | 0.6874 | 0.7957 | 0.3287 | 0.439 | 0.109 | 0.3967 | 0.5364 | 0.6546 | 0.0376 | 0.52 | 0.1454 | 0.3333 | 0.11 | 0.4019 | 0.1238 | 0.3652 | 0.2454 | 0.439 | 0.309 | 0.4882 | 0.2851 | 0.4646 | 0.4972 | 0.6475 | 0.6276 | 0.7259 | 0.0068 | 0.6667 | 0.2853 | 0.4249 | 0.0651 | 0.6043 | 0.0291 | 0.1585 |
14.5079 | 10.0 | 2300 | 10.4377 | 0.2587 | 0.4214 | 0.2668 | 0.0132 | 0.0707 | 0.3083 | 0.2412 | 0.4736 | 0.4998 | 0.0211 | 0.1684 | 0.5787 | 0.6872 | 0.7948 | 0.3267 | 0.4363 | 0.1061 | 0.3967 | 0.5362 | 0.6549 | 0.0236 | 0.51 | 0.1466 | 0.3479 | 0.1167 | 0.3963 | 0.125 | 0.3664 | 0.2452 | 0.4355 | 0.3086 | 0.4919 | 0.2733 | 0.4595 | 0.4959 | 0.6459 | 0.6255 | 0.7222 | 0.0071 | 0.6667 | 0.2826 | 0.4203 | 0.0628 | 0.6043 | 0.0284 | 0.1479 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.19.1
- Downloads last month
- 130
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for b09501048/rtdetr
Base model
PekingU/rtdetr_r50vd_coco_o365