See axolotl config
axolotl version: 0.6.0
base_model: meta-llama/Llama-3.2-1B
tokenizer_config: meta-llama/Llama-3.2-3B
# Automatically upload checkpoint and final model to HF
# hub_model_id: axolotl-ai-co/kd-llama-1b-evolkit-distill-ratio-0_4
plugins:
- axolotl.integrations.kd.KDPlugin
- axolotl.integrations.liger.LigerPlugin
liger_rms_norm: true
liger_glu_activation: true
torch_compile: true
strict: false
chat_template: llama3
kd_trainer: true
kd_ce_alpha: 0.6
kd_alpha: 0.4
kd_temperature: 1.0
dataloader_prefetch_factor: 256
dataloader_num_workers: 4
dataloader_pin_memory: true
gc_steps: -1 # gc at the end of each epoch
datasets:
- field_messages: messages_combined
message_field_content: content
message_field_role: role
logprobs_field: llm_text_generation_vllm_logprobs
path: winglian/evolkit-logprobs-pipeline-75k-v2
type: axolotl.integrations.kd.chat_template
split: train
temperature: 1.0
dataset_prepared_path: last_run_prepared
val_set_size: 0.0
output_dir: ./outputs/out-1b-kd-more-saves
sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true
wandb_project: lobprob-kd-evolkit
wandb_entity: axolotl-ai
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 1
micro_batch_size: 4
num_epochs: 3
optimizer: adamw_torch_fused
lr_scheduler: cosine
learning_rate: 3e-5
save_safetensors: true
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: true
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 100
evals_per_epoch: 2
eval_table_size:
saves_per_epoch: 20
debug:
# deepspeed: deepspeed_configs/zero1.json
weight_decay: 0.0
special_tokens:
pad_token: <|finetune_right_pad_id|>
eos_token: <|eot_id|>
outputs/out-1b-kd-more-saves
This model is a fine-tuned version of meta-llama/Llama-3.2-1B on the winglian/evolkit-logprobs-pipeline-75k-v2 dataset.
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 32
- total_eval_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 3
Training results
Framework versions
- Transformers 4.48.1
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 10
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for axolotl-ai-co/kd-llama-1b-evolkit-distill-kd-ratio-0_4
Base model
meta-llama/Llama-3.2-1B