DynamicNoise-deberta-v3-small-Label_B-1024-epochs-4
This model is a fine-tuned version of microsoft/deberta-v3-small on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.1055
- Accuracy: 0.9842
- F1: 0.9842
- Precision: 0.9844
- Recall: 0.9842
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 4
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
---|---|---|---|---|---|---|---|
0.12 | 0.9997 | 1599 | 0.1176 | 0.9737 | 0.9738 | 0.9749 | 0.9737 |
0.0293 | 1.9995 | 3198 | 0.0862 | 0.9829 | 0.9829 | 0.9831 | 0.9829 |
0.0021 | 2.9994 | 4797 | 0.1027 | 0.9821 | 0.9821 | 0.9823 | 0.9821 |
0.0021 | 3.9992 | 6396 | 0.1055 | 0.9842 | 0.9842 | 0.9844 | 0.9842 |
Framework versions
- Transformers 4.46.3
- Pytorch 2.4.0
- Datasets 3.1.0
- Tokenizers 0.20.3
- Downloads last month
- 193
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for avinasht/DynamicNoise-deberta-v3-small-Label_B-1024-epochs-4
Base model
microsoft/deberta-v3-small