See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: fxmarty/really-tiny-falcon-testing
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 1ad8db748723c1d1_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/1ad8db748723c1d1_train_data.json
type:
field_input: question_text
field_instruction: system_prompt
field_output: orig_answer_texts
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
gradient_clipping: 1.0
group_by_length: false
hub_model_id: auxyus/36ad53ce-6177-4359-84c6-8baf3d3e542b
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: 0
logging_steps: 3
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_steps: 100
micro_batch_size: 8
mlflow_experiment_name: /tmp/1ad8db748723c1d1_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: techspear-hub
wandb_mode: online
wandb_name: 217d46b1-16a4-44ea-945f-40fb03e39c2b
wandb_project: Gradients-On-Two
wandb_run: your_name
wandb_runid: 217d46b1-16a4-44ea-945f-40fb03e39c2b
warmup_steps: 10
weight_decay: 0.01
xformers_attention: null
36ad53ce-6177-4359-84c6-8baf3d3e542b
This model is a fine-tuned version of fxmarty/really-tiny-falcon-testing on the None dataset. It achieves the following results on the evaluation set:
- Loss: 11.0575
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 100
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0003 | 1 | 11.0897 |
44.3495 | 0.0031 | 9 | 11.0879 |
44.3425 | 0.0061 | 18 | 11.0831 |
44.3186 | 0.0092 | 27 | 11.0775 |
44.3018 | 0.0123 | 36 | 11.0728 |
44.2814 | 0.0153 | 45 | 11.0679 |
44.2584 | 0.0184 | 54 | 11.0640 |
44.2353 | 0.0215 | 63 | 11.0615 |
44.234 | 0.0245 | 72 | 11.0595 |
44.2375 | 0.0276 | 81 | 11.0581 |
44.2301 | 0.0307 | 90 | 11.0576 |
44.2392 | 0.0338 | 99 | 11.0575 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 6
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no pipeline_tag.
Model tree for auxyus/36ad53ce-6177-4359-84c6-8baf3d3e542b
Base model
fxmarty/really-tiny-falcon-testing