metadata
			license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - emotion
metrics:
  - accuracy
model-index:
  - name: multi-class-classification
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: emotion
          type: emotion
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.928
      - task:
          type: text-classification
          name: Text Classification
        dataset:
          name: emotion
          type: emotion
          config: default
          split: test
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9185
            verified: true
          - name: Precision Macro
            type: precision
            value: 0.8738350796775306
            verified: true
          - name: Precision Micro
            type: precision
            value: 0.9185
            verified: true
          - name: Precision Weighted
            type: precision
            value: 0.9179425177997311
            verified: true
          - name: Recall Macro
            type: recall
            value: 0.8650962919021573
            verified: true
          - name: Recall Micro
            type: recall
            value: 0.9185
            verified: true
          - name: Recall Weighted
            type: recall
            value: 0.9185
            verified: true
          - name: F1 Macro
            type: f1
            value: 0.8692821860210945
            verified: true
          - name: F1 Micro
            type: f1
            value: 0.9185
            verified: true
          - name: F1 Weighted
            type: f1
            value: 0.9181177508591364
            verified: true
          - name: loss
            type: loss
            value: 0.20905950665473938
            verified: true
          - name: matthews_correlation
            type: matthews_correlation
            value: 0.8920254536671932
            verified: true
multi-class-classification
This model is a fine-tuned version of distilbert-base-uncased on the emotion dataset. It achieves the following results on the evaluation set:
- Loss: 0.2009
- Accuracy: 0.928
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | 
|---|---|---|---|---|
| 0.2643 | 1.0 | 1000 | 0.2009 | 0.928 | 
Framework versions
- Transformers 4.19.2
- Pytorch 1.11.0+cu113
- Datasets 2.2.2
- Tokenizers 0.12.1

