ChessGPT_d12 / agents /uci_tokenizers.py
austindavis's picture
Update agents/uci_tokenizers.py
28f21ff verified
from typing import List
import chess
# import tiktoken
import tokenizers
from tokenizers import models, pre_tokenizers, processors
from torch import Tensor as TT
from transformers import PreTrainedTokenizerFast
from transformers.tokenization_utils_fast import BatchEncoding
# def getTiktokenizer() -> tiktoken.Encoding:
# """
# Defines a tiktoken-based BPE encoder for UCI chess moves. This
# tokenizer effectively tokenizes UCI moves by the square names.
# One notable variation is that promotions must be in upper-case.
# Vocabulary:
# Special Tokens (4): "\<|pad|\>", "\<|startoftext|\>", "\<|endoftext|\>", "\<|unknown|\>"
# Square Tokens (64): a1 through h8
# Promote Tokens (4): Q, B, R, N
# UNUSED (8120): Need 8192-4-64-4=8120 unused tokens of the form <|unused####|>
# """
# special_tokens = ["<|pad|>", "<|startoftext|>", "<|endoftext|>", "<|unknown|>"]
# unused_tokens = [f"<|unused{i:04d}" for i in range(8120)]
# chess_vocab = special_tokens + chess.SQUARE_NAMES + list("QBRN") + unused_tokens
# mergeable_ranks = {k.encode():v for (v,k) in enumerate(chess_vocab)}
# chess_pat_str = r'[a-h][1-8]|[QBRN]'
# enc = tiktoken.Encoding(
# name="chess_enc",
# pat_str=chess_pat_str, # or \d|\s
# mergeable_ranks=mergeable_ranks,
# special_tokens={k:v for (v,k) in enumerate(special_tokens)},
# )
# return enc
class UciTokenizer(PreTrainedTokenizerFast):
_PAD_TOKEN: str
_UNK_TOKEN: str
_EOS_TOKEN: str
_BOS_TOKEN: str
stoi: dict[str, int]
"""Integer to String mapping"""
itos: dict[int, str]
"""String to Integer Mapping. This is the vocab"""
def __init__(
self,
stoi,
itos,
pad_token,
unk_token,
bos_token,
eos_token,
name_or_path,
**kwargs,
):
self.stoi = stoi
self.itos = itos
self._PAD_TOKEN = pad_token
self._UNK_TOKEN = unk_token
self._EOS_TOKEN = eos_token
self._BOS_TOKEN = bos_token
# Define the model
tok_model = models.WordLevel(vocab=self.stoi, unk_token=self._UNK_TOKEN)
slow_tokenizer = tokenizers.Tokenizer(tok_model)
slow_tokenizer.pre_tokenizer = self._init_pretokenizer()
# post processing adds special tokens unless explicitly ignored
post_proc = processors.TemplateProcessing(
single=f"{bos_token} $0",
pair=None,
special_tokens=[(bos_token, 1)],
)
slow_tokenizer.post_processor = post_proc
super().__init__(
tokenizer_object=slow_tokenizer,
unk_token=self._UNK_TOKEN,
bos_token=self._BOS_TOKEN,
eos_token=self._EOS_TOKEN,
pad_token=self._PAD_TOKEN,
name_or_path=name_or_path,
**kwargs,
)
# Override the decode behavior to ensure spaces are correctly handled
def _decode(
token_ids: int | List[int] | dict | TT,
skip_special_tokens=False,
clean_up_tokenization_spaces=False,
) -> int | List[int]:
if isinstance(token_ids, int):
return self.itos.get(token_ids, self._UNK_TOKEN)
if isinstance(token_ids, dict):
token_ids = token_ids["input_ids"]
if isinstance(token_ids, TT):
token_ids = token_ids.tolist()
if isinstance(token_ids, list):
tokens_str = [self.itos.get(xi, self._UNK_TOKEN) for xi in token_ids]
processed_tokens = self._process_str_tokens(tokens_str)
return " ".join(processed_tokens)
raise ValueError(
f"Unknown input type to decode() for argument 'token_ids'. Received: {type(token_ids)} "
)
self._decode = _decode
def _init_pretokenizer(self) -> pre_tokenizers.PreTokenizer:
raise NotImplementedError
def _process_str_tokens(
self, tokens_str: list[str], return_player_ids: bool
) -> list[str]:
raise NotImplementedError
def get_id2square_list() -> list[int]:
raise NotImplementedError
class UciTileTokenizer(UciTokenizer):
"""Uci tokenizer converting start/end tiles and promotion types each into individual tokens"""
SPECIAL_TOKENS = (_PAD_TOKEN, _UNK_TOKEN, _BOS_TOKEN, _EOS_TOKEN) = [
"<|pad|>",
"<|startoftext|>",
"<|endoftext|>",
"<|unknown|>",
]
stoi: dict[str, int]
itos: dict[int, str]
_split_regex: str
_promote_chars: str
id2square: List[int] = list(range(4, 68))
"""
List mapping token IDs to squares on the chess board. Order is file then rank, i.e.:
`A1, B1, C1, ..., F8, G8, H8`
"""
def get_id2square_list(self) -> List[int]:
return self.id2square
def __init__(self, *, upper_promotions: bool, **kwargs):
# Remove conflicting arguments from kwargs if they exist
kwargs.pop("pad_token", None)
kwargs.pop("unk_token", None)
kwargs.pop("bos_token", None)
kwargs.pop("eos_token", None)
kwargs.pop("clean_up_tokenization_spaces", None)
kwargs.pop("name_or_path", None)
self.upper_promotions = upper_promotions
if upper_promotions:
self._promote_chars = "QRBN"
self._split_regex = r"[a-h][1-8]|[QRBN]"
else:
self._promote_chars = "qrbn"
self._split_regex = r"[a-h][1-8]|[qrnb]"
self.stoi = {
tok: idx
for tok, idx in list(
zip(
self.SPECIAL_TOKENS
+ chess.SQUARE_NAMES
+ list(self._promote_chars),
range(72),
)
)
}
self.itos = {
idx: tok
for tok, idx in list(
zip(
self.SPECIAL_TOKENS
+ chess.SQUARE_NAMES
+ list(self._promote_chars),
range(72),
)
)
}
super().__init__(
self.stoi,
self.itos,
pad_token=self._PAD_TOKEN,
unk_token=self._UNK_TOKEN,
bos_token=self._BOS_TOKEN,
eos_token=self._EOS_TOKEN,
name_or_path="austindavis/uci_tile_tokenizer",
clean_up_tokenization_spaces=False,
**kwargs,
)
def _init_pretokenizer(self):
# Pre-tokenizer to split input into UCI moves
pattern = tokenizers.Regex(self._split_regex)
pre_tokenizer = pre_tokenizers.Sequence(
[
pre_tokenizers.Whitespace(),
pre_tokenizers.Split(pattern=pattern, behavior="merged_with_previous"),
]
)
return pre_tokenizer
def _process_str_tokens(self, token_str: list[str]):
moves = []
next_move = ""
for token in token_str:
# skip special tokens
if token in self.all_special_tokens:
continue
# handle promotions
if len(token) == 1:
next_move += token
continue
# handle regular tokens if there's room
if len(next_move) < 4:
next_move += token
continue
moves.append(next_move)
next_move = token
moves.append(next_move)
return moves
@staticmethod
def compute_players(encoding: BatchEncoding, according_to="output"):
"""
Determines which player (white=True, black=False) is associated with each token in the sequence.
This method works based on chess move sequences tokenized using the UciTileTokenizer.
# Parameters:
----------
**`encoding`** : BatchEncoding
Tokenized input of a chess game, where each token represents a move or special token.
**`according_to`** : str (optional, default='output')
Specifies the perspective for associating players:
- 'output': Returns the player whose next move is predicted by the sequence (the output move).
- Otherwise: Returns the player associated with the input tokens (i.e., which player made each move).
# Returns:
-------
List[bool]
A list of boolean values indicating the player for each token:
- True for white (player 1),
- False for black (player 2).
The list length corresponds to the number of tokens in the sequence, including special tokens if any.
# Example Usage:
```
>>> tok = UciTileTokenizer()
>>> encoding = tok('e2e4 d7d5 e4d5 e7e6 d5e6 d8g5 e6e7 g5f6 e7f8Q')
>>> print(encoding['input_ids'])
[1, 16, 32, 55, 39, 32, 39, 56, 48, 39, 48, 63, 42, 48, 56, 42, 49, 56, 65, 68]
>>> tok.compute_players(encoding)
[True, True, False, False, True, True, False, False, True, True, False, False, True, True, False, False, True, True, True, False]
>>> tok.compute_players(encoding, according_to='input')
[True, True, True, False, False, True, True, False, False, True, True, False, False, True, True, False, False, True, True, True]
```
# Notes:
-------
This method does not rely on board position calculations. Therefore, when
using `according_to='output'`, it cannot reliably predict which player is
responsible for selecting the final token of the sequence. For instance,
if a pawn is moved to the back rank (e.g., 'e7e8'), then white must select
the promotion class on the next token; however, this algorithm will predict
that black is responsible for selecting the next token instead of white.
"""
return [
UciTileTokenizer._compute_players_single(encoding[i].ids)
for i in range(len(encoding["input_ids"]))
]
@staticmethod
def _compute_players_single(input_ids: list[int], according_to: str = "output"):
players = [] if according_to == "output" else [True]
current_player = False
num_tokens_in_ply = 0
has_specials = False
for i, token_id in enumerate(input_ids):
if token_id == 1:
has_specials = True
continue
if num_tokens_in_ply == 0:
# check if promotion OR unknown token ID
if token_id > 67 or token_id == 3:
players.append(current_player)
num_tokens_in_ply = 0
else:
num_tokens_in_ply += 1
current_player = not current_player
players.append(current_player)
elif num_tokens_in_ply == 1:
num_tokens_in_ply = 0
players.append(current_player)
else:
raise ValueError("Illegal move sequence")
if according_to == "output":
# anticipate what output should be based on the final input token
# see notes for more detail
if num_tokens_in_ply == 0:
if token_id > 67:
players.append(not current_player)
else:
players.append(current_player)
else:
players.append(current_player)
return players if has_specials else players[1:]
if __name__ == "__main__":
tok = UciTileTokenizer()
encoding = tok("e2e4Q b7b8N e2e7 a1", add_special_tokens=True)
print(
f"{encoding['input_ids']=}\n{tok.compute_players(encoding, according_to='output')=}"
)
print(
f"{encoding['input_ids']=}\n{tok.compute_players(encoding, according_to='input')=}"
)
encoding = tok("e2e4Q b7b8N e2e7 a1", add_special_tokens=False)
print(
f"{encoding['input_ids']=}\n{tok.compute_players(encoding, according_to='output')=}"
)
print(
f"{encoding['input_ids']=}\n{tok.compute_players(encoding, according_to='input')=}"
)
encoding = tok("e2e4 d7d5 e4d5 e7e6 d5e6 d8g5 e6e7 g5f6 e7f8Q")
print(encoding["input_ids"])
print(tok.compute_players(encoding))
print(tok.compute_players(encoding, according_to="input"))