|
from typing import List |
|
|
|
import chess |
|
|
|
|
|
import tokenizers |
|
from tokenizers import models, pre_tokenizers, processors |
|
from torch import Tensor as TT |
|
from transformers import PreTrainedTokenizerFast |
|
from transformers.tokenization_utils_fast import BatchEncoding |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class UciTokenizer(PreTrainedTokenizerFast): |
|
_PAD_TOKEN: str |
|
_UNK_TOKEN: str |
|
_EOS_TOKEN: str |
|
_BOS_TOKEN: str |
|
|
|
stoi: dict[str, int] |
|
"""Integer to String mapping""" |
|
|
|
itos: dict[int, str] |
|
"""String to Integer Mapping. This is the vocab""" |
|
|
|
def __init__( |
|
self, |
|
stoi, |
|
itos, |
|
pad_token, |
|
unk_token, |
|
bos_token, |
|
eos_token, |
|
name_or_path, |
|
**kwargs, |
|
): |
|
self.stoi = stoi |
|
self.itos = itos |
|
|
|
self._PAD_TOKEN = pad_token |
|
self._UNK_TOKEN = unk_token |
|
self._EOS_TOKEN = eos_token |
|
self._BOS_TOKEN = bos_token |
|
|
|
|
|
tok_model = models.WordLevel(vocab=self.stoi, unk_token=self._UNK_TOKEN) |
|
|
|
slow_tokenizer = tokenizers.Tokenizer(tok_model) |
|
slow_tokenizer.pre_tokenizer = self._init_pretokenizer() |
|
|
|
|
|
post_proc = processors.TemplateProcessing( |
|
single=f"{bos_token} $0", |
|
pair=None, |
|
special_tokens=[(bos_token, 1)], |
|
) |
|
slow_tokenizer.post_processor = post_proc |
|
|
|
super().__init__( |
|
tokenizer_object=slow_tokenizer, |
|
unk_token=self._UNK_TOKEN, |
|
bos_token=self._BOS_TOKEN, |
|
eos_token=self._EOS_TOKEN, |
|
pad_token=self._PAD_TOKEN, |
|
name_or_path=name_or_path, |
|
**kwargs, |
|
) |
|
|
|
|
|
def _decode( |
|
token_ids: int | List[int] | dict | TT, |
|
skip_special_tokens=False, |
|
clean_up_tokenization_spaces=False, |
|
) -> int | List[int]: |
|
|
|
if isinstance(token_ids, int): |
|
return self.itos.get(token_ids, self._UNK_TOKEN) |
|
|
|
if isinstance(token_ids, dict): |
|
token_ids = token_ids["input_ids"] |
|
|
|
if isinstance(token_ids, TT): |
|
token_ids = token_ids.tolist() |
|
|
|
if isinstance(token_ids, list): |
|
tokens_str = [self.itos.get(xi, self._UNK_TOKEN) for xi in token_ids] |
|
processed_tokens = self._process_str_tokens(tokens_str) |
|
|
|
return " ".join(processed_tokens) |
|
|
|
raise ValueError( |
|
f"Unknown input type to decode() for argument 'token_ids'. Received: {type(token_ids)} " |
|
) |
|
|
|
self._decode = _decode |
|
|
|
def _init_pretokenizer(self) -> pre_tokenizers.PreTokenizer: |
|
raise NotImplementedError |
|
|
|
def _process_str_tokens( |
|
self, tokens_str: list[str], return_player_ids: bool |
|
) -> list[str]: |
|
raise NotImplementedError |
|
|
|
def get_id2square_list() -> list[int]: |
|
raise NotImplementedError |
|
|
|
|
|
class UciTileTokenizer(UciTokenizer): |
|
"""Uci tokenizer converting start/end tiles and promotion types each into individual tokens""" |
|
|
|
SPECIAL_TOKENS = (_PAD_TOKEN, _UNK_TOKEN, _BOS_TOKEN, _EOS_TOKEN) = [ |
|
"<|pad|>", |
|
"<|startoftext|>", |
|
"<|endoftext|>", |
|
"<|unknown|>", |
|
] |
|
|
|
stoi: dict[str, int] |
|
itos: dict[int, str] |
|
|
|
_split_regex: str |
|
_promote_chars: str |
|
|
|
id2square: List[int] = list(range(4, 68)) |
|
""" |
|
List mapping token IDs to squares on the chess board. Order is file then rank, i.e.: |
|
`A1, B1, C1, ..., F8, G8, H8` |
|
""" |
|
|
|
def get_id2square_list(self) -> List[int]: |
|
return self.id2square |
|
|
|
def __init__(self, *, upper_promotions: bool, **kwargs): |
|
|
|
kwargs.pop("pad_token", None) |
|
kwargs.pop("unk_token", None) |
|
kwargs.pop("bos_token", None) |
|
kwargs.pop("eos_token", None) |
|
kwargs.pop("clean_up_tokenization_spaces", None) |
|
kwargs.pop("name_or_path", None) |
|
|
|
self.upper_promotions = upper_promotions |
|
|
|
if upper_promotions: |
|
self._promote_chars = "QRBN" |
|
self._split_regex = r"[a-h][1-8]|[QRBN]" |
|
else: |
|
self._promote_chars = "qrbn" |
|
self._split_regex = r"[a-h][1-8]|[qrnb]" |
|
|
|
self.stoi = { |
|
tok: idx |
|
for tok, idx in list( |
|
zip( |
|
self.SPECIAL_TOKENS |
|
+ chess.SQUARE_NAMES |
|
+ list(self._promote_chars), |
|
range(72), |
|
) |
|
) |
|
} |
|
|
|
self.itos = { |
|
idx: tok |
|
for tok, idx in list( |
|
zip( |
|
self.SPECIAL_TOKENS |
|
+ chess.SQUARE_NAMES |
|
+ list(self._promote_chars), |
|
range(72), |
|
) |
|
) |
|
} |
|
|
|
super().__init__( |
|
self.stoi, |
|
self.itos, |
|
pad_token=self._PAD_TOKEN, |
|
unk_token=self._UNK_TOKEN, |
|
bos_token=self._BOS_TOKEN, |
|
eos_token=self._EOS_TOKEN, |
|
name_or_path="austindavis/uci_tile_tokenizer", |
|
clean_up_tokenization_spaces=False, |
|
**kwargs, |
|
) |
|
|
|
def _init_pretokenizer(self): |
|
|
|
pattern = tokenizers.Regex(self._split_regex) |
|
pre_tokenizer = pre_tokenizers.Sequence( |
|
[ |
|
pre_tokenizers.Whitespace(), |
|
pre_tokenizers.Split(pattern=pattern, behavior="merged_with_previous"), |
|
] |
|
) |
|
return pre_tokenizer |
|
|
|
def _process_str_tokens(self, token_str: list[str]): |
|
moves = [] |
|
next_move = "" |
|
for token in token_str: |
|
|
|
|
|
if token in self.all_special_tokens: |
|
continue |
|
|
|
|
|
if len(token) == 1: |
|
next_move += token |
|
continue |
|
|
|
|
|
if len(next_move) < 4: |
|
next_move += token |
|
continue |
|
|
|
moves.append(next_move) |
|
next_move = token |
|
|
|
moves.append(next_move) |
|
return moves |
|
|
|
@staticmethod |
|
def compute_players(encoding: BatchEncoding, according_to="output"): |
|
""" |
|
Determines which player (white=True, black=False) is associated with each token in the sequence. |
|
This method works based on chess move sequences tokenized using the UciTileTokenizer. |
|
|
|
# Parameters: |
|
---------- |
|
**`encoding`** : BatchEncoding |
|
Tokenized input of a chess game, where each token represents a move or special token. |
|
|
|
**`according_to`** : str (optional, default='output') |
|
Specifies the perspective for associating players: |
|
- 'output': Returns the player whose next move is predicted by the sequence (the output move). |
|
- Otherwise: Returns the player associated with the input tokens (i.e., which player made each move). |
|
|
|
# Returns: |
|
------- |
|
List[bool] |
|
A list of boolean values indicating the player for each token: |
|
- True for white (player 1), |
|
- False for black (player 2). |
|
|
|
The list length corresponds to the number of tokens in the sequence, including special tokens if any. |
|
|
|
# Example Usage: |
|
``` |
|
>>> tok = UciTileTokenizer() |
|
>>> encoding = tok('e2e4 d7d5 e4d5 e7e6 d5e6 d8g5 e6e7 g5f6 e7f8Q') |
|
>>> print(encoding['input_ids']) |
|
[1, 16, 32, 55, 39, 32, 39, 56, 48, 39, 48, 63, 42, 48, 56, 42, 49, 56, 65, 68] |
|
>>> tok.compute_players(encoding) |
|
[True, True, False, False, True, True, False, False, True, True, False, False, True, True, False, False, True, True, True, False] |
|
>>> tok.compute_players(encoding, according_to='input') |
|
[True, True, True, False, False, True, True, False, False, True, True, False, False, True, True, False, False, True, True, True] |
|
``` |
|
|
|
# Notes: |
|
------- |
|
This method does not rely on board position calculations. Therefore, when |
|
using `according_to='output'`, it cannot reliably predict which player is |
|
responsible for selecting the final token of the sequence. For instance, |
|
if a pawn is moved to the back rank (e.g., 'e7e8'), then white must select |
|
the promotion class on the next token; however, this algorithm will predict |
|
that black is responsible for selecting the next token instead of white. |
|
""" |
|
|
|
return [ |
|
UciTileTokenizer._compute_players_single(encoding[i].ids) |
|
for i in range(len(encoding["input_ids"])) |
|
] |
|
|
|
@staticmethod |
|
def _compute_players_single(input_ids: list[int], according_to: str = "output"): |
|
players = [] if according_to == "output" else [True] |
|
current_player = False |
|
num_tokens_in_ply = 0 |
|
has_specials = False |
|
|
|
for i, token_id in enumerate(input_ids): |
|
if token_id == 1: |
|
has_specials = True |
|
continue |
|
|
|
if num_tokens_in_ply == 0: |
|
|
|
if token_id > 67 or token_id == 3: |
|
players.append(current_player) |
|
num_tokens_in_ply = 0 |
|
else: |
|
num_tokens_in_ply += 1 |
|
current_player = not current_player |
|
players.append(current_player) |
|
elif num_tokens_in_ply == 1: |
|
num_tokens_in_ply = 0 |
|
players.append(current_player) |
|
else: |
|
raise ValueError("Illegal move sequence") |
|
|
|
if according_to == "output": |
|
|
|
|
|
if num_tokens_in_ply == 0: |
|
if token_id > 67: |
|
players.append(not current_player) |
|
else: |
|
players.append(current_player) |
|
else: |
|
players.append(current_player) |
|
|
|
return players if has_specials else players[1:] |
|
|
|
|
|
if __name__ == "__main__": |
|
tok = UciTileTokenizer() |
|
encoding = tok("e2e4Q b7b8N e2e7 a1", add_special_tokens=True) |
|
print( |
|
f"{encoding['input_ids']=}\n{tok.compute_players(encoding, according_to='output')=}" |
|
) |
|
print( |
|
f"{encoding['input_ids']=}\n{tok.compute_players(encoding, according_to='input')=}" |
|
) |
|
|
|
encoding = tok("e2e4Q b7b8N e2e7 a1", add_special_tokens=False) |
|
print( |
|
f"{encoding['input_ids']=}\n{tok.compute_players(encoding, according_to='output')=}" |
|
) |
|
print( |
|
f"{encoding['input_ids']=}\n{tok.compute_players(encoding, according_to='input')=}" |
|
) |
|
|
|
encoding = tok("e2e4 d7d5 e4d5 e7e6 d5e6 d8g5 e6e7 g5f6 e7f8Q") |
|
print(encoding["input_ids"]) |
|
print(tok.compute_players(encoding)) |
|
print(tok.compute_players(encoding, according_to="input")) |
|
|