metadata
library_name: transformers
license: cc-by-4.0
language:
- en
base_model:
- Equall/Saul-7B-Base
Model Card for Model ID
Model Details
Model Description
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- Developed by: Ehsan Shareghi, Jiuzhou Han, Paul Burgess
- Model type: 7B
- Language(s) (NLP): English
- License: CC BY 4.0
- Finetuned from model: Saul-7B-Base
Model Sources
Uses
Here's how you can run the model:
# pip install git+https://github.com/huggingface/transformers.git
# pip install git+https://github.com/huggingface/peft.git
import torch
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
BitsAndBytesConfig
)
from peft import PeftModel
model = AutoModelForCausalLM.from_pretrained(
"Equall/Saul-7B-Base",
quantization_config=BitsAndBytesConfig(load_in_8bit=True),
device_map="auto",
)
tokenizer = AutoTokenizer.from_pretrained("Equall/Saul-7B-Base")
tokenizer.pad_token = tokenizer.eos_token
model = PeftModel.from_pretrained(
model,
"auslawbench/Cite-SaulLM-7B",
device_map="auto",
torch_dtype=torch.bfloat16,
)
model.eval()
fine_tuned_prompt = """
### Instruction:
{}
### Input:
{}
### Response:
{}"""
example_input="Many of ZAR’s grounds of appeal related to fact finding. Drawing on principles set down in several other courts and tribunals, the Appeal Panel summarised the circumstances in which leave may be granted for a person to appeal from findings of fact: <CASENAME> at [84]."
model_input = fine_tuned_prompt.format("Predict the name of the case that needs to be cited in the text and explain why it should be cited.", example_input, '')
inputs = tokenizer(model_input, return_tensors="pt").to("cuda")
outputs = model.generate(**inputs, max_new_tokens=256, temperature=1.0)
output = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(output.split("### Response:")[1].strip().split('>')[0] + '>')
Citation
BibTeX:
@misc{shareghi2024auslawcite,
title={Methods for Legal Citation Prediction in the Age of LLMs: An Australian Law Case Study},
author={Ehsan Shareghi, Jiuzhou Han, Paul Burgess},
year={2024},
eprint={arXiv:2412.06272},
archivePrefix={arXiv},
primaryClass={cs.CL}
}