atitat/food_classifier
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on an unknown dataset. It achieves the following results on the evaluation set:
- Train Loss: 0.3826
- Validation Loss: 0.4117
- Train Accuracy: 0.891
- Epoch: 4
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 20000, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
Training results
Train Loss | Validation Loss | Train Accuracy | Epoch |
---|---|---|---|
2.8051 | 1.6299 | 0.837 | 0 |
1.2333 | 0.8371 | 0.9 | 1 |
0.7305 | 0.5069 | 0.922 | 2 |
0.4848 | 0.3805 | 0.927 | 3 |
0.3826 | 0.4117 | 0.891 | 4 |
Framework versions
- Transformers 4.35.0
- TensorFlow 2.14.0
- Datasets 2.14.6
- Tokenizers 0.14.1
- Downloads last month
- 62
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for atitat/food_classifier
Base model
google/vit-base-patch16-224-in21k