Visualize in Weights & Biases

w2v2-bert-wolof-mixed-75-hours

This model is a fine-tuned version of facebook/w2v-bert-2.0 on the fleurs dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7945
  • Model Preparation Time: 0.016
  • Wer: 0.4378
  • Cer: 0.1508

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 8
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Model Preparation Time Wer Cer
11.7766 0.3478 400 1.1257 0.016 0.6985 0.2268
5.0043 0.6957 800 0.9996 0.016 0.5908 0.2027
4.3873 1.0435 1200 0.9269 0.016 0.5708 0.1977
4.0347 1.3913 1600 0.9035 0.016 0.5655 0.1958
4.0726 1.7391 2000 1.0003 0.016 0.5852 0.2072
4.088 2.0870 2400 0.9824 0.016 0.5923 0.2199
4.0292 2.4348 2800 1.1359 0.016 0.6165 0.2262
4.0772 2.7826 3200 0.9909 0.016 0.6224 0.2381
4.1632 3.1304 3600 1.0027 0.016 0.6092 0.2172
4.2807 3.4783 4000 0.8705 0.016 0.5979 0.2087
4.2877 3.8261 4400 0.9515 0.016 0.6289 0.2395
4.2801 4.1739 4800 1.2157 0.016 0.6942 0.2623
4.4405 4.5217 5200 1.1690 0.016 0.7471 0.2766
4.5465 4.8696 5600 1.1639 0.016 0.8119 0.2750
4.5337 5.2174 6000 1.0600 0.016 0.6861 0.2694
4.5306 5.5652 6400 1.1896 0.016 0.8158 0.3098
4.4503 5.9130 6800 1.1112 0.016 0.7378 0.2844
4.3858 6.2609 7200 1.0705 0.016 0.6733 0.2545
4.3818 6.6087 7600 1.0729 0.016 0.7716 0.2802
4.2016 6.9565 8000 1.0411 0.016 0.6635 0.2514
4.1929 7.3043 8400 0.9196 0.016 0.6179 0.2297
4.2011 7.6522 8800 1.0356 0.016 0.6759 0.2732
4.1664 8.0 9200 1.0187 0.016 0.6679 0.2527
4.0612 8.3478 9600 1.0575 0.016 0.6697 0.2636
4.1004 8.6957 10000 1.0145 0.016 0.6989 0.2559
3.993 9.0435 10400 0.8966 0.016 0.6262 0.2293
3.946 9.3913 10800 0.9941 0.016 0.6476 0.2502
3.9723 9.7391 11200 0.8798 0.016 0.6116 0.2295
3.9375 10.0870 11600 1.0265 0.016 0.6918 0.2732
3.7855 10.4348 12000 0.9268 0.016 0.6131 0.2301
3.789 10.7826 12400 0.9128 0.016 0.6623 0.2470
3.6762 11.1304 12800 0.9188 0.016 0.6569 0.2459
3.6208 11.4783 13200 0.8584 0.016 0.6096 0.2302
3.7174 11.8261 13600 0.8551 0.016 0.6059 0.2367
3.5768 12.1739 14000 0.8994 0.016 0.5999 0.2301
3.4273 12.5217 14400 0.7724 0.016 0.5492 0.2075
3.5209 12.8696 14800 0.9623 0.016 0.6294 0.2384
3.5119 13.2174 15200 0.8470 0.016 0.6077 0.2274
3.2817 13.5652 15600 0.8757 0.016 0.6172 0.2295
3.4257 13.9130 16000 0.8080 0.016 0.5828 0.2159
3.2079 14.2609 16400 0.7876 0.016 0.5527 0.2005
3.2496 14.6087 16800 0.8186 0.016 0.5579 0.2107
3.2356 14.9565 17200 0.8017 0.016 0.5594 0.2105
3.1111 15.3043 17600 0.7971 0.016 0.5397 0.2017
3.1498 15.6522 18000 0.8149 0.016 0.5525 0.2098
3.0901 16.0 18400 0.7434 0.016 0.5560 0.2040
3.0073 16.3478 18800 0.7900 0.016 0.5631 0.2137
3.0489 16.6957 19200 0.9481 0.016 0.6334 0.2441
3.0164 17.0435 19600 0.7279 0.016 0.5256 0.1921
2.8813 17.3913 20000 0.7843 0.016 0.5331 0.2013
2.9653 17.7391 20400 0.7391 0.016 0.5340 0.2007
2.9241 18.0870 20800 0.8120 0.016 0.5337 0.1913
2.7475 18.4348 21200 0.7364 0.016 0.5384 0.1968
2.776 18.7826 21600 0.7634 0.016 0.5410 0.2051
2.8009 19.1304 22000 0.7331 0.016 0.5202 0.1881
2.6983 19.4783 22400 0.7233 0.016 0.5351 0.1909
2.7007 19.8261 22800 0.7191 0.016 0.5467 0.1962
2.6292 20.1739 23200 0.7249 0.016 0.5271 0.1958
2.6153 20.5217 23600 0.6891 0.016 0.5055 0.1841
2.6886 20.8696 24000 0.7109 0.016 0.5089 0.1896
2.5751 21.2174 24400 0.7151 0.016 0.5332 0.2115
2.5319 21.5652 24800 0.6984 0.016 0.5198 0.1884
2.5264 21.9130 25200 0.7594 0.016 0.5444 0.2035
2.4224 22.2609 25600 0.7153 0.016 0.4997 0.1845
2.5018 22.6087 26000 0.7060 0.016 0.5174 0.1907
2.4878 22.9565 26400 0.7114 0.016 0.5066 0.1898
2.3717 23.3043 26800 0.6762 0.016 0.5034 0.1839
2.3977 23.6522 27200 0.6972 0.016 0.5258 0.1869
2.3516 24.0 27600 0.7925 0.016 0.5279 0.1927
2.3072 24.3478 28000 0.7104 0.016 0.5046 0.1869
2.3526 24.6957 28400 0.8242 0.016 0.5398 0.1983
2.2715 25.0435 28800 0.7089 0.016 0.4961 0.1764
2.2415 25.3913 29200 0.7396 0.016 0.5289 0.1969
2.2458 25.7391 29600 0.7099 0.016 0.4936 0.1806
2.1919 26.0870 30000 0.6836 0.016 0.4767 0.1733
2.1406 26.4348 30400 0.6758 0.016 0.4955 0.1787
2.143 26.7826 30800 0.6664 0.016 0.4916 0.1751
2.1006 27.1304 31200 0.6869 0.016 0.4763 0.1703
2.0706 27.4783 31600 0.6942 0.016 0.5194 0.1851
2.0959 27.8261 32000 0.7162 0.016 0.5272 0.1861
2.0479 28.1739 32400 0.6295 0.016 0.4727 0.1714
1.9625 28.5217 32800 0.6404 0.016 0.4808 0.1740
1.9959 28.8696 33200 0.7074 0.016 0.5058 0.1824
1.9929 29.2174 33600 0.7636 0.016 0.5064 0.1882
1.9295 29.5652 34000 0.6882 0.016 0.4846 0.1755
1.9403 29.9130 34400 0.6595 0.016 0.4816 0.1734
1.8859 30.2609 34800 0.7068 0.016 0.4820 0.1721
1.877 30.6087 35200 0.6906 0.016 0.4850 0.1763
1.892 30.9565 35600 0.6596 0.016 0.4708 0.1654
1.8199 31.3043 36000 0.6752 0.016 0.4585 0.1603
1.8226 31.6522 36400 0.7320 0.016 0.4773 0.1722
1.7716 32.0 36800 0.6807 0.016 0.4622 0.1670
1.7435 32.3478 37200 0.7207 0.016 0.4947 0.1804
1.7791 32.6957 37600 0.6985 0.016 0.4693 0.1681
1.7286 33.0435 38000 0.7014 0.016 0.4817 0.1697
1.7015 33.3913 38400 0.6615 0.016 0.4859 0.1731
1.6884 33.7391 38800 0.6528 0.016 0.4695 0.1640
1.7252 34.0870 39200 0.6669 0.016 0.4698 0.1658
1.6353 34.4348 39600 0.6878 0.016 0.4908 0.1732
1.655 34.7826 40000 0.7076 0.016 0.4692 0.1655
1.6267 35.1304 40400 0.6742 0.016 0.4608 0.1627
1.5937 35.4783 40800 0.6456 0.016 0.4615 0.1590
1.5733 35.8261 41200 0.6525 0.016 0.4724 0.1629
1.58 36.1739 41600 0.6382 0.016 0.4600 0.1602
1.5158 36.5217 42000 0.6538 0.016 0.4499 0.1564
1.5284 36.8696 42400 0.6573 0.016 0.4508 0.1583
1.5195 37.2174 42800 0.6452 0.016 0.4597 0.1578
1.4839 37.5652 43200 0.6700 0.016 0.4572 0.1617
1.4793 37.9130 43600 0.6841 0.016 0.4668 0.1613
1.4587 38.2609 44000 0.7116 0.016 0.4542 0.1603
1.4233 38.6087 44400 0.6758 0.016 0.4472 0.1571
1.4962 38.9565 44800 0.6654 0.016 0.4555 0.1566
1.3871 39.3043 45200 0.6974 0.016 0.4573 0.1586
1.3926 39.6522 45600 0.6906 0.016 0.4704 0.1622
1.3852 40.0 46000 0.6375 0.016 0.4503 0.1572
1.3408 40.3478 46400 0.7045 0.016 0.4586 0.1613
1.3603 40.6957 46800 0.6581 0.016 0.4613 0.1596
1.3423 41.0435 47200 0.7167 0.016 0.4520 0.1562
1.296 41.3913 47600 0.6804 0.016 0.4517 0.1573
1.2604 41.7391 48000 0.7131 0.016 0.4414 0.1530
1.2873 42.0870 48400 0.7258 0.016 0.4509 0.1559
1.237 42.4348 48800 0.6957 0.016 0.4418 0.1525
1.2699 42.7826 49200 0.7115 0.016 0.4394 0.1563
1.2036 43.1304 49600 0.7259 0.016 0.4453 0.1539
1.226 43.4783 50000 0.7238 0.016 0.4331 0.1513
1.213 43.8261 50400 0.7210 0.016 0.4420 0.1530
1.1345 44.1739 50800 0.7782 0.016 0.4403 0.1529
1.1684 44.5217 51200 0.7361 0.016 0.4438 0.1536
1.214 44.8696 51600 0.7518 0.016 0.4407 0.1521
1.1141 45.2174 52000 0.7633 0.016 0.4443 0.1542
1.1284 45.5652 52400 0.7520 0.016 0.4398 0.1522
1.1172 45.9130 52800 0.7339 0.016 0.4446 0.1535
1.0723 46.2609 53200 0.7706 0.016 0.4387 0.1517
1.0499 46.6087 53600 0.7504 0.016 0.4382 0.1512
1.1076 46.9565 54000 0.7552 0.016 0.4460 0.1527
1.0547 47.3043 54400 0.7656 0.016 0.4397 0.1509
1.0231 47.6522 54800 0.7663 0.016 0.4409 0.1512
1.0573 48.0 55200 0.7506 0.016 0.4373 0.1502
1.0242 48.3478 55600 0.7745 0.016 0.4386 0.1497
1.0129 48.6957 56000 0.7814 0.016 0.4374 0.1505
0.975 49.0435 56400 0.7876 0.016 0.4392 0.1507
1.0072 49.3913 56800 0.7855 0.016 0.4408 0.1513
0.971 49.7391 57200 0.7945 0.016 0.4378 0.1508

Framework versions

  • Transformers 4.46.1
  • Pytorch 2.5.1+cu124
  • Datasets 2.17.0
  • Tokenizers 0.20.3
Downloads last month
189
Safetensors
Model size
606M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for asr-africa/w2v2-bert-wolof-mixed-75-hours

Finetuned
(262)
this model

Evaluation results