|
--- |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- dataset_size:400 |
|
- loss:MatryoshkaLoss |
|
- loss:MultipleNegativesRankingLoss |
|
base_model: Snowflake/snowflake-arctic-embed-l |
|
widget: |
|
- source_sentence: Why should manipulative and exploitative uses of AI be prohibited |
|
according to the context provided? |
|
sentences: |
|
- to operate without human intervention. The adaptiveness that an AI system could |
|
exhibit after deployment, refers to self-learning capabilities, allowing the system |
|
to change while in use. AI systems can be used on a stand-alone basis or as a component |
|
of a product, irrespective of whether the system is physically integrated into |
|
the product (embedded) or serves the functionality of the product without being |
|
integrated therein (non-embedded). |
|
- '(28) |
|
|
|
|
|
|
|
Aside from the many beneficial uses of AI, it can also be misused and provide |
|
novel and powerful tools for manipulative, exploitative and social control practices. |
|
Such practices are particularly harmful and abusive and should be prohibited because |
|
they contradict Union values of respect for human dignity, freedom, equality, |
|
democracy and the rule of law and fundamental rights enshrined in the Charter, |
|
including the right to non-discrimination, to data protection and to privacy and |
|
the rights of the child. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(29)' |
|
- A Union legal framework laying down harmonised rules on AI is therefore needed |
|
to foster the development, use and uptake of AI in the internal market that at |
|
the same time meets a high level of protection of public interests, such as health |
|
and safety and the protection of fundamental rights, including democracy, the |
|
rule of law and environmental protection as recognised and protected by Union |
|
law. To achieve that objective, rules regulating the placing on the market, the |
|
putting into service and the use of certain AI systems should be laid down, thus |
|
ensuring the smooth functioning of the internal market and allowing those systems |
|
to benefit from the principle of free movement of goods and services. Those rules |
|
should be clear and robust |
|
- source_sentence: What are the ethical principles mentioned in the context for developing |
|
voluntary best practices and standards? |
|
sentences: |
|
- encouraged to take into account, as appropriate, the ethical principles for the |
|
development of voluntary best practices and standards. |
|
- completed human activity that may be relevant for the purposes of the high-risk |
|
uses listed in an annex to this Regulation. Considering those characteristics, |
|
the AI system provides only an additional layer to a human activity with consequently |
|
lowered risk. That condition would, for example, apply to AI systems that are |
|
intended to improve the language used in previously drafted documents, for example |
|
in relation to professional tone, academic style of language or by aligning text |
|
to a certain brand messaging. The third condition should be that the AI system |
|
is intended to detect decision-making patterns or deviations from prior decision-making |
|
patterns. The risk would be lowered because the use of the AI system follows a previously |
|
- (17) |
|
- source_sentence: How do climate change mitigation and adaptation relate to the conservation |
|
of biodiversity? |
|
sentences: |
|
- of the conditions referred to above should draw up documentation of the assessment |
|
before that system is placed on the market or put into service and should provide |
|
that documentation to national competent authorities upon request. Such a provider |
|
should be obliged to register the AI system in the EU database established under |
|
this Regulation. With a view to providing further guidance for the practical implementation |
|
of the conditions under which the AI systems listed in an annex to this Regulation |
|
are, on an exceptional basis, non-high-risk, the Commission should, after consulting |
|
the Board, provide guidelines specifying that practical implementation, completed |
|
by a comprehensive list of practical examples of use cases of AI systems that |
|
- the conservation and restoration of biodiversity and ecosystems and climate change |
|
mitigation and adaptation. |
|
- logistical point of view. |
|
- source_sentence: How often should the risk-management system be reviewed and updated |
|
to maintain its effectiveness? |
|
sentences: |
|
- The risk-management system should consist of a continuous, iterative process that |
|
is planned and run throughout the entire lifecycle of a high-risk AI system. That |
|
process should be aimed at identifying and mitigating the relevant risks of AI |
|
systems on health, safety and fundamental rights. The risk-management system should |
|
be regularly reviewed and updated to ensure its continuing effectiveness, as well |
|
as justification and documentation of any significant decisions and actions taken |
|
subject to this Regulation. This process should ensure that the provider identifies |
|
risks or adverse impacts and implements mitigation measures for the known and |
|
reasonably foreseeable risks of AI systems to the health, safety and fundamental |
|
rights in light |
|
- solely on profiling them or on assessing their personality traits and characteristics |
|
should be prohibited. In any case, that prohibition does not refer to or touch |
|
upon risk analytics that are not based on the profiling of individuals or on the |
|
personality traits and characteristics of individuals, such as AI systems using |
|
risk analytics to assess the likelihood of financial fraud by undertakings on |
|
the basis of suspicious transactions or risk analytic tools to predict the likelihood |
|
of the localisation of narcotics or illicit goods by customs authorities, for |
|
example on the basis of known trafficking routes. |
|
- be clear and robust in protecting fundamental rights, supportive of new innovative |
|
solutions, enabling a European ecosystem of public and private actors creating |
|
AI systems in line with Union values and unlocking the potential of the digital |
|
transformation across all regions of the Union. By laying down those rules as |
|
well as measures in support of innovation with a particular focus on small and |
|
medium enterprises (SMEs), including startups, this Regulation supports the objective |
|
of promoting the European human-centric approach to AI and being a global leader |
|
in the development of secure, trustworthy and ethical AI as stated by the European |
|
Council (5), and it ensures the protection of ethical principles, as specifically |
|
requested by the |
|
- source_sentence: How is the number 42 used in mathematical contexts? |
|
sentences: |
|
- (65) |
|
- (42) |
|
- to obtain prior authorisation. This could be, for example, a person involved in |
|
a crime, being unwilling, or unable due to an accident or a medical condition, |
|
to disclose their identity to law enforcement authorities. |
|
pipeline_tag: sentence-similarity |
|
library_name: sentence-transformers |
|
metrics: |
|
- cosine_accuracy@1 |
|
- cosine_accuracy@3 |
|
- cosine_accuracy@5 |
|
- cosine_accuracy@10 |
|
- cosine_precision@1 |
|
- cosine_precision@3 |
|
- cosine_precision@5 |
|
- cosine_precision@10 |
|
- cosine_recall@1 |
|
- cosine_recall@3 |
|
- cosine_recall@5 |
|
- cosine_recall@10 |
|
- cosine_ndcg@10 |
|
- cosine_mrr@10 |
|
- cosine_map@100 |
|
model-index: |
|
- name: SentenceTransformer based on Snowflake/snowflake-arctic-embed-l |
|
results: |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: Unknown |
|
type: unknown |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.875 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 1.0 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 1.0 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 1.0 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.875 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.3333333333333333 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.19999999999999998 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.09999999999999999 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.875 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 1.0 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 1.0 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 1.0 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.9484108127976215 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.9305555555555555 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.9305555555555557 |
|
name: Cosine Map@100 |
|
--- |
|
|
|
# SentenceTransformer based on Snowflake/snowflake-arctic-embed-l |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Snowflake/snowflake-arctic-embed-l](https://huggingface.co/Snowflake/snowflake-arctic-embed-l). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [Snowflake/snowflake-arctic-embed-l](https://huggingface.co/Snowflake/snowflake-arctic-embed-l) <!-- at revision d8fb21ca8d905d2832ee8b96c894d3298964346b --> |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Output Dimensionality:** 1024 dimensions |
|
- **Similarity Function:** Cosine Similarity |
|
<!-- - **Training Dataset:** Unknown --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel |
|
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
(2): Normalize() |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("arthikrangan/legal-ft-1") |
|
# Run inference |
|
sentences = [ |
|
'How is the number 42 used in mathematical contexts?', |
|
'(42)', |
|
'(65)', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 1024] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Information Retrieval |
|
|
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| cosine_accuracy@1 | 0.875 | |
|
| cosine_accuracy@3 | 1.0 | |
|
| cosine_accuracy@5 | 1.0 | |
|
| cosine_accuracy@10 | 1.0 | |
|
| cosine_precision@1 | 0.875 | |
|
| cosine_precision@3 | 0.3333 | |
|
| cosine_precision@5 | 0.2 | |
|
| cosine_precision@10 | 0.1 | |
|
| cosine_recall@1 | 0.875 | |
|
| cosine_recall@3 | 1.0 | |
|
| cosine_recall@5 | 1.0 | |
|
| cosine_recall@10 | 1.0 | |
|
| **cosine_ndcg@10** | **0.9484** | |
|
| cosine_mrr@10 | 0.9306 | |
|
| cosine_map@100 | 0.9306 | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### Unnamed Dataset |
|
|
|
* Size: 400 training samples |
|
* Columns: <code>sentence_0</code> and <code>sentence_1</code> |
|
* Approximate statistics based on the first 400 samples: |
|
| | sentence_0 | sentence_1 | |
|
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------| |
|
| type | string | string | |
|
| details | <ul><li>min: 10 tokens</li><li>mean: 20.49 tokens</li><li>max: 35 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 93.01 tokens</li><li>max: 186 tokens</li></ul> | |
|
* Samples: |
|
| sentence_0 | sentence_1 | |
|
|:-----------------------------------------------------------------------------|:-------------------------------------------------------| |
|
| <code>What was requested by the European Parliament?</code> | <code>requested by the European Parliament (6).</code> | |
|
| <code>Who made the request to the European Parliament?</code> | <code>requested by the European Parliament (6).</code> | |
|
| <code>What is the significance of the number 60 in the given context?</code> | <code>(60)</code> | |
|
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: |
|
```json |
|
{ |
|
"loss": "MultipleNegativesRankingLoss", |
|
"matryoshka_dims": [ |
|
768, |
|
512, |
|
256, |
|
128, |
|
64 |
|
], |
|
"matryoshka_weights": [ |
|
1, |
|
1, |
|
1, |
|
1, |
|
1 |
|
], |
|
"n_dims_per_step": -1 |
|
} |
|
``` |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `eval_strategy`: steps |
|
- `per_device_train_batch_size`: 10 |
|
- `per_device_eval_batch_size`: 10 |
|
- `num_train_epochs`: 10 |
|
- `multi_dataset_batch_sampler`: round_robin |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: steps |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 10 |
|
- `per_device_eval_batch_size`: 10 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `torch_empty_cache_steps`: None |
|
- `learning_rate`: 5e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1 |
|
- `num_train_epochs`: 10 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: linear |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.0 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: False |
|
- `fp16`: False |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: False |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: None |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `include_for_metrics`: [] |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `eval_on_start`: False |
|
- `use_liger_kernel`: False |
|
- `eval_use_gather_object`: False |
|
- `average_tokens_across_devices`: False |
|
- `prompts`: None |
|
- `batch_sampler`: batch_sampler |
|
- `multi_dataset_batch_sampler`: round_robin |
|
|
|
</details> |
|
|
|
### Training Logs |
|
| Epoch | Step | cosine_ndcg@10 | |
|
|:-----:|:----:|:--------------:| |
|
| 1.0 | 40 | 0.9846 | |
|
| 1.25 | 50 | 0.9923 | |
|
| 2.0 | 80 | 0.9588 | |
|
| 2.5 | 100 | 0.9692 | |
|
| 3.0 | 120 | 0.9692 | |
|
| 3.75 | 150 | 0.9539 | |
|
| 4.0 | 160 | 0.9539 | |
|
| 5.0 | 200 | 0.9588 | |
|
| 6.0 | 240 | 0.9665 | |
|
| 6.25 | 250 | 0.9588 | |
|
| 7.0 | 280 | 0.9511 | |
|
| 7.5 | 300 | 0.9511 | |
|
| 8.0 | 320 | 0.9407 | |
|
| 8.75 | 350 | 0.9484 | |
|
| 9.0 | 360 | 0.9484 | |
|
| 10.0 | 400 | 0.9484 | |
|
|
|
|
|
### Framework Versions |
|
- Python: 3.11.11 |
|
- Sentence Transformers: 3.4.1 |
|
- Transformers: 4.48.2 |
|
- PyTorch: 2.5.1+cu124 |
|
- Accelerate: 1.3.0 |
|
- Datasets: 3.2.0 |
|
- Tokenizers: 0.21.0 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
#### MatryoshkaLoss |
|
```bibtex |
|
@misc{kusupati2024matryoshka, |
|
title={Matryoshka Representation Learning}, |
|
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, |
|
year={2024}, |
|
eprint={2205.13147}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.LG} |
|
} |
|
``` |
|
|
|
#### MultipleNegativesRankingLoss |
|
```bibtex |
|
@misc{henderson2017efficient, |
|
title={Efficient Natural Language Response Suggestion for Smart Reply}, |
|
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, |
|
year={2017}, |
|
eprint={1705.00652}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |